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COMPLETIONS AND CO-PRODUCTS OF HEYTING ALGEBRAS

By

Katsuya Eda

A Heyting algebra is not only a lattice theoretic object, but is also related to

the intuitioniticlogic and a topologicalspace and others. In this paper, we shall

investigate about completions and co-products of Heyting algebras.

In §1, we shall study about a Stone space as a complete Heyting algebra,

more precisely as a completion of some distributivelattice. In §2, the canonical

completion of a Heyting algebra will be studied. Some proofs in §1,§2 and §6

are done intuitionistically.Those cares are necessary for §6. A co-product of

Heyting algebras is defined in §3. In §4, we shall study the space of maximal

ideals and Wallman-compactifications and Stone-Cech-compactifications in the Heyt-

ing algebraic view. The relationships between some properties, completions and

co-products denned in the previous sections will be discussed in §5. Complete

Heyting algebras in a Heyting extention will be studied in §6.

The author's thanks are due to Dr. Hayashi for his information about the

intuitionisticlogic and the Topos theory, and to Prof. Nishimura for his valuable

suggestions.

§1. An open algebra of a Stone space

We shall use usual lattice-theoreticnotations and set-theoretic ones.

Definition 1.1. A latticeL is distributive,if aA(b＼/c)= {aAft)V＼aAc) holds.

A latticeL is bounded, if it has the least element 0 and the greatest ele-

ment 1.

A latticeL is a bounded distributivelattice,if it is bounded and distributive.

A latticeL is a Heyting algebra, if it is a bounded distributive lattice and

relatively pseudo-compemented. We denote the relative pseudo-complement by

a^>b, where x<a^b if and only if aAx<b.

Definition 1.2. A lattice L is complete if the least upper bound for any
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subset X of L exists. We denote the least upper bound by ＼/X.

Definition 1.3. A lattice L is infinitely distributive, if aA＼/B=＼/ aAb holds

KB
in the case that ＼JB exists.

Definition 1.4. A subset F of a lattice L is a filter,if the following hold:

a<b and aeF-*b F, azF and hzF-xzAbeF and icF if there exists a greatest

element 1 in L.

A subset / of a lattice L is an ideal, if the following hold: a<h & &e/->

azl, ael & /;<=/--≫avbel and Oe/ if there exists a least element 0 in L.

An ideal / is prime, if aAbzI implies azl or be! and / is neither L nor

empty.

An ideal / is maximal, if / is neither L nor, empty and any ideal which

includes / is / or L.

%L is the set of ideals of L.

pL is the set of prime ideals of L.

mL is the set of maximal ideals of L.

Va is the set of prime ideals which do not contain a, which is a basic open

set for pL.

L. is the Drincioalideal ＼x＼x<a＼.

Definition 1.5. A function 0: L-+U is a morphism, where L and U are

lattices, if 0 preserves the operations V and A, i.e. <f>{a＼jb)=-<fi(a)＼/<j>{b)and 0(#A

h)=${a)/＼4>{b) for a,beL.

A morphism 0 is complete, if it preserves V≫ i-e. <p(＼JX)-=＼/<ji"Xin the case

that V-^ exists.

A morphism 0: L->Lf is a 0,1-morphism, if 0(0)=0 and 0(1) = 1 hold in the

case 0 and 1 exist in L respectively.

A morphism 0: A~->Ar is a strong Heyting morphism, where A and A' are

Hey ting algebras, if it is a 0,1-morphism and preserves :=>.

We shall use abbreviations: a BDL for a bounded distributivelattice,an Ha

for a Heyting algebra, a cHa for a complete Heyting algebra, a cH-morphism for

a complete Heyting morphism and so on.

Definition 1.6. A subset X of a complete lattice L completely generates L,

if a=＼/{x",x<a and xeX} holds for each azL. A complete lattice L* is a com-

pletion of a lattice L, if there exists an injective 0,1-morphism j: L-±L* such

that the range of j completely generates L*. This j is called the related morphism.
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Definition 1.7. O(X) is the cHa which is the set of open subsets of a topo-

logical space X, where the infinite sum and the finiteintersection are the set

theoreticalones. We callit an open algebra.

R(H) is the set of regular elements of an Ha H, i.e.R{H) = {x;(x^0)^0=x}.

We denote O=>0)=>Q by R(x).

By Def. 1.4,pL can be regarded as a topological space. It is known as a

Stone space.

Theorem 1.1 (Stone) Let L be a distributive lattice and i: L-*O(pL) be the

function such thati(a)=Va. Then, O(pL) is a completion of L and i is the related

morphism. And if L is an Ha, i is a strong /f-morphism.

Proof. i(aA&)=FaA6=Ffln76=i(a)Ai(b) and i(a＼yb)=VaUVb = i{d)Vi(b). For

the Injectiveness, notice that a$b implies the existence of a prime ideal which

contains b but does not contain a. Since {i{a);ci£L)forms a topological base for

pL, O=＼J{i(a);i(a)<O and azL] for each OeO(pL).

Let / be a prime ideal of L. /eFan Va^b^a$I & a^>b$l'*-*■aAa^>b$I'-> b$I.

So, Fo^cKa^Fft. On the other hand, IeVa^>Vb implies that there is c such that

l Vcc(pL~Va)＼JVb. Then, cAa<b and so c<a^b. Hence, Va^>Vb= Va^.

i(())= <f>and *(l)= pZ,.

Theorem 1.2. Let L be a #DL and A be a c/fo. And let <f>:L-+A be an

Q(ftT＼ 0,1-morphism. Then, there exists a unique ci7-morphism <p＼

tv>-v g
|
, O(pL)->^4 that satisfiesthe left diagram. And if A is com-

pletely generated by the range of <f>,then <bis surjective.

L -+A

Proof. Let <p(a)=＼/{<f>(x);i(x)<a＼ for a£O(pL). Since O(pL) is a completion

of L, a=＼/{i(x); i(x)<a] for a£O(pL), And so, the uniqueness of <pis clear.

<p(xAy)=＼/{0(u); i(u)<xAy]

=V{^(u)A^>(v); i(u)<x, i(v)<y}

= <p(x)A<p{y),by the infinitedistributive-ness of a clla.

To show the preservation of the infinitesum ＼J,it is sufficient to show that

(p(＼/X)=＼/f'X for X^i"L. Suppose that <H＼/i"X)=y<j>"X does not hold for

some XcL. Then, by the definitionof <p,there exists u in L such thati{u)<＼/i"X

holds but (p{u)<＼J<b"X does not hold. So, there exists a prime ideal / in A such
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that <j>{u)$I and ＼J(j)"X^I. Let 1+ be the subset of L defined by the postulate:

a lf<-Kfi(a)eL Then, 1+ is a prime Ideal In L and contains every element of X,

but does not contain u. However, this contradicts to the fact: Fac ＼J Vx.

If A is completely generated by <$>"L,x ―＼/{<f)(u);<f>(u)<x) for each xo.A. Then,

d>(＼/{i(u);d>(u)<x)) ―＼/{<j)(u);<j>(u)<x}=x. Hence, <p is surjective.

Corollary 1.1. Let A be a cHa and a completion of a distributivelattice L.

And let j be the related morphism. Suppose that for any completion A' of L

i

A

I

L

V ,3 0

r
A'

with the related morphism j', there exists a cil-morphism 0

that satisfiesthe left diagram. Then, A is isomorphic to

0{pL＼

Proof. If L does not contain 0 nor 1, we can add 0 or 1 and extend j and

y as the related morphisms of completions of the extended distributivelattice of

L. So, we assume that L is a BDL.

Let A' be O(pL). Then, by Th. 1, there exists a surjective c//-morphism

<P
<p':O(pL)-*A. Now, it is easy to check that the diagram: A ^zzt O(pL) commutes.

<P'

Next we shall show another representation of O(pL) for a distributive lattice

L.

Definition 1.8. For 1,/eL, lAj=Inj. For rc%L, ＼yr is the set of finite

sums of elements of ＼JF.

For XeL, I{X) is the minimal ideal that contains X.

