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COMPLETIONS AND CO-PRODUCTS OF HEYTING ALGEBRAS

By

Katsuya Epa

A Heyting algebra is not only a lattice theoretic object, but is also related to
the intuitionitic logic and a topological space and others. In this paper, we shall
investigate about completions and co-products of Heyting algebras.

In §1, we shall study about a Stone space as a complete Heyting algebra,
more precisely as a completion of some distributive lattice. In §2, the canonical
completion of a Heyting algebra will be studied. Some proofs in §1, §2 and §6
are done intuitionistically. Those cares are necessary for §6. A co-product of
Heyting algebras is defined in §3. In §4, we shall study the space of maximal
ideals and Wallman-compactifications and Stone-Cech-compactifications in the Heyt-
ing algebraic view. The relationships between some properties, completions and
co-products defined in the previous sections will be discussed in §5. Complete
Heyting algebras in a Heyting extention will be studied in §6.

The author’s thanks are due to Dr. Hayashi for his information about the
intuitionistic logic and the Topos theory, and to Prof. Nishimura for his valuable

suggestions.

§1. An open algebra of a Stone space

We shall use usual lattice-theoretic notations and set-theoretic ones.

DerFiNITION 1.1. A lattice L is distributive, if aA(bVe)=(eAb)V(aAc) holds.

A lattice L is bounded, if it has the least element Q and the greatest ele-
ment 1.

A lattice L is a bounded distributive lattice, if it is bounded and distributive.

A lattice L is a Heyting algebra, if it is a bounded distributive lattice and
relatively pseudo-compemented. We denote the relative pseudo-complement by
a=>b, where x<a=?b if and only if aAzx<o.

DeErFINITION 1.2. A lattice L is complete if the least upper bound for any
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subset X of L exists. We denote the least upper bound by \/X.

DeriniTION 1.3. A lattice L is infinitely distributive, if aA\/B=\/ aAb holds
B
in the case that \/B exists.

DerINITION 1.4. A subset F of a lattice L is a filter, if the following hold:
a<b and aeF—beF, acl and beF—aAbeF and leF if there exists a greatest
element 1 in L.

A subset [ of a lattice L is an ideal, if the following hold: a<b & bel—
ael, ael & bel— avbel and 0el if there exists a least element 0 in L.

An ideal 7 is prime, if eAbel implies ael or bel and 7 is neither L nor
empty.

An ideal [ is maximal, if 7 is neither L nor empty and any ideal which
includes [ is I or L.

JL is the set of ideals of L.

pL is the set of prime ideals of L.

ml is the set of maximal ideals of L.

V. is the set of prime ideals which do not contain @, which is a basic open
set for pL.

I, is the principal ideal {z; z<a}.

DeriniTION 1.5, A function ¢:L—L’ is a morphism, where L and L’ are
lattices, if ¢ preserves the operations V and A, i.e. ¢l@Vb)=¢(@)V¢(b) and ¢laA
by=g¢(@) A\g(b) for a,beL.

A morphism ¢ is complete, if it preserves \/, i.e. ¢(\VX)=\/¢'’X in the case
that \/ X exists.

A morphism ¢: L—L’ is a 0, I-morphism, if ¢(0)=0 and ¢(1)=1 hold in the
case 0 and 1 exist in L respectively.

A morphism ¢: A—A’ is a strong Heyting morphism, where A and A’ are
Heyting algebras, if it is a 0, 1-morphism and preserves =.

We shall use abbreviations: a BDL for a bounded distributive lattice, an Ha
for a Heyting algebra, a cHa for a complete Heyting algebra, a cH-morphism for
a complete Heyting morphism and so on.

DeriniTiON 1.6. A subset X of a complete lattice I, completely generates L,
if e=\/{z;z<a and zeX} holds for each @eL. A complete lattice L* is a com-
pletion of a lattice L, if there exists an injective ), I-morphism j:L->L* such
that the range of j completely generates L*. This j is called the related morphism.
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DeriNiTION 1.7. O(X) is the cHa which is the set of open subsets of a topo-
logical space X, where the infinite sum and the finite intersection are the set
theoretical ones. We call it an open algebra.

R(H) is the set of regular elements of an Ha H, i.e. R(H)={x; (z20)>0=x}.
We denote (z=>0)=>0 by R(z).

By Def. 1.4, pL. can be regarded as a topological space. It is known as a
Stone space.

TueoreM 1.1 (Stone) Let L be a distributive lattice and i: L—O(pL) be the
function such that i(@)="V,. Then, O(pL) is a completion of L and i is the related
morphism. And if L is an Ha, i is a strong H-morphism.

ProOF. (aAb)=Vaone=VaN Vi=i(@)Ai(b) and i(aVb)=V,U Vy=i(a)Vih). For
the injectiveness, notice that «¢$b implies the existence of a prime ideal which
contains & but does not contain @. Since {i{@); aeL) forms a topological base for
pL, O=\U{i(a); i(@)<O and aecL} for each OcO(pL).

Let 7 be a prime ideal of L. TeVaN Ve —adl & a>b¢l o aNa=>bél— bl
S0, Vs & Ve Vi. On the other hand, IeV,>V, implies that there is ¢ such that
Ie V(L —Vu)U Ve Then, cAe<b and so c<a=b. Hence, Vo> Vo= Vauss.

i(0)=¢ and #(1)=pL.

THeoreM 12. Let L be a BDL and A be a cHe. And let ¢: L—A be an
O(pL) 0, 1-morphism. Then, there exists a unique ¢H-morphism ¢:
\\3! P O(pL)-—>A that satisfies the left diagram. And if A is com-

N pletely generated by the range of ¢, then ¢ is surjective.

L A
—

i

Proor. Let ¢(e@)=\/{p(z); i(x)<a} for acO®L). Since O(pL) is a completion
of L, a=\/{i(z); iz)<a} for aeO(MpL). And so, the uniqueness of ¢ is clear.

#D)={p(z); ilzx)<at=¢(1)=1.
Hae A=\ {g(u); w)<zAy}
=\VV{p@)A\p(®); i(w) <z, i(v)<y}
=¢(z)Ad(y), by the infinite distributive-ness of a cHa.

To show the preservation of the infinite sum \/, it is sufficient to show that
IV X)=\/¢"'X for Xci”L. Suppose that ¢(\/i"’X)=\/¢"’X does not hold for
some X< L. Then, by the definition of ¢, there exists » in L such that i(e) <\/i"" X
holds but ¢(#)<\/#"”X does not hold. So, there exists a prime ideal 7 in A such
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that ¢(u)¢l and \/¢'’Xel. Let I, be the subset of L defined by the postulate:
aely—g(ayel. Then, I, is a prime ideal in L and contains every element of X,
but does not contain #. However, this contradicts to the fact: VuQZGUXVx.

If A is completely generated by ¢''L, 2=\/{¢(u) ; p(u) <z} for each zeA. Then,
IO\ i) ; ) <x))=\/{p(u) ; p(w)<x}=2x. Hence, ¢ is surjective.

CoroLrLarYy 1.1. Let A be a ¢cHe and a completion of a distributive lattice L.
And let j be the related morphism. Suppose that for any completion A’ of L

A with the related morphism 7/, there exists a ¢H-morphism ¢
I \\‘3 ¢ that satisfies the left diagram. Then, A is isomorphic to
J N O(pL).
L A
]'I

Proor. If L does not contain 0 nor I, we can add 0 or 1 and extend j and
7’ as the related morphisms of completions of the extended distributive lattice of
L. So, we assume that L is a BDL.

Let A’ be O(L). Then, by Th. 1, there exists a surjective cH-morphism

4
¢ : O(pL)y—~A. Now, it is easy to check that the diagram: A = O(pL) commutes.
,I

(4

Next we shall show another representation of O(pL) for a distributive lattice
L.

DeriniTION 1.8, For [, JeL, INJ=INJ. For I'cIL, \/I" is the set of finite
sums of elements of \JI'.
For XcL, I(X) is the minimal ideal that contains X.

