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A GENERALIZATION OF FREE L-SPACES
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1. Introduction.

In [11] and [12] Nagami defined the notions of L-spaces and free L-spaces
respectively and for these spaces, proved fundamental theorems of dimension
theory including coincidence theorem for dim and Ind. The class of L-spaces
contains every Lasnev space, and the class of free L-spaces is the minimal one
which is countably productive and hereditary and which contains every L-space.
On the other hand the author has recently defined patched spaces ([13]) and free
patched spaces ([15]) and for these spaces, proved fundamental theorems of dimen-
sion theory. A patched space is a paracompact perfectly normal space expressed
as the finite union of matrizable subsets ; a free patched space is a space embedded
in the countable product of patched spaces. As also shown in [15], the same
theorems are valid even for the class of p-spaces which includes the class of free
patched spaces (cf. [15, Added in proof]). One of the most interesting results
concerning free L-spaces is an embedding theorem ([12, Theorem 3.4]) asserting
that every free L-space can be embedded in the countable product of almost metric
spaces (or, more strongly, of almost polyhedral spaces). By the theorem every
free L-space is found to be a free patched space (but the converse is not true by
[13, Example 5.1 and Remark 5.2]).

In this paper we define the notion of free L*-spaces which form a countably
productive and hereditary class including that of free L-spaces. The notion of
L*-spaces is also defined as a generalization of L-spaces. In Section 2 we examine
basic properties of these spaces. Free L-spaces will be redefined in terms of free
L*-spaces. The major part of Section 3 is devoted to the proof of a closed-
embedding theorem (Theorem 3.6), the main result of this paper, asserting that
every free L*-space can be embedded as a closed set in the countable product of
much more simple spaces called a.e. metrizable spaces. An a.e. metrizable space
is, roughly speaking, a space which is metrizable except at discrete points. It is
to be noted that we do not impose on the spaces any such “approaching ” condition
as that imposed on almost metric spaces (cf. [12, Definition 3.1]). The technique
used in the proof of our embedding theorem differs from that of Nagami’s embed-
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ding theorem. Recall that in [12] Nagami proved his embedding theorem by using
a Kuratowski map to the nerve of a locally finite open covering; but a certain
fact (see Remark 2.7 (4)) obstructs us in using the same method. Qur proof is
based on contractions (=one-to-one maps) onto metric spaces which are modifiable
with respect to given e-locally finite collections of open sets (see Lemma 3.7).
This method of proof also makes it possible, unexpectedly, to strengthen “embed-
ding theorem” to “closed-embedding theorem ”.

Our embedding theorem says that every free L*-space is a free patched space.
Though the reverse implication is not known to hold (see Problem 4.10), these
two spaces are close to each other in the sense that, as our embedding theorem
also asserts, every subspace of the countable product of 2-patched spaces is a free
L*-space.

In the last of Section 3, fundamental theorems of dimension theory will be
established for free L*-spaces as corollaries to the embedding theorem. The last
section consists of examples and problems. It will be shown that a free L*-space
is not necessarily a stratifiable space (and hence not necessarily a free L-space);
a much stronger example is also presented.

Throughout the present paper all spaces are assumed to be Hawusdorff topo-
logical spaces and maps to be comtinuous. The symbol N is used to denote the
positive integers.

2. Free L*-spaces and L*-spaces.

Conventions. Let 9J be a collection of subsets of a space X. The symbol
U* denotes the union of the members of 9J. Let Y be a subset of X. The
symbol ¢J|Y means the collection of the form {UNY: UeJ}. 9J is called discrete
if each point of X has a neighborhood meeting at most one member of ¢J. J is
called g-discrete (resp. o¢-locally finite) if 9/ is the union of at most countably
many discrete (resp. locally finite) collections. A subset of X is called discrete if
it is discrete as a collection consisting of point sets. The symbol Cl Y (or ¥)
denotes the closure of Y. Let qJ;, 1=<i<k, be collections of subsets of X. The
symbol A%.,qJ; means the collection of the form {Nt, Ui: UseUi, 1=i=k}). We
sometimes use the symbol U, A9, in place of A%.,9/;.