For the sake of §6, in some cases it is necessary, that the proofs are intui-

tionistic. So, we shall mark lemmas, theorems and corollariesby * in the case

that they are proved mtuitionistically.

Lemma 1.1.* $L with the operations in Def. 8 is a cHa and a completion of

L for a distributivelatticeL.

Proof. Since /n/<s3L holds for I,j $L, I/＼Jis the maximal ideal which is

included by / and /. It follows from the distributive-ness of L that ＼/F $L for

＼JF is the minimal ideal which includes every / in F. So, V /A f< /A V^-

Conversely, x&lA＼/r implies that are/and x is a finitesum of elements of ＼JF.
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So, x is a finite sum of elements of ＼JlI＼J.Hence, xz＼J/A/. Now we have

proved that $L is a cHa, since the infinitedistributive-ness of a complete lattice

implies the relatively pseudo-complemented-ness. By the way, I^>J={y ;xAyeJ

for each xel}.

Let j be the function such that j(x)= Ix for xtL. Then, j(x)e^L. So,§L is

a completion of L and j is the related morphism.

Corollary 1.2. SL is isomorphic to O(pL).

Proof. By Lemma 1.1 and Th. 1.2, there exists a surjective cfJ-morphism

<p:O(pL)-+%L. Let <p(O)^<p(P). Then, V{j(x); i(x)<O}=V{j(y); i(y)<P}. So,

i(x)<0 implies x ＼J{j(y);i(y)<P}. By the definitionof the infinitesum, i{x)<P.

This argument implies O = P.

§2. The canonical completion

In this section we shall prove the existence of the canonical completion of a

Heyting algebra and its uniqueness. This has been proved by Funayama [5], and

Rasiowa and Sikorski[9],but we want to prove it intuitionisticallyfor our purpose.

Our proof is on the same line of Funayama's.

Lemma 2.1.* A Heyting algebra is infinitelydistributive.

Proof. A usual proof is intuitionistic.See [9].

Definition 2.1. An ideal / of a latticeL is closed, if the following holds:

"a=＼/{x ;x£l and x<a}" implies " ael".

%L is the set of closed ideals of L.

Lemma 2.2.* For any Xc:L, there exists a unique minimal closed ideal IC(X)

that includes X. If L is infinitelydistributive,1C(X) is the set of all elements u's

such that u = ＼/{v;v<u and v<x for some x£X}.

Proof. Ie(X) is the intersection of all closed ideals that include X

Let L be infinitelydistributive and / be the set of all w's in the lemma. If

ugJ and w<u, then

―＼/{vAw;v<u and v<x for some xzX}

=＼/{v; v<w and v<x for some xzX) and so wej.
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If u£f and wej, u＼/w―＼J{v;{v<u or v<w) and v<x for some x&X}

―＼/{v;v<u＼/w and v<x for some xgX}

and hence u＼/w£j.

Suppose that a―＼/{x;x<a and x /}.

Let Ax={v:v<x and y<?/ for some y£X} for are/. Then,

jt= V-^.t for xgJ. So, ≪=V{V^*;^<≪ and are/}

=VU{>lar;ar<ff and are/}

―V(y; y^^ and y ^}, which Is in /.

Now, we have proved that / is a closed ideal, which includes X. The mini-

mality of / is clear.

Here we define the operations for ^eL, which are a littledifferentfrom those

for 3L. We shall use the same notations, since no confusion will occur.

Definition 2.2. For 7,/e3cL, M/=/n/. For /""c.^L, ＼/r=I<J(yjr), i.e. the

minimal closed ideal that includes VJI＼

Lemma 2.3*. Let A be an Ha. Then, Sc-A is a c/fo and the embedding

i:A-+3eA',i(x) = IXf is an injective strong c77-rnorphism.

Proof. %eA is closed under the operations in Def. 2.2. VM/</A＼/T for
.rer

r. Let x be an element of I/＼＼/r.Then, # / and x = ＼J{v;v<x and ye/for

some /e/1} by Lemma 2.2 and Def. 2.2. So, a? /e(＼JM/)=VM/. Hence, ScA
./er je.r

is a cHa.

i(x A y) = IXAy=Ix flIy=f (ar)A *(?/).

Suppose that V^ exists for XcA Let /'= {i(ar);xzX}, then ＼/X lc(Kjr). So,

i(V-X")=/c(VJ/')=Vr=V *(≪).i(l)= /i=4 = l.

Let / be the closed ideal that satisfiesthe condition: J/＼Ix<Iy. Then, zAx

<y for any zej. And so, z<,x^y. So, J<Ix^y. On the other hand, /a.^c/arz>/w.

Hence, Ixi>y=Ixz$>Iy.

Theoren 2.1.*

JcA

A ―*A>

Let A and A' be an Ha and a cHa respectively.And let <f>

be a c/Z-morphism from A to A'. Then, there exists a

unique c/f-morphism <p from $CA to A' such that theleft

diagram commutes.
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Proof. Let <p{I)―＼/<}>{x). By the Infinite distributive-ness of A', ip{I)A4>{J)

= V^)AV^)=V W<f>{xAy)< V <!>{x)= <p{lAj).
x I VtJ xGI x£f xGIAJ
Let x£lc({Jn for Fc%cA. Then, x=＼J{u; u<x and u£＼/F}. #a;)=V{0(≫);

u<x and ueKJF], by the completeness of <j>. ue^JF implies usl for some IzF

and so <?>(u)<<p(I) for some leF. Hence, $VO< V 4>(I)- And ^(1)=1.

The uniqueness of (/>is clear from the fact that <ftis complete.

Definition 2.3. A completion of an Ha A is canonical, if the related morphism

/ is complete. We denote the canonical completion of A by A.

Corollary 2.1.* (Funayama [5]) ^CA is a canonical completion of an Ha A

and every canonical completion of A is isomorphic to 3cA

Proof. It is sufficient to show that the morphism <p in Th. 2.1 is injective

and surjective in the case that A' is a canonical completion of A and ^ is the

related morphism.

For any x^A', x=＼/{<fi(a); <p(a)<x and azA}. <p(＼/{i(a);<j>{a)<x and a$.A})―x

holds and so <I>is surjective. Suppose that V <!>(x)―＼/<b{y). 6{x)<＼J <f>(y)implies

4>{x)=＼/ 6{x/＼y). Let z be an element such that xAy<z for any y$J. Then.

4>{xAy)<<f>{z) for any y£j. So, <£(#)= V <j>(xAy)<<f>{z). And so, <j>{x)=<f>(x)A<j>(z)=
mj

(hixAz). By the iniective-ness of <f>,x = xAz and hence x<z. vSo, x―＼/xAy&J.

VZJ
These imply /=/.

From now on. we shall assume that i in Def. 2.3 is the inclusion map.

§3. A co-product of Heyting algebras

We shall define a co-product of bounded distributivelattices, the existence of

which have been well-known. Our object is a co-product of Heyting algebras as

bounded distributivelattices. The fact thatit forms a Heyting algebra has perhaps

already known, but we shallprove it to check additional properties for the follow-

ina rhantprs

Definition 3.1. For distributive lattices La (a£A)P the co-product R La is

the sublattice of O{＼＼pLa) finitelygenerated by {pa~1Va;a£La, cxqA}, where pa is

the projection from n pL≪to pLa for each aeA. The embedding ia: La-> <g)La is

defined bv the Dostulate: iJa)~4>~~'lVnfor a&A.

i) To avoid the trivialityand for the simplicity, we assume that La has at least two

elements, when we treat the co-products 6d.
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Lemma 3.1. Any element x of (x)La can be represented by the following two

forms.

x=V A *≪(≪*)= A V iM, where Fk and G*

are finitesubsets of A.

The proof can be done by the Induction on the construction of (x)L≪. It is a

routine, so we omit it.

Theorem 3.1.(Sikorski [10]) Let La and L be distributivelattices and ha be

a 0,1-morphism from La to L for each aeA. Then, there exists a unique 0,1-

(g>

La morphism <p that makes the left diagram commutative.