For the sake of §6, in some cases it is necessary, that the proofs are intui-
tionistic. So, we shall mark lemmas, theorems and corollaries by * in the case
that they are proved intuitionistically.

LemMmA 1.1.* JL with the operations in Def. 8 is a ¢Ha and a completion of
L for a distributive lattice L.

Proor. Since INnJeJL holds for I, 7e3L, IN] is the maximal ideal which is
included by I and J. It follows from the distributive-ness of L that \/I"e3L for
rc<3r.

\V/I" is the minimal ideal which includes every 7 in I'. So, '>G/r]/\]:£[/\\/ﬂ

Conversely, xe/A\//I" implies that xel and z is a finite sum of elements of \JI'.
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So, x is a finite sum of elements of }J IANJ. Hence, x(—:>/ll/\]. Now we have
er er

proved that I is a cHe, since the infinite distributive-ness of a complete lattice
implies the relatively pseudo-complemented-ness. By the way, ID>J={y;zAveS
for each zel}.

Let j be the function such that j(x)=1, for xeL. Then, j(x)e3L. So, FL is
a completion of L and j is the related morphism.

CoroLLARY 1.2. JL is isomorphic to O(pL).

Proor. By Lemma 1.1 and Th. 1.2, there exists a surjective cH-morphism
¢:0(L)->3L. Let ¢O)=¢(P). Then, \/(i(z);i(x)<O}=\/{i(w); it)<P}. So,
i(z)<O implies xe\/{j(v); i(y)<P}. By the definition of the infinite sum, i(x)<P.
This argument implies O=P.

§2. The canonical completion

In this section we shall prove the existence of the canonical completion of a
Heyting algebra and its uniqueness. This has been proved by Funayama [5], and
Rasiowa and Sikorski [9], but we want to prove it intuitionistically for our purpose.
Our proof is on the same line of Funayama’s.

LemmMAa 2.1.*% A Heyting algebra is infinitely distributive.
Proor. A usual proof is intuitionistic. See [9].

DerFiNITION 2.1. An ideal 7 of a lattice L is closed, if the following holds:

‘“

“a=\/{z;zel and x<a}” implies “aecl”.

XL is the set of closed ideals of L.
LemMA 22.* For any XCL, there exists a unique minimal closed ideal Z(X)

that includes X. If L is infinitely distributive, I.(X) is the set of all elements #’s
such that #=\/{v; v<wu and v<zx for some xeX}.

Proor. [I(X) is the intersection of all closed ideals that include X.

Let L be infinitely distributive and J be the set of all #’s in the lemma. If
ueJ and w<u, then

=V{wAw;v<#« and v<x for some zxeX}

=\/{v; v<w and v<zx for some zeX} and so we/.
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If uef and wel, uvw=\/{v;(v<u or v<w) and v<zx for some zeX}
=\/{p;r<uvw and v<zx for some xeX}

and hence u#\Vwe].
Suppose that e=\/{z; z<a and zef}.
Let A.={v:v<zx and »<y for some yeX} for ze/. Then,
z=\/A, for zeJ. So, a=\/{\/Ay;x<a and ze]}
=\/U{A,; z<a and xeJ}
=\V/{v;v<a and veX}, which is in /.

Now, we have proved that J is a closed ideal, which includes X. The mini-
mality of J is clear.

Here we define the operations for 3.L, which are a little different from those
for XL. We shall use the same notations, since no confusion will occur.

DerintTioN 2.2. For I,JeX.L, INJ=InJ. For I'c3.L, \/I'=1(JI"), i.e. the
minimal closed ideal that includes \J/'.

Lemma 2.3* Let A be an He. Then, J.A4 is a ¢He and the embedding
it A=A i(x)=1,, is an injective strong cH-morphism.

ProOF. XA is closed under the operations in Def. 2.2. }/1/\] <INV for
er

I'. Let 2 be an element of JAN/I. Then, ze¢l and x=\/{v;v<zx and ve] for
some JeI'} by Lemma 22 and Def. 22. So, me]c(Jkejrl/\])zJ\é/rl/\]. Hence, J.A

is a cHa.
e AY)=Izpy=L0I,=i(x)A\i(y).
Suppose that \/X exists for XCA. Let I'={i(z); xeX}, then \VXel(JI'). So,
z‘(\/X)=Ic(Ul’)=\/F:x\G/Xz'(x). i=h=A=1.
Let J be the closed ideal that satisfies the condition: JAI;<I,. Then, zAx
<y for any zeJ. And so, 2<2>y. So, J<Ins,. On the other hand, .5, S1,=>1,.
Hence, Lisy=I:21,.

TurOREN 2.1* Let A and A’ be an Ha and a cHa respectively. And let ¢

JA be a cH-morphism from A to A’. Then, there exists a
Y unique cH-morphism ¢ from J.A to A’ such that the left
i =~ diagram commutes.
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Proor. Let ¢(I)==\/[¢(x). By the infinite distributive-ness of A’, ¢(D)A&(J)
=Y, DA N $0=\ Y HaA)< . $@)=KIAT).

Let zel(\JI') for I'c3.A. Then, z=\/{w;u<z and ue\/I'}. Hx)=\/{p(n);
u<z and ue\JI'}, by the completeness of ¢. ue\JI" implies uel for some Iel”
and so ¢(u)<¢(I) for some Iel". Hence, ¢(\/I')< 1r\e/r¢(l)' And ¢(1)=1.

The uniqueness of ¢ is clear from the fact that ¢ is complete.

DEerFINITION 2.3. A completion of an He A is canonical, if the related morphism
¢ is complete. We denote the canonical completion of A by A.

CoroLLARry 2.1.*¥ (Funayama [5]) 3.A is a canonical completion of an Hz A
and every canonical completion of A is isomorphic to S.A.

Proor. It is sufficient to show that the morphism ¢ in Th. 2.1 is injective
and surjective in the case that A’ is a canonical completion of A and ¢ is the
related morphism.

For any zeA’, x=\/{¢(a); p(@)<z and aecA). d(\V{i(a); gl@)<z and acA})=x
holds and so ¢ is surjective. Suppose that x\e/1¢($):y\e{! (). o&(zx) gy\e/Jg{)(y) implies
¢(x)=y€\/;¢(x/\y). Let z be an element such that zAy<z for any ye/. Then,
dxAy)<d(z) for any ye/. So, '(/>(.’L‘):y\€{’¢((l,‘/\’y)§¢(2). And so, ¢(z)=¢(x)A\p(z)=
#(xAz). By the injective-ness of ¢, x=xzAz and hence z<z. So, x=y\éx/\ye].
These imply I=/.

From now on, we shall assume that i in Def. 2.3 is the inclusion map.

§3. A co-product of Heyting algebras

We shall define a co-product of bounded distributive lattices, the existence of
which have been well-known. Our object is a co-product of Heyting algebras as
bounded distributive lattices. The fact that it forms a Heyting algebra has perhaps

already known, but we shall prove it to check additional properties for the follow-
ing chapters.

DeriNiTiON 31. For distributive lattices L, (a€4).? the co-product % L, is
the sublattice of O(Jel,f pL.) finitely generated by {p,~'Va; @eL., acd}, where Do IS
the projection from ,,EL pL. to pL, for each awed. The embedding i7,: L.~ ?g L, is
defined by the postulate: if(a)=p,"'V, for ac.

i) To avoid the triviality and for the simplicity, we assume that Z, has at least two
elements, when we treat the co-products &).
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LEmma 3.1. Any element z of @4 L. can be represented by the following two

forms.

=\ /\ ia(a)= /\ \/ ia(b3), where Fy and G,

Ic<nﬂ€k <m a€Gy

are finite subsets of 4.

The proof can be done by the induction on the construction of ® L,. It is a
a€A

routine, so we omit it.