And 6 is injectiveif and only if /＼ha{aa)<＼/ha(ba)implies

that aa<b" for some <xeFr＼G, aa―Q for some a£F or b"= l

for some a£G, where F and G are finite.

Proof. For xG(x)La, x can be represented as V A iMD- Let <jtbe the
a&A k<n aZFk

function such that d>(x)=＼y /＼ha{a£). Suppose that /＼ia{aa)<x. Then, x~

A V *'/(≫(ak(k)) by the distributive-ness. Remind that ia is the inverse of the

k<n K
projection and finite sums and intersections are the set theoretical ones. Then,

ia{a")< V ia{al)=ia( V ≪*) holds for some asF, an = <Bfor some azF, or fff( V 0*0

= 1 holds for some ≪^F. So, Aha(aa)<＼/ hfik)(a{(Jr'>)for each /e fl ^*- Hence,

A^(≪a)< A ＼Jhnk){al )=＼}＼ha{ai)-n

aZF /£ITjFfck<n k<n a£Fk

These above implies the well-defined-ness of <f>. By the definition of <j),V> A, 0

and 1 are preserved under <j>.

Suppose that <bis injective. Then, /＼htt{a")<＼/ha(b") implies /＼ia{xtt)<＼Jia{ba)

and so aa<ba for some aeFUG, aa =§ for some atF or ba = l for some azG. The

converse is similar by Lemma 3.1.

Lemma 3.2. p(x)La is homeomorphic to l＼p(La).
a£A aGA

Proof. Let /≪be a prime ideal for each as.A and (x)I≪be the subset of (x)La

defined by the following: x£RIa if and only if there exist some finiteFc.4 and

aa£lafor each a^F such that a;< ＼Zia(a").Then, (§)/ais clearlyan ideal. Suppose

that xAy£<g)h. By Lemma 3.1,x and y have the representations; V A i≪(a%)
a£A k<m a£Fk

and V A iJM) respectively. By the definition of R /,, xAy<＼/ia(aa) for some
j<naZGj aSA aGF
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finite F and some aaela for each a£p＼ Without any loss of generality, we may

assume that Fk = Gj ―F for any k,j. So, A *'≪(≪*)A /＼ia{bf)<＼/ ia(aa) for any k,j.
a F aZF a<ZF

And so, a%£la or bj£lttfor some ≪eF. For each aeF, let Aa and Ba be the subsets

of m and ≪ respectively such that k£Aa<~*aleIa and J£Ba<-*b"jla. Suppose that

＼J Aa=m, then j;=V A^(≪&) (x)/a. Otherwise, there exists k<m; k$Aa for any

a&F. Then, there is a in F such that baj£lafor any j<n. Hence, ＼JBa = n and
o£F

y=＼/ Aia{b°f) (8)Ia. Now, we have proved that (x)Ia is a prime ideal.

Let (I)a be the subset of La for a prime ideal / and each ≪e/f such that

x£{I)a±-*ia{x)£l.Then, (/)≪is a prime ideal and ((§)/,),= /≪ for each a£A, And

/=<g)(/)a holds. Let c = V A ≫≪(≪*).Then,

/ Fc<-* /＼ia(aak)$I for some ^<w

<- 0js#(/)a for each ≪GFft for each ^<m.

These above imply the lemma.

Theorem 3.2. Let Aa be an Ha for each aeA, then <g)Aais an Ha and ia is

a strong c//-morphism for each ocqA.

Proof. Let pttbe the projectionin Def. 3.1. pa is an open continuous map

and hence an easy calculation shows that ia is a strong ciJ-morphisrn from Aa to

RAa.

By Th. 3.1,what we must prove is that(x)Aa is relativelypseudo-complemented.

By Th. 1.1 and Lemma 3.2,it is sufficient to show that x^y is in (§)Aa for

each x, y£RAa, where => is in the sense O( ＼＼pAa). Let x=＼/ A ia(a%)and y =

A V ia(b°f).We can assume Fk=Gj―F for each k<m and j<n. Then,

x z> y=A (A ia(ai)3 A V Ubf))
k<m a£F j<n a£F

=AA(A≪^V≪
k<m j<n a£F a£F

= A A (V*≪(^ =>&}))
k<m j<n a£F

Hence, xz$>y£(g)Aaand R Aa is an Ha.

In some cases, a co-product of open algebras O(Xa)'s in the category of the

cHa's is isomorphic to O( f] Xa). (cf.Isbell [8]) We next show that O(pL)'s are

such cila's.

Theorem 3.3. Let Ln be a distributivelattice and L be the embedding such
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that ia: O(pLa)-*O(U pL≪)and la{x)=p~lx,where pa: H pLa-+pLa is the projection,

for each ≪e/l.

O(pLa)

O(i＼pLa)----F-*A

If A is a clla and ha is a c//-morphism from OipL*)

to ./Ifor each ae/1, then there exists a unique cll-mor-

phism ^ such that the left diagram commutes.

Proof. By Th. 1.1, there exists a unique 0,1-morphism ha such that the

diagram (1) commutes, where ja: La-*O(pLa) is the morphism in Th. 1.1 for each

azA. By Th. 3.1,there exists a unique 0,i-morphism <f>such that the diagram

(2) commutes. Now, by Th. 1.2, there exists a unique c＼£T-morphism$ such that

the diagram (3) commutes. By Lemma 3.2,O(p(x)La) and O( F]pLa) are isomorphic

to each other and so we regard them as the same thing.

(1)

La
...-*.

(2)

A 0
3|0

(3)

O(p0Lo)

j

R La . + A

Now, the only thing we must prove is $-ia―ha for each aeA. Let P=U{Va;

Va^P and a£La}£O(pLa). ia(P)= U {p:lVa; VaQP and aGLa}= ＼j{i.(a);F≪£P and

azLX So,

4>-la{P)=＼J{$-ia{d)＼Va&P and ≪eL8}

=V{^-*≪(o); Va^P and ≪eLff}

=V{A≪(ff);7acPand aeLa}=hJP).

§4. A space of maximal ideals

We have studied about the open algebras of the spaces of prime ideals. In

this section we shallinvestigate the open algebras of the spaces of maximal ideals.

Definition 4.1. For distributivelattice L, the topology of ＼nLis the subspace-

tODoloev of i)L. (See Def. 1.4)

Definition 4.2. A BDL L has the T-property,if a^h implies that there is

an element a: aVc~l and bVc^-l.
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A BDL L is normal, if aVb=l implies that there are elements u and v such

that uAv―l$ and aVu ―b＼/v―l.

A BDL L is compact, if ＼/X= 1 implies the existence of a finite subset F of

X such that V^=I-

An element x of a BDL L is a co-atom, if there exists no element between

x and 1 and x is not I.

By the definitions,the following are immediate.

Prop. Let X be a topologicalspace. If X is a jPi-space,then O(X) has the

T-property. X is normal/1' if and only if O(X) is normal.

Prop. Let L be a BDL. L is compact if and only if every maximal ideal

containsa co-atom.

Prop. If L is a BDL with the T-property, then O(niL) is a completion of L

and the related morphism is e, where e(a)=VaOniA for as A.

Prop. Let A be an Ha. A is compact if and only if A is compact.

Prop. OimL) has the T-property.

Lemma 4.1. Let L be a BDL and A' be a compact cHa with the I-property.

And let j: L->A' be an 0,1-morphism such that j(x)=l implies x=l and j"L

0(m

e

L

L)

3!^

A'

completelygenerates A'. Then, thereexistsa unique cH-

morphism 0 such thatthe leftdiagram commutes. And <}>

is surjective.

J

Proof. Let $(＼Je(a))= ＼/j(a). We prove the well-defined-ness. Suppose that
ae.i a£A

e(b)c.＼Je(a)and j(6)$ Vi(≪)- By the conditions, there exists c;j(b)＼/j(c)=l and
ai/i aGA

Vi(≪)vy(c)--£1.Let / be a maximal ideal which includes AU{c}. Then, b does

not belong to /, since bVc=l. But, this contradicts to e{b)c,＼Je{a).