TueoreM 3.1. (Sikorski [10]) Let L, and L be distributive lattices and /%, be
a 0, l-morphism from L, to L for each aed. Then, there exists a unique 0, 1-

L. morphism ¢ that makes the left diagram commutative.

i % And ¢ is injective if and only if /\Ir.a(a“)g\/ h.(b") implies

/ that a*<b" for some acF NG, a ~ID for some rreF or be=1
"@La"‘q; --> L, for some «aeG, where F and G are finite.

Proor. For ze OLa, z can be represented as \/ /\za(ak) Let ¢ be the
k<n «€F}

function such that ¢(x) k\</ Qha(alc)- Suppose that />~ ifa)<z. Then, z=
n aCkFy, a€

A Vi (@®) by the distributive-ness. Remind that i, is the inverse of the

projection and finite sums and intersections are the set theoretical ones. Then,
ia(a")gﬂ})/wi,,((zg):i,,(mv)r_aa;) holds for some acF, a*=0 for some ack, or ia(f(k\)/zﬂaz)
=1 holds for some «4F. So, é}vh"wa) gk\lé By (@l ™) for each f ekUn Fy. Hence,
NIEVS, N\ N hsw @)=Y /N 7ula)

These zﬁ;)ve implies the well-defined-ness of ¢. By the definition of ¢, \/, \, 0
and 1 are preserved under ¢.

Suppose that ¢ is injective. Then, Qv/z"(a")ga\e/a/za(b“) implies f;} z’,,(w“)g‘é/a i.(b%)
and so @ <b* for some acFUG, a*=0 for some aeF or b*=1 for some a«eG. The
converse is similar by Lemma 3.1.

Lemma 3.2. p®AL, is homeomorphic to ]'[Ap(L,.).
«€ a€.

Proor. Let I, be a prime ideal for each ae/ and ,,@[“ be the subset of L@L,,
defined by the following: xe¢ a@g I, if and only if there exist some finite F&/ and
a“el, for each aeF such that x< ue\/Fz'a(a;“). Then, % I, is clearly an ideal. Suppose
that xAye ®I By Lemma 3.1, x and y have the representations; /\ i.{ag)

kf\rn a€.

and \/ /\ z,,(b) respectively. By the definition of Q],,, Ay < \/z,((a“) for some

j<n a€
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finite # and some a“el, for each acF. Without any loss of generality, we may
assume that F,=G;=F for any &,j. So, n/e}wi,,(a;:)/\ a/é} ia(b;)ga\éiaw") for any &, 7.
And so, agel, or biel, for some acF. For each acF, let A, and B, be the subsets
of m and = respectively such that keA,—ajel, and jeB,«bj¢l,. Suppose that
ake{v A.=m, then szL "/e\l',i,,(a;;)e g;ﬂla_ Otherwise, there exists £<m; k¢A, for any
acF. Then, there is « in F such that bjel, for any j<n. Hence, (g'B,,zn and
y=j\/<" é} 1.(05)€ @L,. Now, we have proved that a@@[,, is a prime ideal.

Let (I). be the subset of L. for a prime ideal [ and each aed such that
ze(D)aein(z)el. Then, ([), is a prime ideal and (Ke®4 I).=1, for each aecd. And
I:a®e/1(l),, holds. Let c=\/ Aies). Then,

k<m a€Fy
IeV.e />i¢..(a;;)¢[ for some &<m
wEFy,
> ai4(l), for each aeFy for each k<m.

These above imply the lemma.

THEOREM 3.2. Let A, be an Ha for each ae, then Q A, is an Ha and i, is
a€d

a strong cH-morphism for each aed.

Proor. Let p, be the projection in Def. 3.1. p. is an open continuous map
and hence an easy calculation shows that i, is a strong cH-morphism from A, to
® A..
a€d

By Th. 3.1, what we must prove is that @A A, is relatively pseudo-complemented.

ag.
By Th. 1.1 and Lemma 3.2, it is sufficient to show that x>y is in ® A. for
a€d

each z,ye @‘ A., where = is in the sense O( aeﬂdpAu). Let xzk\/ e/; i(ay) and y=

<m a€Fp

AV ib3). We can assume Fr,=G;=F for each k<m and j<#n. Then,
J<n «€Gj
z 2 y=N\(N\idap) > \ V ib5)
k<m o€l j<n «€F
=N\ A N\idaq) 2V ib5))
k<m j<n a€F aCF

=/\ A\ (e = 7))

k<m j<n

Hence, wjye%Aa and @An is an Ha.

In some cases, a co-product of open algebras O(X.)s in the category of the
cHa's is isomorphic to O(]'LXa). (cf. Ishell [8]) We next show that O(pL)’s are
ag.

such cHa's.

TuroreMm 3.3. Let L, be a distributive lattice and i, be the embedding such
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that 7, : O(pL.)—O(]] pL.) and i(x)=p;'z, where p,: gpLa—»pL,, is the projection,

a€A
for each ae/.

If AisacHaand h, is a ¢cH-morphism from O(pL,)

O(yL.) . .
} to A for each wed, then there exists a unique c/-mor-
’/ N’: phism ¢ such that the left diagram commutes.
R T

Proor. By Th. 1.1, there exists a unique 0, I-morphism 4, such that the
diagram (1) commutes, where j,:L,—~O(pL,) is the morphism in Th. 1.1 for each
aed. By Th. 31, there exists a unique 0, l-morphism ¢ such that the diagram
(2) commutes. Now, by Th. 1.2, there exists a unique ¢H-morphism ¢ such that
the diagram (3) commutes. By Lemma 3.2, O(p@])a) and O('LIA pL,) are isomorphic

to each other and so we regard them as the same thing.

(1) (2) (3)
O(L.) L. Oy 92 L.)
h] h. @/ Ylj ]] \\\3‘s¢
BN
““““““ - Lu"-~—-—">A ®La A
La Nk, A gg EIP agl

Now, the only thing we must prove is ¢-7,=h, for each aet. Let P=U{V,;
VoS P and aeL.eO(pL.). i{P)=U{p:'Vo; Vo©P and acL.)= U{iJe); V.S P and
aelL.}. So,

&1 (P)=\/{¢ -ia); Vo< P and ael,)
=\{¢-ia); VoSP and aeclL,}
=\/{h(e); VoS P and acL.)=h(P).

§4. A space of maximal ideals
We have studied about the open algebras of the spaces of prime ideals. In

this section we shall investigate the open algebras of the spaces of maximal ideals.

DeriniTiON 4.1. For distributive lattice L, the topology of mL is the subspace-
topology of pL. (See Def. 1.4)

DerINITION 4.2. A BDL L has the T-property, if ¢£b implies that there is
an element ¢; ¢Ve=1 and dbVc+1.
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A BDL L is normal, if aVvb=1 implies that there are elements # and » such
that #Av=0 and eVu=bVr=].

A BDL L is compact, if \/X=1 implies the existence of a finite subset F of
X such that \/F=].

An element x of a BDL L is a co-atom, if there exists no element betweer
z and 1 and x is not 1.

By the definitions, the following are immediate.

Prop. Let X be a topological space. If X is a T\-space, then O(X) has the
T-property. X is normal,¥ if and only if O(X) is normal.

Prop. Let L be a BDL. L is compact if and only if every maximal ideal
contains a co-atom.

Prop. If L is a BDL with the T-property, then O(mL) is a completion of L
and the related morphism is ¢, where e(a)=V,NnmA for ceA.

Prop. Let A be an Ha. A is compact if and only if A is compact.
Prop. O(mL) has the T-property.

LemmA 4.1. Let L be a BDL and A’ be a compact ¢Ha with the T-property.
And let j: L—»A’ be an 0, l-morphism such that j(x)=1 implies =1 and ;'L

O(mL) completely generates A’. Then, there exists a unique c¢H-
morphism ¢ such that the left diagram commutes. And ¢
¢ ) 31¢ is surjective.
L - A

Proor. Let ¢(uke£ e(a)):a\e/A fla). We prove the well-defined-ness. Suppose that
e(b)g‘}é{! e(e) and j(b)§ }E/Aj(a). By the conditions, there exists ¢; (b)Vji(c)=1 and
)e/Aj(a)\/j(c)st 1. et I be a maximal ideal which includes AU{c}. Then, b does
not belong to 7, since bvc=1. But, this contradicts to e(b)< ‘gle(a).