Now, it is easy to prove the lemma.

Notice that the condition uj(x)―l-≫:e=I " is equivalent to the injeetive-ness

for a BDL A with the T-property.

(i) This " normal" has the usual topological context.
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Lemma 4.2. Let L be a BDL. And let U be a compact completion of L and

O(mL)

･
I

L

X

3!0

j be the related morphism. Then, there exists a unique

c//-raorphism </):Z/-≫O(mL) such that the left diagram

rnmmnfpc;

V

J

Proof. Let <p(x)=＼J{e{a)＼j(a)<x, a&L}. Then, the unique-ness of (p and the

fact <p-j= e are clear.

l£d)(x)implies that j{a)<x and a$I for some a. So, there is b such that bel

and avb=l. Hence, xV＼/j"I=l. Conversely, xW＼/j"I=l implies the existence

of a and h such that j(a)<x, b l and j(a)Vj(b)=l, by the compactness of /I'.

By the property of /, a＼/b=l, and so ≪^/. So, <p(x)={I; xW＼Jjf'I=l}.

Now, it is easy to check that d>is a ciJ-morphism.

Theorem 4.1. Let L be a BDL with the T-property. Then, every compact

completion of L with the T-propertyis isomorphic to O(mL).

Proof. By Lemma 4.2,6:0(mL)^A' in Lemma 4.1is injective.

The next corollary is one characterization of the Wallraan-compactification of

a Ti-soace.

Corollary 4.1.(Wallman) Let X be a JVspace. Then, O(mO(X)) is the

unique compact completionof O(X) with the T-propertyup to an isomorphism.

Corollary 4.2. If L is a compact BDL, e: L-+O(mL) is complete.

Proof. Let j be the related morphism of A. Then, i is complete. A is

compact since A is compact. So, e is complete by Lemma 4.2.

Corollary 4.3. Let A be a compact cHa with the T-property. Then, O(mA)

is isomorphic to A.

Npvt. vjp.shallstiirivabout a nnrmai r.JJn.

Definition 4.3. Let A be a cHa. Ux Is the set {u;xVv―l and mA^=O for

some v) for a;6A

T: A->A is the function such that 7＼x)=＼/Ux.

A* is the ranerf1of T.
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Lemma 4.3. Let A be a normal clla. Then, T is a 0,1-morphism.

Proof. Ux^Uy for x<y and so T{x)<T(y). For wef/* and u'£Uy, there

exist y and v' such that xWv ―yWv' ―t and uAv=u'Av' ―0, by the definition.

Then, (xAy)V(Wv') = l and (≪A≪/)A(wVy/) = 0. So, uAu'^UXhy. Hence, T(a?)A

71(y)=21(a;Ay).

Let ^* be an element of Uxyy. Then, there exists v* such that xVyVv* ―l

and w*Ay* = 0. By the normality, there exist uo and yo such that x＼/Vo= yVv*V

Uo―l and MoA 00= 0. Again by the normality, there exist ux and Vi such that

yWi = v*Vuo＼/u1―l and UiAVi ―0. Then, uo^Ux and Uielly and m*<m0V≪i. So,

T(xVy)<T(x)VT(y) and so T(xVy)=T(x)VT(y). Clearly, r(0)=0 and T(l)=l.

Lemma 4.4. Let A be a normal cHa. Then, UTix->=Ux and so T{T(x))―T(x).

And ^4* is a c//<z.where the infinite sum in A* is as same as that in A.

Proof, T(x)<x and so Utw^Ux. Let u be an element of Ux. Then, x＼/v

―I and uAv~& for some v. By the normality, there exist w0 and Wi such that

x＼Zwo=v＼/w1= l and w0A≫i = 0. So, w^Ux and ueUWl- Hence, ueUrw-

By Lemma 4.3,v4* is a BDL. Let X be a subset of A* and y=＼/X. Since

7＼a;)=a;for a;eZ, y = VX<T(y). So, r(y) = y and hence ?/gA*.

So, ^4* is a c//≪and the infinite sum in A* is as same as that in A.

In the next lemma we need to discern the operations of A and those of .A*

and so we shall do it fixing A, A* or * to the operations.

Lemma 4.5. Let A be a normal cHa. Then, T*(x)―x for xsA*.

Proof. Let usUi and xeA*. Then, xW=l and uAv―Q for some v. By

Lemma 4.1, T(x)vT(v)=l and T(u)aT(v) = R. So, T(u)eUf. Hence, T"Ui<^Uf

c:U£. As indicated before, for uzUi, there is wsUi such that u<T(w).

These above show VUf=VUi. So, x = VU£ = U?=＼J*Ui*. Hence, T*(a;)= a;.

Lemma 4.6. Let A be a cHa. If T is theidentity,A has the T-property. If

A is normal and has the T-property,T is the identity.

Proof. Suppose that x＼/c=l implies y＼/c=l for any c. Then, UxQUy and

so T{x)<T(y). By these reasoning the firstpropositionis obvious.

Suppose that T{x)<x for some x. The T-propertyof A implies that T(x)V

c^l and xVc―1 for some c. By the normality of A, thereexistu and v such

thatxW^cVu^l and mAz^O. So,wet/*and u<T(x). Hence, cVT(a?)= l, which

is a cnnt.radic.tion.



208 Katsuya Eda

Theorem 4.2. Let A be a normal c//≪. Then, /I* is a normal c;/iawith the

T-property.

Proof. Let x and y be elements of A* such that x＼/*y―l. Then, xVy = l

holdsin A. By the normality of A, there are u and v such thatxVu = yVv=i

and uAv = 9. By Lemma 4.3,T(x)VT(u)=T(y)VT(v)=l and r(≫)AT(≫)=0.Hence,

A* is normal and so A* is a normal c//a with the T-property by Lemma 4.4,4.5

and 4.6.

Lemma 4.7. Let A be a normal cHa. Then, e = e-T.

Proof. Clearly, e- T(x)^e(x). Let l e(x), then x＼/y~l for some y&I. By

the normality, x＼/wQ= y＼/wl~＼and WoAz^i^O for some w0 and wx. Since WiqUx,

u>i<T(x) and so jfVT(.-B)=i. Hence, Iee-T(x).

Lemma 4.8. Let A be a normal clla. Then, m/1 and mA* are homeomorphic

to each other.

Proof. For /em/l, let I* = If)A*. Clearly, /* is an ideal. Suppose that x$I*

and x£A*. Then, x$I. So, xVy = l for some ye/. Since T(y)<y, T(y)el*. By

Lemma 4.3,.rVT(?/)=l in A*. Hence, 7* ?nA*.

Suppose that /*=/*. By Lemma 4.7, asI^T(a)sI++T(a)sI*++T(a)sJ*++

T(a) j~aeJ. So, /=/.

Any ideal of A* can be extended to a maximal ideal of A and so the above

correspondence is injective and surjective.

By Lemma 4.7,Iee(x) ^+ l£e-T(x) *~*I*ee*- T(x).

Corollary 4.4. Let A be a normal compact cHa. Then, O(mA) is isomorphic

to A*.

Proof. The compactness of A implies that of A*. By Th. 4.2,Lemma 4.8

and Cor. 4.3,the corollaryis clear.

Lemma 4.9. Let A be a normal compact clla and L be a sublattice of A

which completely generates A and contains 0 and 1. And let fy be a 0,1-morphism

from L to U, where U is a BDL.

For /emL, there exists a unique maximal ideal of A that includes /^{x;

Proof. Since l&l*. there is a maximal ideal which includes P. Suppose that
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there exist such different ideals, then there are different co-atoms a and b such

that ＼JP<a/＼b. Then, a＼/b= l. By the normality of A, flV≪= 6V≫=(≪=>0)V

(≪^>0)=l for some u and v. Since L completely generates A and A is compact,

there are elements Uq,Ui,v0 and Vi of L such that aViio ―bW0 ―UiWvi ―I and

WoAWi=yoA^i = (0).Then, mo and vo do not belong to P. So, 0(≪i)and ^(^0 are

elements of /. But, l = d>(uiVVi)=d)(ul)＼/6(vl)$I,which is absurd.