Now, it is easy to prove the lemma.

Notice that the condition “j(z)=1->z=1" is equivalent to the injective-ness
for a BDL A with the T-property.

(i) This “normal” has the usual topological context.
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Lemwva 4.2, Let L be a BDL. And let L' be a compact completion of 7, and
j be the related morphism. Then, there exists a unique
cH-morphism ¢ : L’->O(mL) such that the left diagram
e S g commutes.

O(mL)
*

~

~

L L

J

Proor. Let ¢(z)=Ufe(a); j(@)<z, aeL}. Then, the unique-ness of ¢ and the
fact ¢ j=e are clear.

led(z) implies that jla)<z and a¢l for some a. So, there is b such that bel
and avb=]. Hence, zVV/j’I=1. Conversely, zV\/j’I=1 implies the existence
of ¢ and b such that j(@)<x, bel and j(a)Vvj(b)=1, by the compactness of A’.
By the property of j, aVvb=1, and so a¢l. So, ¢(x)={I; zV\/ ' I=1}.

Now, it is easy to check that ¢ is a ¢H-morphism.

TueoreM 4.1. Let L be a BDL with the T-property. Then, every compact
completion of L with the T-property is isomorphic to O(mL).

Proor. By Lemma 4.2, ¢: O(mL)—~A’ in Lemma 4.1 is injective.

The next corollary is one characterization of the Wallman-compactification of
a 7y-space.

CoroLLARY 41. (Wallman) Let X be a Ti-space. Then, OmO(X)) is the
unique compact completion of O(X) with the T-property up to an isomorphism.

CoroLLARY 4.2. If L is a compact BDL, e: L—+O(mL) is complete.

Proor. Let j be the related morphism of A. Then, j is complete. 4 is
compact since A is compact. So, e is complete by Lemma 4.2.

CoroLLARY 4.3. Let A be a compact cHa with the T-property. Then, OmA)
is isomorphic to A.

Next, we shall study about a normal cHa.

DeriNiTION 4.3. Let A be a cHa. U, is the set {#;zVv=1 and uAv=0 for
some v} for xeA.

T: A—A is the function such that T(z)=\/U,.

A* is the range of T.
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LemMma 4.3. Let A be a normal cHa. Then, T is a 0, I-morphism.

Proor. U,QU, for z<y and so T(x)<T(y). For ueU, and #’eU,, there
exist » and »’ such that zVe=yVe'=1 and uwAv=u'Av'=0, by the definition.
Then, (xAy)V(@Ve)=1 and (uAu)A@@V)=0. So, uNw' €U,y Hence, T(x)A
T(y)=T(xNy).

Let «* be an element of U,,,. Then, there exists »* such that xVyvr*=1
and #*Av*=0. By the normality, there exist #, and v, such that zVo,=yVo*V
#o=1 and #u,Av,=0. Again by the normality, there exist », and », such that
yVui=v*VuVu,=1 and u,Av,=0. Then, ueU, and u,eU, and «*<u,Vu.. So,
T(Vvy)<T(z)VT(y) and so T(xVy)=T(x)VT(y). Clearly, T(0)=0 and T(1)=1.

Lemma 44. Let A be a normal cHa. Then, Upey=U, and so T(T(x)="T(x).
And A* is a cHa, where the infinite sum in A* is as same as that in A.

Proor. T(x)<wx and so Urw, CSU,. Let u be an element of U,. Then, zVv
=1 and #Av=0 for some ». By the normality, there exist w, and w, such that
zVwe=vVwr=1 and wyAw,=0. So, wieU, and ueU,,. Hence, ueUry.

By Lemma 4.3, A* is a BDL. Let X be a subset of A* and y=\/X. Since
T(z)=z for weX, y=\/X<T(y). So, T(y)=y and hence ycA*.

So, A* is a cHa and the infinite sum in A* is as same as that in A.

In the next lemma we need to discern the operations of A and those of A*
and so we shall do it fixing A, A* or * to the operations.

LEmMmA 45. Let A be a normal cHa. Then, T*(x)=x for zcA*.

Proor. Let ueU# and ze€A*. Then, xVo=1 and uAv=0 for some ». By
Lemma 4.1, T(x)vT(w)=1 and T(@)AT®)=0. So, T(u)eU%. Hence, T/ ULc U~
c U2, As indicated before, for ue U4, there is we U4 such that %< T(w).

These above show \/U&'=\/U4. So, z=\/Ui=Uf=\/*U%. Hence, T*(x)=uz.

LemmA 4.6. Let A be a cHa. If T is the identity, A has the T-property. If
A is normal and has the T-property, T is the identity.

Proor. Suppose that z\/c=1 implies y\/¢=1 for any ¢. Then, U,<SU, and
so T(x)<T(y). By these reasoning the first proposition is obvious.

Suppose that T(z)<x for some x. The 7-property of A implies that T(z)V
¢#1 and zVe=1 for some ¢. By the normality of A, there exist » and » such
that s Vo=cVu=1and uAv=0. So, ueU, and »<T(x). Hence, ¢V T(x)=1, which
is a contradiction.



208 Katsuya Epa

Tueorem 4.2. Let A be a normal ¢He. Then, A* is 2 normal ¢/Ha with the

T-property.

Proor. Let z and y be elements of A* such that xV*y=1. Then, zVy=1
holds in A. By the normality of A, there are # and » such that xVu=yVo=1
and uAv=0. By Lemma 4.3, T(2)V T(w)=T)V T(v)=1 and T(@)A T(v)=0. Hence,
A* is normal and so A* is a normal c¢He with the T-property by Lemma 4.4, 4.5
and 4.6.

Lemma 4.7. Let A be a normal ¢Ha. Then, e=e-T.

Proor. Clearly, e- T(x)<e(x). Let lece(x), then zVy=1 for some yel. By
the normality, xVw,=yVuw,=1 and woAw,=0 for some w, and w,. Since w,eU,,
w, <T(x) and so yVv T (x)=1. Hence, lee- T(x).

LemMmA 4.8. Let A be a normal ¢Hu. Then, mA and mA* are homeomorphic

to each other.

Proor. For IemA, let ¥*=InA*. Clearly, I* is an ideal. Suppose that x¢l*
and zeA*. Then, x¢l. So, zVvy=1 for some yel. Since T()<y, T(y)el*. By
Lemma 4.3, vV T(y)=1 in A* Hence, [¥emA*.

Suppose that I*=J* By Lemma 4.7, ael« T(a)el— T(a)el* « T(a)e/* <
T(a)e] < aec]. So, I=].

Any ideal of A* can be extended to a maximal ideal of A and so the above
correspondence is injective and surjective.

By Lemma 4.7, lce(x) «> Ice- T(x) «> [*ece*- T(x).

CoroLLARY 4.4. Let A be a normal compact ¢Ha. Then, O(mA) is isomorphic
to A*.

Proor. The compactness of A implies that of A*. By Th. 42, Lemma 4.8
and Cor. 4.3, the corollary is clear.

LEmMA 49. Let A be a normal compact cHe and L be a sublattice of A
which completely generates A and contains 0 and 1. And let ¢ be a 0, 1-morphism
from L to L’, where L’ is a BDL.

For Ieml,, there exists a unique maximal ideal of A that includes P={x;

Hz)el].

Proor. Since 14/¢, there is a maximal ideal which includes . Suppose that
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there exist such different ideals, then there are different co-atoms @ and b such
that \/I#<aAb. Then, aVvVb=1. By the normality of A, aVu=0Vo=uD0)V
(v=>0)=1 for some # and ». Since L completely generates A and A is compact,
there are elements wu, %, v, and », of L such that ¢Vue=bVve=u,Vov,=1 and
o Nty =voAv,=0. Then, u, and v, do not belong to [*. So, ¢(u,) and ¢(v,) are
elements of 1. But, 1=¢(u,:Vo.)=¢(u,)V¢(v:)¢l, which is absurd.

Lemma 4.10. For feml’, let f(I) be the maximal ideal of A which is deter-
mined by Lemma 4.9. Then, f:mlL'—mA is a continuous function.

In addition if ¢(x)=0 implies x=0 in the condition of Lemma 4.9, f is sur-
jective.

Proor. Let 7 be an element of f~'e(x). Then, \/f(I)Vx=1 and so \/f([)Vu
=zxVo=1 and uAv=0 for some % and v in L. So, JeV,w,. Let J be an element
of Vywy. Then, ¢(v)e. So, vej* and hence f(/)ee(x). So, f is continuous.

Let a be a co-atom of A and / be the subset of L’ defined by the following:
relouva=]1 and uAv=0 and z<H((v) for some vel and some #». Then, [ is an
ideal of L’ and 14/ by the condition. Let I be the maximal ideal that contains .
Suppose that a=\/f(I). Then, avV\/f(I)=1. By the property of A and L, aVu
=\/f([)vo=1 and uAv=0 for some % and v which belong to L. By the defini-
tion of 7, ¢(v)el and so ve f(I), which contradicts to the fact \/f(J)Vo=1. Hence,
f is surjective.

Let C be the conjunction of the following conditions :
1) A is a normal cHa and is completely generated by a sublattice L with U and 1.
2) A’ is a cHe and is completely generated by a sublattice L’.
3) ¢ is a ¢H-morphism from A to A’ and ¢""Lcl’.
4) p is a cH-morphism which makes the right diagram OmL)

commutative.
eL' p

r Gua

THEOREM 4.3. Under the condition C, there exists a unique continuous func-

tion f:mL—mA such that the left diagram com-

O(mL") £ O(mA) mutes. In addition if ¢(z)=0 implies z=0, then
pl ‘eTA* f is surjective.

! e A%
4 SIAx
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Proor. Let f be the function defined in Lemma 4.10. Then, f'e(z)=
ueLW} erdp(1)), where ue Wyeouel, and unv=0 and zAv=1 for some ». On the
othz‘,rhand, x=\/W, for xeA* by the compactness. So, p- f‘le(a;)zuéé/ Hae)=(a).

Suppose that a continuous function ¢:mL’—mA satisfies the diag;am in the
theorem and g#f. Then, f(I)#¢() for some JemL’. So, there exist » and u’
in L such that \/f()Vu=\/g(I)Ve' =1 and uAn =0. Since lef'e(u)Ng 'e(n’),
there is » in I/ such that lTee,(0)Sf 'e(w)Ng 'e(u’). Hence, 0Fv=p-er(v)< p-
Fle(W)N p-g~'e(u’)=dluAw’)=0, which is a contradiction.

Since mA is a Hausdorff space and O(mA) is isomorphic to A*, the uniqueness
of the continuous function f has the same meaning of the uniqueness of the
cH-morphism from A* to O(mL’).

§5. Completions and co-products

In Def., 42, we have defined properties of BDL’s. In this section we shall
study about the preservation of such properties under the operations defined
already.

Turorem 5.1. Let A and B be BDL’s. A®B is compact if and only if A
and B are compact.

Proor. Let 7 be a maximal ideal in AR®B and Iy={r;isz)el} and Iz={y;
in(y)el}. Then, I, and I are maximal ideals. So, there are co-atoms « and b
such that a=\/I; and b=\/I5. Then, i4(@)Vix(h) is a co-atom and belongs to L

The compactness is not preserved under an infinite co-product. Let A, be a
compact BDL, ¢, be a co-atom in A, and i, be the embedding: A,—»® A,, for

each n<w. Let I be the subset of & A, such that zel if and only if x%\x/ ir(ck)

for some n. Then, 7 is an ideal and does not contain 1, but \//=1 holds.
Differing from the compactness, the 7-property and the normality are preserved

under infinite co-products.

THeorREM 5.2. Let L. be a BDL for each acA. @A L. has the T-property, if
ag

and only if L, has the T-property for each aed. & L. is normal, if and only if
acd

L. is normal for each ae/.

Proor. Let « and b be elements of ® L, and «¢¥b. By Lemma 31, a=
agA
\/ /A @) and b:k/\ \/ i(b%) for some ai, bk, F; and G;. Then, /F\iw(ai)$ \/ ia(b5)
aCkF j Gy

j<m «€Fj <n &Gy
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for some j and k. We now define ¢, for aeF;. If aeGy, then aifbk. Let ¢, be
the element such that afVe.=1 and #¥Ve,#1 for aeGr. And if aeGy, ai+1. Let
¢. be the element such that a/Vec.,=1 and c.#1 for aeGi. Let c:n\e;/vji“(c")' Then,
aVve=1]1 and bVc£1.

Let c=ﬂe\ﬁ/’ia(ca). Then, aVvVe=1 and bVc+1.

Let @ and & be elements of HQ?AL" and eVvb=1. By Lemma 3.1, a=/\ V ifaf)

and b:k\/ \ i.(bF) for some «f, b5, F; and G,. Without any loss of gen]e?;fi?;, we
can ass;:r;éaij:szlf for j<m and k<wn. Then, aiVvbi=1 for some ack, for
each j<m and k<xn. By the normality of L. for each ae4, there exist #; and
vjr such that ‘>€/Fia(a£)Vujk=ﬂ and u\E/Fi,,(bfﬁ)ij;c:'Jl and #; V=0 for j<m and
k<n. Let u*z}\(/ﬂtéujk and v*z)f\/ﬂ J/<\T,ijk. Then, eVu*=b\Vov*=1 and u#*Av*=0.

On the other hand, the T-property and the normality of L. can be deduced
from those of & L, respectively.
a€d

THeoREM 5.3. Let A be an Ha. A has the T-property, if and only if A has
the T-property.

Proor. Let i be the embedding: A—A. For any «,beA such that «<b,
there exists o€ A such that i(a,)<a and i(a,)£b. Let X be the subset of A defined
by: xeX e x<a, and ix)<b. Then, Vi’ X=1i(a,)Ab<i(a,). So, \/X=a, does not
hold. Since x<a, for each zeX, there exists @, such that x<a, for each zeX
and a,¥a,.. By the T-property, there exists ¢ such that @,Vc=1 and @, Vc+1.
Then, aVi(c)=1. Suppose that bVvi(c)=1. Then, ({a)ANb)Vi(c)=1 and so \V/i"’X
Vi(c)=1. Hence, e,V c)=#a:)Vi{c)=1, which is a contradiction. So, b\Vi(c)+1.

Let @ and & be elements of A such that e£é. Then, there exists ¢ in A
such that ie)VvVe=1 and ib)Vve+1. Since c=\/{i(x); reA and i(x)<c} and c+#1,
there exists ¢, in A such that ¢<i(c,) and co#£1. Then, aveo=1 and bV 1.

Treorem 5.4. Let L and L’ be a normal BDL and a compact complete BDL
respectively. If there exists an 0, 1-morphism j: L—L’ such that j/L completely
generates L’ and j(z)=1 implies x=1, then L’ is normal.

Proor. Suppose that xVy=1 for x,yeLl’. Then, by the compactness and the
property of j, there exist ¢ and b such that j(@)<z and j(b)<vy and aVvb=1. By
the normality, there exist # and » such that eVu=>bvo=1 and uAv=0. Then,
zV jw)=yV jw)=1 and ju)A j()=0.

CoroLLARY 5.1. If L is a normal BDL, then O(ul) is normal.
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Proor. The morphism e: L—-O(mL) satisfies the condition of the theorem.
CoroLLARY 52. If A is a normal Haz then A is normal and compact.

Proor. Since A is compact and the inclusion map: A—A satisfies the condi-
tion of Th. 5.4, the corollary holds.