Lemma 4.10. For /em!/, let /(/) be the maximal ideal of A which is deter-

mined by Lemma 4.9. Then, /: n＼L'―>m.Ais a continuous function.

In addition if <j>(x)~0 implies #=0 in the condition of Lemma 4.9,/ is sur-

iective.

Proof. Let / be an element of f~le{x). Then, V/COVa;=l and so ＼/f(I)Vu

=xW=l and u/＼v=lQ for some u and v In L. So, IeV+w. Let / be an element

of F^(M). Then, <j>{v).J. So, vej* and hence f(J)se{x). So, / is continuous.

Let a be a co-atom of A and / be the subset of U defined by the following:

xQl-^uVa―l and uAv=Q and x<(ft(v)for some wcL and some u. Then, / is an

ideal of U and 1|/ by the condition. Let / be the maximal ideal that contains /.

Suppose that a^＼Zf(H- Then, ≪v＼//(/)=l- By the property of A and L, aVu

= V/(^)Vy=l and uAv = 0 for some u and y which belong to L. By the defini-

tion of /, <f>{v)sland so vef(I), which contradicts to the fact ＼Jf(I)Vv―t. Hence,

f is suriective.

1)

2)

3)

4)

Let C be the conjunction of the following conditions:

A is a normal cHa and is completely generated by a sublatticeL with 0 and 1

A' is a cHa and is completely generated by a sublattice Z/.

^ is a c//-morphism from A to A' and s"LcL''.

p is a ciJ-morphism which makes the right diagram

commutative.
O(mLf)

f

P

I*
A'

Theorem 4,3, Under the condition C, there exists a unique continuous func-

tion /: mL-+mA such that the left diagram com-

O(mL')

'
I

A'

O(mA)

＼

e＼A*

A*

mutes. In addition if 0(#)=O implies #=c, then

/ is surjective.

rl

^ __
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Proof. Let / be the function defined in Lemma 4.10. Then, f~le(x) =

VJ eL'{(l>(u)),where u£Wx*-*uqL and uAv=Q and .rAy=l for some v. On the

UZWX
otherhand, x=＼/Wx for xqA* by the compactness. So, p-f~le{x)― V <jiu)= <j>{x).

v,£Wx

Suppose that a continuous function g: mL'-*mA satisfies the diagram in the

theorem and g4'f. Then, f(I)^g(I) for some IsmU. So, there exist u and u'

in L such that V/(/)VM = Va(/)V≪/=l and ≪A≪' = 0. Since l f'xe(u)ng'le(u'＼

there is t> in U such that l£eL.(v)^f~'ie(u)(]g-'le(u'). Hence, Q^v=p-eL>(v)<p-

f~le{ii)f＼p-Q~~xe{u'}―<f){uf＼u')~^,which is a contradiction.

Since xnA is a Hausdorff space and O(mA) is isomorphic to A*, the uniqueness

of the continuous function / has the same meaning of the uniqueness of the

c//-morphism from A* to O(mL').

§5. Completions and co-products

In Def. 4.2,we have defined propertiesof BDL's. In this section we shall

study about the preservation of such propertiesunder the operationsdefined

already.

Theorem 5.1. Let A and B be BDL's. A§§B is compact if and only if A

and B are compact.

Proof. Let / be a maximal ideal in ARB and Ia ―{x ; Ja(#) /} and /b={?/;

2i?(?/)/}. Then, /4 and /s are maximal ideals. So, there are co-atoms a and b

such that a~＼fIA and b=＼/IB. Then, 24(≪)Vf//6)is a co-atom and belongs to /.

The compactness is not preserved under an infiniteco-product. Let An be a

compact BDL, cn be a co-atom in An and in be the embedding: An-+(g) An, for

each n<a). Let / be the subset of <g)An such that xel if and only if a;<V *'*(£*)
n<<≫ fc<n

for some n. Then, / is an ideal and does not contain 1, but V^―1 holds.

Differing from the compactness, the T-property and the normality are preserved

under infiniteco-products.

Theorem 5.2. Let La be a BDL for each aeA. RLa has the T-property, if
r,CA

and only If La has the T-property for each a£A

La is normal for each a A.

(x) Ltt is normal, if and only if

Proof. Let a and b be elements of (R)La and a^b. By Lemma 3.1,a―

V A ia(ai)and b=A V iJ(J%)for some a{,ft,Fj and Gj. Then, A^)$V^(K)
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for some j and k. We now define ca for aeFj. If ≪ G&, then a{%bl. Let ca be

the element such that aja＼/ca=land 6*Vca^l for aeG*. And if creG*, ai^l. Let

ca be the element such that <2^Vctt=l and cai=i for ≪gG&. Let c=＼fia(ca). Then,

aVc=l and bVc^l.

Let c= V≫≪(c.).Then, aVc=I and bVc^l.

Let <zand b be elements of (x)La and ≪V6=L By Lemma 3.1,a=/＼ V 4(≪^)
≪£/! j<m a Fj

and 6 ―V V *'≪(&≪)for some ai,b*,Fj and G*. Without any loss of generality, we
S;<n≪e6'j;

can assume Fj ―Gk―F for i<m and k<n. Then, aivbl― 1 for some aci7",for

each j<m and &<≪. By the normality of La for each as A, there exist %* and

Vjk such that V^'≪(≪≪)V%fc= I and ＼Jia{b^)Wvjk―i and UjkVvjk ―Q for j<m and

k<n. Let ≪*= y A%* and y* = V A^*- Then, aV≪*=&V?;* = l and w*Ay* = 0.

On the other hand, the T-property and the normality of La can be deduced

from those of (x)La respectively.
at=A

Theorem 5.3. Let ^4 be an Ha. A has the T-property, if and only if A has

the T-property.

Proof. Let i be the embedding: A-+A. For any a,bsA such that a^b,

there exists ao£A such that i(ao)<a and i(ao)$^b. Let Xbe the subset of A defined

by: x X*->x<a0 and i(x)<b. Then, ＼Zi"X=i(ao)Ab<i(ct0). So, ＼ZX―a0 does not

hold. Since x<a0 for each a; X, there exists at such that x<ai for each x X

and ≪0$≪i. By the T-property, there exists c such that a0Vc=l and tfiVc^I.

Then, aVi(c) = l- Suppose that bvi(c)=h Then, (*(ao)A6)V*(c)=l and so ＼/i"X

Vi(c)=l. Hence, i{ai＼/c)―i{ax)yi{c)~i, which is a contradiction. So, bvi(c)^l.

Let ≪ and b be elements of A such that a^b. Then, there exists c in A

such that i(a)Vc=l and i(b)Vci=l. Since c―＼/{i(x);x£A and f(x-)<c}and c^l,

there exists c0 in y4 such that c<i(c0) and Cot^I. Then, a＼/Co=l and Wco^l.

Theorem 5.4. Let L and U be a normal BDL and a compact complete BDL

respectively. If there exists an 0,1-morphism j: L-+U such that j"L completely

generates U and j(x)=l implies x ―1, then U is normal.

Proof. Suppose that x＼/y= l for x,y£L'. Then, by the compactness and the

property of j, there exist a and b such that j(a)<x and j(b)<y and a＼/b=l. By

the normality, there exist u and v such that aVu = bVv―l and wA# = Q. Then,

xVj(u) = yVj(v)=l and j(u)Aj(v)―Q.

Corollary 5.1, If L is a normal BDL, then O(mL) is normal.
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Proof. The morphlsm e: L―>O(mL) satisfiesthe condition of the theorem.

Corollary 5.2. If A is a normal Ha then A is normal and compact.

Proof. Since A is compact and the inclusion map: A->A satisfiesthe condi-

tion of Th. 5.4,the corollary holds.

The normality of A does not always imply thatof A. We shallsee such an

example later.J)

Theorem 5.5. RAa is isomorphic to (x)A≪,where Aa is an Ha for each aeA.

Proof. Let ia and ja be the embeddings denned in Def. 3.1 as indicated in

the following diagram. Then, there exists a 0,1-raorphism <j>that makes the

following diagram commutative, by Th. 3.1.

'/
AC＼

6 a£4. V~> ttZA

By Th. 3.2,(x)Aa is an Ha and so in the scope of Cor. 2.1 what we must prove

is that tj>is injective and complete and the range of $ completely generates 0 Aa.

In this case, 0 Is clearlyinjective and the range of it completely generates (x)Aa.

Suppose that <f>is not complete. Then, there exist a",a", finiteF and finiteFx

such that A*'<rOO=V Ai≪(ai) but A /≪(≪")$V Ai≪(O- So, there exist 6°in X

and finite G such that Aia{aa)<＼/ ja(ba)for each 2e/fbut A;a(≪a)$Vi≪(6"). Here,

0a^O for a&F and a^G, aa$ba for aeF and ≪eG and bai^l for a$F and acG.

Let ca be the element of Aa for each ≪eG such that a"Ab"<c"<a" for aGF and

5ff<ca<l for ≪$F. Then, AU≪I)<V^a) for each teA but A*≪(≪")$V≪≪(O.

which is absurd. So, 0 is complete.

In the rest of this section, we shallinvestigate about open algebras.

Theorem 5.6. Let X and Y be topological spaces. Then, O(Xx Y) is iso-

morphic to 0{X)R6(Y).

i) After the completion of this paper, the author has found some results of C. H.

Dowker, D. Strauss and H. Simmons in [1], [2] and [11]. He has noticed that many

separation axioms there are preserved under the canonical completion and the co-products.
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Proof. Let jx : Q(X)-≫O(Arx Y) and jr : O( F)->O(Xx F) be the c/f-raorphisms

0(X)

O(X)(g)O(F) *O(Xx Y)

Y

induced by the projections. Then, by Th. 3.1,

there exists a unique 0, 1-raorphism <f>that

makes the left diagram commutative, where

ix and ir are the embeddings defined in Def.

3.1.

0{Y)

By Th. 3.2, o(-^X8XX Y) is an Ha. So, what we must prove is that <f>is injective

and 0 preserves infinite sums and the range of 4> completely generates 0{Xx Y).

Suppose that jx(u)Ajr(v)<jz(u')Vjr(v'). That is uXv^u'xYuXxv'. So,

≪c≪' or ≫c≫'. Hence, 0 is injective.

To show the preservation of infinite sums, it is enough to treat the case

*"*(≪)A*V(*0 = V *'*(≪≪)AiY(tf≪). Suppose that Jx(u)f]jr(v)^{JJA{ua)nJY{Va). Then,

there exist x and y such that (x,y)euxv and (a;,2/)fexy. for any aeA. ix{ua)/＼

iY(va)<ix(X-{x＼)Vi＼{Y-~{y}) for each ae/1, but ia-(≪)A≫r(y)$≫2-(X-{4)V*V(F-{y}).

These contradict to the fact ij(u)Air(v)~ V ix{.ua)/＼iY{va).

The range of </>forms a base of Xx Y and so completely generates O(Xx F).

Lemma 5.1. in(x)La is homeomorphic to [{ ll^≪-

Proof. We use the same notation as in the proof of Lemma 3.2. By Lemma

3.2,it is sufficient to prove that (x)/, belongs to m (x)La for maximal ideals 7a's

(a£/l)and (/), is maximal for a maximal ideal / for each ≪ /!. Suppose that

V A ia(#i)$(8)/≪.Then, Aia(aaM0Ia for some i<m. So, ≪} /, for each aeFj.

These imply that (x)/≪is maximal. The other implication is obvious.

Corollary 5.3. O(p(LRLf)) is isomorphic to 0{pL)R0(pL'). And O(m(L(x)Z/))

is isomorphic to O(niL)(x)O(2itZ/).

Proof. It is clear by Lemma 3.2,Lemma 5.1 and Th. 5.6.

We have proved that the canonical completion of a finite co-product of open

algebras is an open algebra. However, in the case of an infiniteco-product, that

does not hold.

Let Xn be a discrete space of two elements for each n. Then, O(Xn) is a

Boolean algebra and consequently (x)O(Xn) is a Boolean algebra and is co-atomless.
n<u>

So, (x)0{Xn) is a complete Boolean algebra and atomless. This Is the regular open
n<a>
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algebra of the Cantor space. It is well-known that an atomless complete Boolean

algebra cannot be an open algebra. (Remind that there exist no c/7-morphism

from an atomless complete Boolean algebra to {0,1}.) So, in most cases, <S)O(Xa)

is not an open algebra for an infiniteA. It is contrasted with the case of regular

open algebras. For, WROUC) is isomorphic to RO{ ＼＼Xa). (cf.[3[)

As stated before, the normality of an Ha A does not imply that of A Let

X be a normal space such that XxX is not normal. Then, 0(X)(x)0(X) is normal

by Th. 5.2. On the other hand, 0(X)(x)0(X) is isomorphic to O(XxX) and so is

nrvfrnnrmal

§6. Complete Heyting algebras in a Heyting extension

In this section, we shall study about a completion of a co-product and a com-

pletion in a Heyting extension. So, we assume that the readers are familiar with

an extension of a universe of the set theory with a clia. (cf. Grayson [7] and

Takeuti [13])

We shall use the notation I0jlm or [0] for the value of 0 in a cHa H. As

in [12], we assume that V(m is separated, i.e. "x = y" is equivalent to "[# = ?/]=

1 ". Just as in a Boolean extension, £is the element of V(m such that dom £=

{y;y£x} and range £^{lH}. x is the set {y;lyex] = l}. We say "0 is //-valid",

if [0]<*> = 1.

As indicated in [13], the maximal principle does not always hold in VU{＼ but

a weak form of it holds. Next three lemmas can be proved as in the case of a

Boolean extension and the proofs can be seen in [13]. So, we omit them.

Lemma 6.1. If {llx0(x)]an = l, then there exists u in Vim such that

iR(u)Ym = l.

Lemma 6.2. Let @(xo,---,xn) be a J0-formula. Then, [$(x0, ･･･,^≫)]= 1 if and

only if 0(xo,-"-,Xn) holds and [0(xo, ■■･,xn)J=0 if and only if @(x0> ･･･,xn) does not

hold.

Lemma 6.3. If "Q is a cHa" is //-valid,Q is a cHa.

-H
Theorem 6.1. Let // and Q be a cHa and an Ha respectively. And let Q

be the canonical completion of Q in F(H).

-H
Then, Q is isomorphic to R(H)(g)Q.

Proof. Let 0(1) be the formula that asserts " / is a closed ideal in Q ",i.e
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V# i5V-# $(.≫ / and y<x~>y l) and yxe^OfuGQ(^yG^(yeI and y<Lx->y<u)

->x<u)~>xgI).

Suppose that 0(1) is //-valid. Then, we can assume that dom/=domi5 and

x<y implies I(y)<I(£) and I(x)Al(y) = I(x＼/y) for each x,yzfJ. For each xefJ,

A AW)AK<≪]^[^≪])^[^fi])<W So, A(A(/(^)^0)=≫0)</(x). The left

part of this inequality is equal to or greater than (/(#):=>0)=>c. Hence, I(£)is a

regular element of //. So. we can assume that an element of Q is a function

which maps domi5 into i?(//).S)

We now define Jr^uAP) and ja(q) for PgR(H) and q fJ as follows.

The domains of js<.H)(p)and jo(g) are both dom i5.

JsiB)(P)(£)=l for a;= 0,

=/> otherwise.

jo(q)($) =1 for j?<^,

= 0 otherwise.

Then, 0Umm(P)) and 0(jo(g))are //-validfor each p£R(H) and each #e£

A straight calculationshows the following:

JiHH>(P)Ajo(q)(£)=l for ^ = 0,

=^j for #<<? and ^^0,

Jjhh) and j0 are 0,1-morphisms. So, by Th.