The normality of A does not always imply that of 4. We shall see such an
example later.”

THEOREM 5.5. & A, is isomorphic to ® A,, where A, is an Ha for each ae/.

Proor. Let i, and j. be the embeddings defined in Def. 3.1 as indicated in
the following diagram. Then, there exists a (), I-morphism ¢ that makes the
following diagram commutative, by Th. 3.1.

By Th. 3.2, ®4A“ is an He and so in the scope of Cor. 2.1 what we must prove
L3

is that ¢ is injective and complete and the range of ¢ completely generates ~®:71:
g

In this case, ¢ is clearly injective and the range of it completely generates & A..
Suppose that ¢ is not complete. Then, there exist ¢ @3 finite F and finite F;
such that Ai(a)=\/ A if(a3) but Aj.a)£\/ AJja). So, there exist b* in A,
aCF 164 aCF, «€F 164 o€, _
and finite G such that A j.(@")<\/ j.(b%) for each 1e4 but A j.(a) £\ 7.(6%). Here,
atF _ a€@ _HEF ac@l
a"+0 for aeF and adG, &"£b" for acl and aeG and b*+#1 for adF and acG.
Let ¢* be the element of A, for each aeG such that e Ab*<c*<a® for aeF and
b°<c*<1 for adF. Then, Ai(e)<V ifc") for each led but A ida®)E£V iac),
aCF, «€¢ aCF «€G

which is absurd. So, ¢ is complete.
In the rest of this section, we shall investigate about open algebras.

TueoreM 56. Let X and Y be topological spaces. Then, O(XXY) is iso-
morphic to OXYRQO(Y ).

i) After the completion of this paper, the author has found some results of C.H.
Dowker, D. Strauss and H. Simmons in {1], [2] and [11]. He has noticed that many
separation axioms there are preserved under the canonical completion and the co-products.
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Proor. Let jy: O(X)-»O(Xx Y) and jy: O(Y)~>O(Xx Y) be the cH-morphisms

induced by the projections. Then, by Th. 3.1,

there exists a unique 0, I-morphism ¢ that

makes the left diagram commutative, where

O(X)YQO(Y)- -*}; --=O(XXY) ix and iy are the embeddings defined in Def.
f 31

o(X)

ix ix

iy ir
oY) .
By Th. 32, o(X)®QO(Y) is an Ha. So, what we must prove is that ¢ is injective
and ¢ preserves infinite sums and the range of ¢ completely generates O(XX Y).

Suppose that jx(#)A jr(@)<ix(w)Vig('). That is axvca’ X YUXxXv'. So,
uCw' or vCov’. Hence, ¢ is injective.

To show the preservation of infinite sums, it is enough to treat the case
i,;.-(u)/\iy(v):L/Aix(ua)/\z’y(va). Suppose that ix(%)ﬂjy(v)%Hj‘;—(uq)njy(va). Then,
there exist x and y such that (z,v)euxv and (x, y)§u. X0, for any aed. ix(u)A
ir(0) <ix(X—{x)Vir(Y—{y}) for each aed, but ix(u)Air®)£ix(X—{x})Vir(Y —{v}).
These contradict to the fact ix(u)/\iy(v):a\e//‘ix(%a)/\i)f(va)~

The range of ¢ forms a base of Xx Y and so completely generates O(XxY).

LemMma 51, m® L. is homeomorphic to [{ ml..
2€d a€A

Proor. We use the same notation as in the proof of Lemma 3.2. By Lemma
3.2, it is sufficient to prove that 92]" belongs to m@ L. for maximal ideals I,’s
(awed) and (), is maximal for a maximal ideal I for each aed. Suppose that
\ G/F\’jz'.,(az§)¢ @11“" Then, ne/>ii“(03>¢ anIa for some j<m. So, ajel, for each aeF;.

j<ma

These imply that ®AI,, is maximal. The other implication is obvious.
a€

COROLLARY 5.3. OM(L®L’)) is isomorphic to OPL)ROML’). And Om(LRL))

Proor. 1t is clear by Lemma 3.2, Lemma 5.1 and Th. 5.6.

We have proved that the canonical completion of a finite co-product of open
algebras is an open algebra. However, in the case of an infinite co-product, that
does not hold.

Let X, be a discrete space of two elements for each #. Then, O(X,) is a
Boolean algebra and consequently n@w()(z ») is a Boolean algebra and is co-atomless.

So, ® O(X,) is a complete Boolean algebra and atomless. This is the regular open

n<e



214 Katsuye Ebpa

algebra of the Cantor space. It is well-known that an atomless complete Boolean
algebra cannot be an open algebra. (Remind that there exist no c¢H-morphism
from an atomless complete Boolean algebra to {0,1}).) So, in most cases, @lﬁ(ffj)
is not an open algebra for an infinite 4. It is contrasted with the case ofnefegular
open algebras. For, W is isomorphic to RO( .,IJA X.). (cf. [3])

As stated before, the normality of an Ha A does not imply that of A. Let
X be a normal space such that Xx X is not normal. Then, O(X)Y®RO(X) is normal

by Th. 52. On the other hand, O(X)®O(X) is isomorphic to XX x X) and so is
not normal.

§6. Complete Heyting algebras in a Heyting extension

In this section, we shall study about a completion of a co-product and a com-
pletion in a Heyting extension. So, we assume that the readers are familiar with
an extension of a universe of the set theory with a cHa. (cf. Grayson [7] and
Takeuti [137)

We shall use the notation [@1” or [@] for the value of @ in a ¢Ha H. As
in [12], we assume that V¥ is separated, i.e. “x=y" is equivalent to “[z=y]=
17”. Just as in a Boolean extension, # is the element of V¥ such that dom #=
{¥; vex} and range 2C{17}. % is the set {y;[vex]=1}. We say “ @ is [lvalid”,
if @] =].

As indicated in [13], the maximal principle does not always hold in V¢, but
a weak form of it holds. Next three lemmas can be proved as in the case of a
Boolean extension and the proofs can be seen in [13]. So, we omit them.

Lemma 6.1, If [3!1x®(x)]9=1, then there exists » in VU such that
[D(w)] P =1.

LemMA 6.2. Let @(x,, -, za) be a do-formula. Then, [$(%,, -, #,)]=1 if and
only if ®(ax,, ---, x,) holds and [@(z,, ++, 2,)]=0 if and only if @(x,, -+, z,) does not
hold.

LemMa 63. If “0Q is a cHa” is H-valid, 2 is a cHa.

—H

TueoreEM 6.1. Let H and @ be a ¢cHa and an Ha respectively. And let 0
be the canonical completion of & in V&,

~

Proor. Let @(J) be the formula that asserts “/ is a closed ideal in 27, i.e.
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VzeOVyel (zel and y<z—yel) and Vzed (YueQ (Vyed(yel and y<z—ry<u)
—g<u)-zel).

Suppose that @() is H-valid. Then, we can assume that dom I=dom 2 and
<y implies [y)<I(¥) and IHALy)=L#Vy) for each z, ye?. For each zel,
A y/&(1(??)/\I[.%?Sﬂf]?l[’ysﬁ]])?[[féﬁ]])ﬁf(f)- So, 1{:\1'(/\ ({y)=0)>0)< [(&). The left

wED y<sx
part of this inequality is equal to or greater thany?;(:i)jﬂ)i@. Hence, [(¥) is a
regular element of . So, we can assume that an element of ,{53 is a function
which maps dom £ into R(H).>
We now define jru,(p) and ju(q) for pe R(H ) and gef? as follows.
The domains of jra,(p) and jo(g) are both dom .
Jran(p)(#)=1 for z=0,
=p otherwise.
je(@(#) =1 for z<gq,
=0 otherwise.
Then, @(jrun(p)) and @(j.(q) are H-valid for each peR(H) and each gef.
A straight calculation shows the following :
TJre(PINGolg) (#)=1 for z=0,
=p for x2<q and z+0,
=0 otherwise.