3.1, there exists a unique 0,1-morphism <f>such

that the left diagram commutes.

Suppose that JR(H)(P)/＼iQ{q)<iRinAP')VJQ{qf) and p%p'. Then, there exists

reR(H) such that Qih-r<lg Ja(q/)'}.So, q<q' holds by the definitionof ja and

hence <f>is injective.

Let V iRcH)(P)/＼io(q)= iBiHi(po)Aio(qo). And let A be the subset of Q in ViH)

defined by the following. A{%) = ＼fR<im{p;lq(x<q and (p,q)eA)} for xi=Q and

A(6)=l. Let h be JEcm(Po)Aja(qo). If [#(/)] = ! and [iB(f0(/>)AJfl(?)£/]= l for

each (i),a) A, then LA£71 = 1. Bv Lemma 2.2. the uniaue minimal closed ideal /

that contains A exists. By Lemma 6.1,we can assume that / is an element of Q .

i) Dr. Hayashi has pointed out that after this point we may work in FCfla/)>,because

Q =Q . However, regular elements have an important role for the calculation in Vch:>

and hprp is:an p-sfamnip Sn wp nrpsfint the nricfinaltirnnf
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Clearly [7c70] = l.

Since lVx &VyeA(x<,y-+xeA)} = t, lx£l~＼= {x Q and ^=V{?/; ye& and

?/<;≫and ycA}} by Lemma 2.2. We claim that 70 is equal to 7. Suppose that

A <[#<> 7] does not hold. Then, since [<?gg7] is a regular element, there exists

p' R(H) such that Q^p'<p0 and />'A[<?<>7] = 0. [^0 7] = A A (A(#)=>Q)^0) =

(V A (-A(l?)=>0))^0. So, there exists w<^0 such that p"=pr/＼ AG4(#)4>0)^0.

Then, p"zR{H) and jb"AA(^) = 0 for any y,y<q0 and ?/$≪. Since ffi(ff)is a

ci7-morphism,

V i^miP) A io(q)= V immiAtf)) A iD(q).
(PAW 1&1
And so,iRcm(po)Aia(qo)=V iRa^{MQ)Aia(q))

Hence, ImB)(P")Aia(qo)= ＼/in<m(Atf)/＼p")/＼ia(q)
Q<Qq

= Vixcm(A(q)Ap")Aio(q)

which contradicts to the fact that u<q0. So, <j>preserves infinitesums,

Let I'=＼J{JRtm(p)f＼J9{q);{jRai)(P)AJa(q)Gl] = I} for UQ . Since

JRcm(I(q))AJs(q)<l I(q)<lqeFJ for qzQ. So, /=/'.

Corollary 6.1. Let B be a complete Boolean alsebraand Q be an Ha. Then

~BQ is isomorphic to B6dQ.

Proof. It is clearfrom the theorem and the fact:B=R(B).

For Boolean algebrasB and C, BRC is isomorphic to the co-productin the

category of Boolean algebras and the canonical completion of B as an Ha is

isomorphic to the canonicalcompletion as a Boolean algebra. So, Th. 6.1 is a

generalizationof the next resultof Kunen and Scott.

Corollary 6.2.(Kunen and Scott[121) Let B and C be comolete Boolean

3s
algebras. Then, C is isomorphic to /?(x)C.

Theorem 6.2. Let L and U be distributivelattices. Then, 3L' is isomorphic

to S(L(g)L'), where 3L' is in F .

Proof. By Lemma 1.1, " SL' is a c/fo" is SL-valid. Let u. and /r, be the
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following 0,1-morphism:

jt: Lr+%1' and/t(ff)(£)=l

―la

= 0

for />=0,

otherwise,

for p<q

otherwise.
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Then, jL(a)AJM (£)=1 for p=Q,

~Ia
for Q^p<q

=0 otherwise.

for each aeL and p,qsL'.

By Th. 3.1,there exists a unique 0 ―1 morphism 0 such that the following

diagram (1) commutes. Then, there exists a unique c//-morphism <J>such that the

following diagram (2) commutes, bv Th. 1.2 and Cor. 1.2.

■ /L＼ ■(1) 'i/^Nr
(2) J(L(g)L')

Let le^U , then a£l(fi)Implies jL(a)AjL>(p)<I for each azL and pzU. So,

V{JMAJv(p);Jz£d)AjL-(p)<,I}=I. This means that the range of <j>completely

generates SZ/ . Hence, <bis surjective by Th. 1.2.

Now, let Xp be the set; {a; 3F (F is a finite subset of A and a</＼(F)0 and

P^ViF)^}, where (F)k is the set of the &-th co-ordinates of elements of F.

Claim) Let J=VWL{a)AiL(p))＼ (a,p)eA) for Je%(L(g)L'). Then, <p(J)(p)=I(Xp).

Let K(p) = I(Xp) for each peL'. Then, K(O)=L=1 and p<q implies if(#)<

/C(i>).Let x£K(p)AK(p'), then there exist hu ■･･,hm,h/, ■･･and A/ such that

3?< V hif＼V V― V hi/＼h/ and ^e^ for l<i<m and h/£Xpf, for l<i<w.
l<i<m l<j<n ＼&i<,nil<j<n

Since hiAh/£Xpvp,, for each ＼<i<m and l<j<n, x^K(pvp'). So, [i£e3iy] = l.

Cii(≪)Ayi;.(/>)£/iC]= I for each {a,p)zA, So, u^(/)cJfiT" is //-valid. On the other

hand, [iTc^(/)] = l. Hence, <J>(J)=K. Now, we have proved the claim.

Suppose that <p(I)―<p(J)and /$/. Then, there exist a and j> such that

iTXa)AifXP)£l but iL(a)AiL.(p)$J. By the claim, a 4iI){p) = (}AJ){$). Let

J = {(<z,/>);if,(a)AirXP) j}, then there exist au---,a7l,and finite subsets Fu---,Fn
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of A such that a<aiV■･･＼/an, ai</＼(F-i)0and p<＼/(Fi)i for l<i<n. Since / Is

an ideal,(A(-^i)o,V(^)t)s^ for each l<i<n. So, (ai,p)ed for each l<f<w and

so ( V cti,p)&d. Hence, (a,p)Gd, which is a contradiction. So, d>is injective.

Corollary 6.3. Let L and L' be distributivelattices. Then, 3L' is isomor-

phic to 3L0SI7.

Proof. 3(LRL') is isomorphic to %LR%L', by Cor.1.2, Lemma 3.2 and Th.

5.6. Now. the corollaryis clearfrom the theorem.

The next lemma is an easy consequence of Lemma 6.2.

Lemma 6.4. Let X be a topologicalspace. Then, " X is a topological space

with a base 3(x)" is //-valid.

Theorem 6.3. Let // be a clla and X be a topologicalspace. Then, 0{X) is

isomorphic to H(x)O(X), where O(X) is an open algebra of the topologicalspace X

with its base 6(x) in VlH＼

Proof. Let jH and j0 be functions denned by the following: jH: FI-+O(X)

and jH(h)(x) = h for each xgX, j0: 0{X)-+0{X) and jo(P)(£)=l for xsP

io(/>)(^)= 0 otherwise. Then, jH and j0 are 0,1-morphisms. So, there exists a

0,1-morphism 6 such that the following diagram commutes, by Th. 3.1.

//

HRO(X) ^6(5)

0(X)

Let UeCKX), then l£eU] = l3PeO(X); ££Pand Pc£/] = V IP£*7] for xeX.

PG(HX)
So, U=＼/{JH(h)Ajo(P) ;JH(h)Ajo(P)<U}, i.e. the range of <f>completely generates

(XX).

Suppose that jH(h)AjQ(P)<JH(h')Vj0(P') and P$P' for some h,P,h' and P'.

Then, there is xa in P that is not in P'. jH(h)Ajo(P)(£o)= handjH(h')＼/jo(P')(xo)

=h' and so h<h'. Hence, <j>is injective.

Let iH(ho)Aio(Po)=＼/{iH(h)Aio(P);(h,P)eA} for some /I. Suppose that j/i(ho)A

j0(P0)SVUH(h)Ajo(P); (h, P)£A). Then, there exists xogPo such that ho^hQf, where
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har―＼/{h;xo£PanA(h,P)zA for some P＼. xo$P implies {xo}r＼P~0 and so implies

P^X-(x~o}. So, iH(h)Ai0(P)<iii(h0')Vio(X-{x'a}) for each {h,P)£A. On the other

hand, iH{K)/＼iQ{P0) A iiH{h') V io(X-{xo＼)) = (iH(fhf) A i(P0)) V (^(Ao) A io(Po-{x7})) <

iH(ho)Aio(Po), which is a contradiction.

Corollary 6.4. Let X and Y be topological spaces and O(X) be an open

algebra of the topologicalspace X with its base O(X) in VW(Yy>.

Then, O(X) is isomorphic to O(Xx Y).

Proof. By Th. 6.3,O(X) is isomorphic to O(X)(g)O(F) and so is isomorphic

to O(Xx Y).

In the preceding three theorems, we have investigated the structure of Q for

some cHa Q in Van. By the theorem of Fourman and Scott [4],our result can

be internalized into ViH) in some sense. For that,we shallintroduce theirresults

by a different presentation. In many cases we shall omit the proofs, since they

are in [4] and essentiallyas same as in the case of Boolean extensions. [12]

Lemma 6.5.* Let Q be an Ha and F be a filterof it. Then, Q＼F is an Ha,

where Q＼F is the quotient by the equivalence relation{(a,b); a^btF and b^>asF}.

Proof. Let %: Q~>Q/F be the canonical quotient map. Then, k is a strong

77-morphism and QIF is an Ha.

Let H and Q be clla's. And Jet Fe be the element of V(m such that dom F,

=domi5 and F,{p)―＼/{h;£(h)<p},where e: H-+Q is a c//-morphism. Then, " Fe

is a filterof U " is //-valid. By Lemma 6.5, " i5/F£is an Ha" is //-valid. We

denote the canonical quotient map by jr.

Lemma 6.6. {n(p)<7t(q)]i=＼/{h;e(h)<p^q] forp,qeQ. Consequently,

a) A<[Xi>)<jr(#)]If and only if s(h)<p^q,

b) h<iiz($)=n(q')'lif and only if s(h)Ap=s(h)Aq.

Proof. h(P)<7t(m^h(l)<<pSq)l = lP^Q^J=＼/{h; s(k)<p^q}. By the

completeness of s,a) and b) are clear.

By Lemma 6.6,we understand that fi/Fsis the same thing defined in Th. 8.13

of HI

Theorem 6.4. " QjF, is a clla" is //-validand $/Fe is isomorphic to Q.
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Lemma 6.7.(Fourman and Scott [4]) Let " Q is a cHa" is //-valid. Then,

for any x£Van, there exists %'eQ such that lx = xfl = fxefJJ.

This lemma implies that as far as concerning cHa's many things will go well

like a Boolean extension.

Let " Q is a cHa " be //-validand e be the function such that e: H-+Q and

lie(h)―＼/Q{l＼h)" is //-valid. And let Q' and e! be defined similarly.

Lemma 6.8.(Fourman and Scott [41) e is a ^//-morphism.

Theorem 6.5.(Fourman and Scott [4]) Let " $: Q-+Q' is a c//-morphism " be

//-valid. And let $: Q->Q' be the function; [fe)=^O)] = l for xgQ. Then, $ is

a c//-morphism and e-(j>~ef.And conversely, let $＼@-±Q' be the c//-morphism

that satisfiese-$ = e'. Then, there exists <f>in V^m such that "<f>:Q~~yQris a

c//-morphism " is //-validand l<p{x)―<j){x)J―l for xzQ.

In the above, " <j>is injective" is //-valid,if and only if $ is injective. And

" <j>is surjective" is //-valid,if and only if 0 is surjective.

Lemma 6.9. h<lp<q}^e{h)<p^qf for p,qefi. So, if Q is /)*/F£,e{h)= n{ih))-

Theorem 6.6. Let £ be imTtyR'. H-^R{H)RQ and Q* be R{H)RQ. Then,

" Q is isomorphic to /}*/F£"is //-valid.

Proof. We use the notationsin the proof of Th. 6.1. The left diagram

Q

J mm

4> 7r(" ) cT^
I?*―y-~^Q*!F£

I

commutes and <j>and ^■(s/)are isomorphisms.

And ＼/°{I;h}=jR(HyR(h). So, the theorem

holds bv Lemma 6.9.Th. 6.1 and Th. 6.5.

H

Theorem 6.7. Let s be the unique cH-morphism that makes the diagram (1)

commutative and Q* be %(L(g)L'). Then, " 3L' is isomorphic to Q*/Fe " is SL-valid.

(1) JCL&L') < LRU (2) 3L

s

SL

it.

L L

h
JU

Proof. We use the notation in the proof of Th. 6.2. Let jL be the

unique r/f-morphism that makes the diagram 2) commutative. Then, j/,―</>･£and

＼Z*Yjil:I)=h.(I). So. the theorem holds.
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Theorem 6.8. Let e be iH: H-->HRO(X) and Q* be JTRO(X). Then, " O(X)

is isomorphic to $*/Fs" is //-valid.

Proof. Similarly as the proofs of Th. 6.6 and 6.7,＼/°^{l＼h)=jH(h) and so

the theorem holds.

Corollary 6.5. Let L and U be distributive lattices. Then, " O(pL') is

isomorphic to 3// " is S-^-valid.

Proof. It is clear from Th. 6.7,Th. 6.8,Cor. 6.3 and Cor. 1.2.

Next we shall roughly state the relationship between X and XT in V0CT＼

where XT is a sheaf representation of X in Voa'＼ It is known that O(XT) is

isomorphic to O(Xx T). By Cor. 6.4,itis isomorphic to O(X). We now internalize

this fact,

/ belongs to {rX)p if and only if / is a continuous function from an open

subset of T to X. For f£(rXf,f is the element of Vuo such that dom/=

doni O(X) and /(P)-/-1/5. dom XT={f ; fe(TX)p} and Xr(/)=dom /. For P 0(X),

domP=doraXr and
jP(/)-/-1P.

And dom JE?={P ; P£O(X)} and £(£)=!. Then,

" XT is a topological space with a base B" is O(T)-valid. And " X is a dense

subset of Xr" is O(!T)-valid,if we embed X into Xr naturally.

Theorem 6.9. "O(X) is isomorphic to O(XT)" is O(7> valid.

Proof. Similarly as Th. 6.3, we can prove that O(XT) is isomorphic to

O(T)(g)O(T). Next, we internalize this just like Th. 6.8. [/ V°^^{t; p}] =

Pndom/, for fe(TX)p. And so, the theorem holds by Th. 6.6.

Let R be the set of real numbers and i?CH) be the set of Dedekind real num-

bers in VCH＼ Then, "i?c0( = i?r" is 0(7>vaiid. And so " O(R) is isomorphic

to O(Ri0i'n:i)"is O(r)-valid. However, this of course does not hold for many

Boolean extensions. Let B be the complete Boolean algebra that satisfies[i?=

#≪≫]|≪≫=0.Then, " Rcm is connected, but R is not connected" is B- valid. So,

" O(R) is not isomorphic to O(RCB))" is B-valid.

A similar situation occurs concerning Th. 6.7 and Cor. 6.5. Let B be the

complete Boolean algebra such that " The generic filterdoes not belong to V " is

fi-valid. Then, " °§Bis isomorphic to O(pB) and O(mB)" is 5-valid, by Cor. 1.2.

Since" O(pB) is not compact" is 5-valid, " O(pB) is isomorphic to $B" is not

B-valid. Let e be iB: B^BW^B and f2*^BR%B. Then, "i5*/Fe is isomorphic to

O(lifi)"is ,8-valid,by Th. 6.8. So, " U*IF£is not isomorphic to SB " is J5-valid.
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