R(H) . jrar, and jo are 0, I-morphisms. So, by Th.
iran ~Jrun 3.1, there exists a unique 0, 1-morphism ¢ such
- o
RUH)- - -~ - 5 - E)H that the left diagram commutes.
‘ F 4

‘\.\ /
e SO Ja

Suppose that jrun(p)Ajo(q)<jruP’)Via(¢) and p£p’. Then, there exists
reR(H) such that 0#r<[fejo(¢’)]. So, g<¢ holds by the definition of j, and
hence ¢ is injective.

Let (p’\q/)ejR(H)(p)/\ig(q)ziu(y)({)o)/\in(QQ). And let A be the subset of & in V@
defined by the following. A(z)=\/2% {p; dg(x<q and (p,q)eA) for x+0 and
AW)=1. Let I, be Jran(Po)Njalge). If [@()]=1 and lizan(P)Ni(g)<I]=1 for
each (p,q)e4, then [A<I]=1. By Lemma 2.2, the unique minimal closed ideal [

. cH
that contains A exists. By Lemma 6.1, we can assume that I is an element of 2 .

i) Dr. Hayashi has pointed out that after this point we may work in V®#» because
o Zerap
Q=0 . However, regular elements have an important role for the calculation in VD
and here is an example. So, we present the original proof.
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Clearly [JcL]=1.

Since [VrzelOVyeA(z<y—zeA)]=1, [refl=[zed and z=\/{y;yeld and
y<z and yeA}] by Lemma 22. We claim that /, is equal to I Suppose that
po<[doel] does not hold. Then, since Tgeel] is a regular element, there exists
peR(H) such that 0+p'<py and p ATGel1=0. [qell=/\ A (ADS0)>0)=

035l

(VA (A0)>0. So, there exists #<g, such that p”:p’/\y/\q(A(z&)j’[D)qé@.

u<qqy ¥<q9 <
Ysu ysu
Then, p”eR(H) and p" AA@)=0 for any ¥;y<qs and y£u. Since igpu 1S a
cH-morphism,
\ iran(P)Aid@)=\ ircn(A@) Nislq).
(P, @)€EA Qen
And so, in(z,r)(pa)Aig(qo):q\é iran(AGINLAQ))-
<qp

Hence, Tran(p')Nia(go)= q\</q iran (AN INIa(Q)

= ,,\S,f,i‘f‘”’(A(‘j)/\f’")/\ io(q)

< iran(PINio(ue),

which contradicts to the fact that #<q.. S0, ¢ preserves infinite sums.
Ti
Let P=\/{jran(P)A7a(@); Liran(PIN jo(@)ST])=1} for Tef . Since
jran @) Njo@)<T, I§)<[gel'] for gel. So, I=1".

CoroLLARY 6.1. Let B be a complete Boolean algebra and {2 be an Ha. Then,

~
=B

¢ is isomorphic to BRL.
Proor. It is clear from the theorem and the fact: B=R(B).

For Boolean algebras B and C, BRC is isomorphic to the co-product in the
category of Boolean algebras and the canonical completion of B as an Ha is
isomorphic to the canonical completion as a Roolean algebra. So, Th. 6.1 is a
generalization of the next result of Kunen and Scott.

COROLLARY 6.2. (Kunen and Scott [12]) Let B and C be complete Boolean

~5 o
algebras. Then, C is isomorphic to B&C.

3L
TurorEM 6.2. Let L and L/ be distributive lattices. Then, JL' is isomorphic

WL [€32)
to (L®L’), where JL' is in V

L
Proor. By Lemma 11, “3JL' is a cHa” is §L-valid. Let j, and j;. be the
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following 0, 1-morphism :

NIL

jo: L-3L and j(a)(p)=1 for p=0,
=1, otherwise,
=~
Jut L'-JL" and j,(g)(P)=1 for p<q
={ otherwise.
Then, j (@)Ajulg) (B)=1 for p=0,
=I, for O#p<gqg
=( otherwise.
for each aeL and p,qel’.
By Th. 31, there exists a unique 0—1 morphism ¢ such that the following

diagram (1) commutes. Then, there exists a unique ¢/-morphism ¢ such that the
following diagram (2) commutes, by Th. 1.2 and Cor. 1.2.

(L Z:/ L\j\l‘ @ yaRL)
N

LQL ------- 7L i B
PR’ g
N LOL'—— gL/
ly
ANYL

Let IeXL' , then ael(}) implies j (@)Aj(p)<I for each aeL and peL’. So,
V4N () icla)Nip(p)<I}=I This means that the range of ¢ completely

SONL
generates JL’ . Hence, ¢ is surjective by Th. 1.2.

Now, let X, be the set; {¢; 3F (F is a finite subset of A and e<AF), and
PN (F))), where (F): is the set of the k-th co-ordinates of elements of F.

Claim) Let J=\/{iG(e)Nip(D)); (a, p)ed} for JeIJ(LQL). Then, ¢(J)(P)=IX)).
Let K(p)=IX,) for each peL’. Then, K(0)=L=1 and p<q implies K(§)<

K(p). Let zeK(PAK(P'), then there exist 4, -, lm hi', -~ and k.’ such that

z< V hi/\}/\jénhj':l(\/(mhi/\hj, and MeX, for 1<i<m and hy/eX,’, for 1<j<n.

1Zism <t
1gisn

Since A AAf € Xpyp, for each 1<i<m and 1<j<n, xelf(pvp’). So, [KeSL']=1.
[Fla)ynj APYSK]=1 for each (@, p)ed. So, “¢(J)SK” is H-valid. On the other
hand, [K<¢(/)l=1. Hence, ¢(J)=K. Now, we have proved the claim.

Suppose that ¢(I)=¢(J) and I£/J. Then, there exist a and p such that
if@Ni(pel but ig@)Nig(p)¢/. By the claim, a (D) (P)=¢J)(h). Let
d={(a,p); i{leyNig(p)e S}, then there exist a, -, a, and finite subsets Fi, -, F,
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of 4 such that e<aV--Van, a&;:<NF:) and p<\/(F;), for 1<i<n. Since [ is
an ideal, (A(F)s, \V(F))ed for each 1<i<n. So, (a;,p)ed for each 1<i<n and
so ( \/ ai, p)ed. Hence, (a, p)ed, which is a contradiction. So, ¢ is injective.

AL
CoroLLARY 6.3. Let L and L’ be distributive lattices. Then, JL’ is isomor-

phic to JLKRIL’.

Proor. S(L®L') is isomorphic to ILRSIL’, by Cor. 1.2, Lemma 3.2 and Th.
5.6. Now, the corollary is clear from the theorem.

The next lemma is an easy consequence of Lemma 6.2.

LemMa 6.4. Let X be a topological space. Then, “X is a topological space
with a base O{X)” is H-valid.

AN
TueoreM 6.3. Let H be a ¢cHa and X be a topological space. Then, O(X) is
isomorphic to HRO(X), where O(X) is an open algebra of the topological space X
with its base O\(/X) in V@,

Proor. Let jyz and j, be functions defined by the following: jz: H—»OE}?')
and ju(h) (#)=h for each ze X, j,: O(X)—»O/(\X’) and jo(P) (#)=1 for zeP

Jo(PX#)=0 otherwise. Then, jz and j, are 0, I-morphisms. So, there exists a
0, 1-morphism ¢ such that the following diagram commutes, by Th. 3.1.

H
) 11/ \\\]'11
/

\/’é
HRO(X) ==-===-=z-=====> O(X)
ox)

P N ~
Let UeO(X), then [#eU]=[IPeX(X); #e¢P and PCU]= >/[[Pg U] for zeX.
PEO(X)

So, U=\/{ju(M)NjP); ja(B)Ajo(P)< U}, i.e. the range of ¢ completely generates
o).

Suppose that ju(A) Aj(P)<iu(h )i (P") and PLP’ for some /, P, 7/ and P’.
Then, there is x, in P that is not in P’. ju(A)A jo{P)(&)=h and ja(h')V j(P’) (%)
=k’ and so A<A’. Hence, ¢ is injective.

Let in(ho) Ail Po)=\/{in(I) Nio( P) ; (h, P)e A} for some A. Suppose that ju(h)A
Fo(P)ENTu(MIN Go(P); (h, PYeA). Then, there exists z,€ P such that /4, $4, where
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h' =\/{h; zoe P and (k, P)eA for some P}. x,4P implies {z,} N P=¢ and so implies
PC X—{zo}. So, iu(R)Ni(P)<inlhe' Vi X—{z}) for each (B, P)ed. On the other
hand, in(he) Nio(Po) A (inlhe’) V il X—{@a]))=(in(’) A i(Po)) V (Gu(lo) A io( Po—{ma})) <

iu(ho) Nio(Py), which is a contradiction.

CoroLLARY 6.4. Let X and Y be topological spaces and O(X) be an open
algebra of the topological space X with its base O\(/X) in Yoo,
P
Then, O(X) is isomorphic to QXX Y).

~ o
Proor. By Th. 6.3, O(X) is isomorphic to O(X)QO(Y) and so is isomorphic
to O(XxY).

In the preceding three theorems, we have investigated the structure of £ for
some cHa §2 in V. By the theorem of Fourman and Scott [4], our result can
be internalized into V' in some sense. For that, we shall introduce their results
by a different presentation. In many cases we shall omit the proofs, since they
are in [4] and essentially as same as in the case of Boolean extensions. [12]

Lemma 65% Let £ be an He and F be a filter of it. Then, 2/F is an Ha,
where £/F is the quotient by the equivalence relation {(a, ) ; a>beF and b>aeF).

Proor. Let x: Q—Q/F be the canonical quotient map. Then, » is a strong
H-morphism and 2/F is an Ha.

Let H and 2 be cHa’s. And let F, be the element of V such that dom F.
=dom & and F.(P)=\/{k; (k) <p}, where ¢: H—»£ is a cH-morphism. Then, “F,
is a filter of @” is H-valid. By Lemma 65, “$/F. is an Ha” is [-valid. We
denote the canonical quotient map by =.

LemMa 6.6. [z(P)<n(§)]=\/{k; e(h)< p=q} for p,qe2. Consequently,
a) h<[a(p)<x(g)] if and only if (k)< p=>g,
b) Z<[z(p)=n(§)] if and only if (A)Ap=ch)Aq.

Proor. [o(B) <a(@)]=[x(1) <x(pSq) 1= p>aeFI=\/{h; )< p=>q¢}. By the

completeness of ¢, a) and b) are clear.

By Lemma 6.6, we understand that @/F, is the same thing defined in Th. 8.13
of [4].

o N
THeEOREM 6.4, “Q/F, is a ¢Ha” is H-valid and Q/F, is isomorphic to 2.



220 Katsuya Epa

Lemma 6.7. (Fourman and Scott [4]) Let “Q is a cHa” is H-valid. Then,
for any ze V¥, there exists »’'ef such that [z=z']=[ze0].

This lemma implies that as far as concerning ¢Ha’s many things will go well
like a Boolean extension.

Let “2 is a ¢cHa"” be H-valid and e be the function such that e: H—O and
“e(m)y=\/"{1;h}” is H-valid. And let 2’ and ¢’ be defined similarly.

LEmma 6.8. (Fourman and Scott [4]) e is a ¢H-morphism.

THEOREM 6.5. (Fourman and Scott [4]) Let “¢: 002" is a cH-morphism ” be
H-valid. And let ¢: 00’ be the function; [¢(z)=g(x)]=1 for ze. Then, ¢ is
a cH-morphism and e-d=e’. And conversely, let ¢:%—0" be the ¢/H-morphism
that satisfies e-¢=¢’. Then, there exists ¢ in VY such that “¢: Q-0 is a
cH-morphism ” is H-valid and [¢(z)=@(z)]=1 for xe0.

In the above, “¢ is injective ” is /f-valid, if and only if ¢ is injective. And
“¢ is surjective ” is H-valid, if and only if ¢ is surjective.

Lemma 69. h<[p<qloe)< pq, for p,gef. So, if Qis O*[F., e(/z)zzr(ezfz)),

THEOREM 6.6. Let ¢ be iru-R: H->RID®E and £* be RH)Y®L2. Then,
“ 0 is isomorphic to J*/F.” is H-valid.

Proor. We use the notations in the proof of Th. 6.1. The left diagram

- 3 () o~ commutes and ¢ and #(™) are isomorphisms.
g < Q* O*|F, = ,
And \/"{1 ;4 =jrz,- R(k). So, the theorem
jm\ ]5 / holds by Lemma 6.9, Th. 6.1 and Th. 65.
H

TueoreM 6.7. Let ¢ be the unique ¢H-morphism that makes the diagram (1)
commutative and £* be J(LKRL’). Then, Si’ is isomorphic to G¥/F.” is SL-valid.

(1) JIRYKL) «=—— LRJL’ (2) 4L

.. .
. NN |

3 i \\L

Ta

JL L L ——JL

Proor. We use the notation in the proof of Th. 62. Let Jj, be the
unique c/-morphism that makes the diagram 2) commutative. Then, j;=¢-¢ and
\/3241 5 Iy=j,(I). So, the theorem holds.
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is isomorphic to Q*/F.” is H-valid.

Proor. Similarly as the proofs of Th. 6.6 and 6.7, \/OD] ;s by =7y4(k) and so
the theorem holds.

CoroLLARY 6.5. Let L and L’ be distributive lattices. Then, * O(;?i’) is

isomorphic to L' is JL-valid.
Proor. It is clear from Th. 6.7, Th. 6.8, Cor. 6.3 and Cor. 1.2.

Next we shall roughly state the relationship between X and X, in VO,
where Xy, is a sheaf representation of X in VoY, It is known that O/(\XT) is
isomorphic to O(X'x T). By Cor. 64, it is isomorphic to O/(}). ‘We now internalize
this fact.

f belongs to (X)? if and only if f is a continuous function from an open
subset of 7' to X. For fe(*X)?, f is the element of V" such that dom f=
dom O(X) and F(P)=f'P. dom Xr={F: fe(*X)*} and X¢(f)=dom f. For PeO(X),
dom P=dom Xr and P(f)=/"'P. And dom B={P; PeO(X)} and B(P)=1. Then,
“Xp is a topological space with a base B” is O(T)-valid. And “X is a dense
subset of Xp” is O(T)-valid, if we embed X into Xy naturally.

TueoreM 6.9. “O(X) is isomorphic to O(Xr)” is O(T')-valid.

Proor. Similarly as Th. 6.3, we can prove that O(Xy) is isomorphic to
O(TYRO(X). Next, we internalize this just like Th. 6.8. [feVouxn(]; P}]=
Pndomf, for fe(TX)?. And so, the theorem holds by Th. 6.6.

Let R be the set of real numbers and R be the set of Dedekind real num-
bers in V¥, Then, “ RO =R;” is O(T)-valid. And so “O(R) is isomorphic
to O(R©OT»)” is ((T)-valid. However, this of course does not hold for many
Boolean extensions. Let B be the complete Boolean algebra that satisfies [R=
R®]®=@. Then, “R® is connected, but R is not connected” is B-valid. So,
“O(R) is not isomorphic to O(R®)” is B-valid.

A similar situation occurs concerning Th. 6.7 and Cor. 65. Let B be the
complete Boolean algebra such that “ The generic filter does not belong to Vs
B-valid. Then, “3B is isomorphic to O(pB) and OmB)” is B-valid, by Cor. 1.2.
Since ”’ O(;}g) is not compact” is B-valid, “ 0(52?) is isomorphic to 3B ” is not
B-valid. Let ¢ be iz: BoBRIB and £*=BXR3IB. Then, “ Z*/F. is isomorphic to
O(p\ff) ” is B-valid, by Th. 6.8. So, “ £*/F. is not isomorphic to IB” is B-valid.
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