DerINITION 2.1. Let X be a space and F a closed set of X. Let qJ be an
open covering of X—F. Anopenset U of X is called a 9J/-saturated neighborhood
of Fif U=FUCy* for some subcollection 7 of ¢J. An open neighborhood V' of
F is called a subcanonical neighborhood of F with respect to 9J if there exist a
sequence {V;:ie N} of qJ-saturated neighborhoods of F* and a sequence {qJ;:ieN}
of subcollections of ¢J such that Vi, cX—-U¥c Vi,V for each ieN.
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DerINITION 2.2. Let X be a space. Let & be a g-discrete collection of closed
sets of X, and for each Fe& let ¢Jr be an open covering of X—F. The pair
(F, ([ Ur: FeF)) is said to be a free L*-structure on X if for each Fe&F,Ur is
a-locally finite in X —F and if for each x¢X and each neighborhood I/ of x, there
are finite subcollection {F, -+, Fi} of & and subcanonical neighborhoods U; of F;
with respect to Uy, 1<i<k, such that zeNi, e, U,cU. A space is said
to be a free L*-space if it is a paracompact space admitting a free L*-structure.

DerFINITION 2.3. Let X be a space. Let C be the collection of all closed sets
of X, and for each Fe( let 9Jr be an open covering of X—F. The collection
{Up:FeC} is called an L*-structure on X if for each Fe(C,Ur is o-locally finite
in X—F and if every open neighborhood of F is a subcanonical neighborhood
with respect to @/». A space is called an L*-space if it is a paracompact ¢-space
admitting an L*-structure.

We state the definitions of canonicity, free L-spaces and L-spaces in order to
compare the corresponding notions with each other.

DeriNiTION 2.4 (Nagami [12, Definition 1.1]). Let X, F and U be the same as
in Definition 2.1. Let Y be a subset of X and let ie N. The collection U(Y,7) is
defined inductively by U(Y,1)={UeqJ:UN Y+0} and U(Y,)={UeJ: UNU(Y,
i—1)*+0}. An open neighborhood V of F is called a canonical neighborhood of F
with respect to U if for each i, Cl (U(X—V,i)*) does not meet /.

DerFINITION 2.5 (Nagami [12, Definition 1.2]). Let X, & and Up, Fe<¥F, be the
same as in Definition 2.2. The pair {F,{Ur: FeF}} is called a free L-structure
on X if for each xeX and each neighborhood U of x, there are finite subcollection
{Fy, -+, Fy) of & and canonical neighborhoods U; of F; with respect to Ur;, 1<i=k,
such that xe N, Fic/Ne., U;cU. A space is called a free L-space if it is a para-
compact space admitting a free L-structure.

DerINITION 2.6 (cf. Nagami [11, Definitions 1.1 and 1.2]). Let X, and Up,
Fe(C, be the same as in Definition 2.3. The collection {{Uz:FeC} is called an
L-structure on X if for each Fe(, every open neighborhood of /' is a canonical
neighborhood with respect to Up. A space is called an L-space if it is a para-
compact o-space admitting an L-structure.

ReMARkS 2.7. (1) Definition 2.6 is an equivalent alteration of the original one
by virtue of Nagami [11, Theorem 1.3].
(2) A subcanonical neighborhood of F with respect to U includes a 9J-saturated
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subcanonical neighborhood of F with respect to 9.

(3) If V is a canonical neighborhood of F with respect to J, then V is a
subcanonical neighborhood of F with respect to the same 9J; indeed take for Vi
the set FU{UeU : Usq(X—V,)* and for qJ; the collection (X —V,i). A trivial
example shows that the converse is not true. Further, unlike the case of canonical
neighborhoods, a subcanonical neighborhood of F with respect to 9/ is not neces-
sarily subcanonical with respect to every refinement of 9J. (To see this we have
only to note that if V is a subcanonical neighborhood of F with respect to qJ,
then V remains subcanonical with respect to 4JU{X—F}).

(4) In Definition 2.2, the collection of all finite intersections of members of
& forms a o-discrete net. Hence every free L*-space is a paracompact perfectly
normal space and, therefore, a hereditarily paracompact space. Thus each s
has a locally finite refinement. But, as suggested by the latter half of (3) and as
assured by Theorem 2.8 and Example 4.1, the s-local finiteness imposed on Ur in
Definition 2.2 can not be replaced by local finiteness. This fact obstructs us in
an analogous proof of our embedding theorem (Theorem 3.6) to that of Nagami’s
embedding theorem.

As a relation between free L-spaces and free L*-spaces, we have the following
result, the proof of which is partly implicit in that of [11, Theorem 1.3].

THEOREM 2.8. A space X is a free L-space if and only if X is a free L*-
space with a free L*-structure {F,\Ur:FeF)} such that for each FeF, Uy is
locally finite in X—F.

Proor. Let X be a free L-space with a free L-structure {£,{%z: Ee&}).
Note that if U is a canonical neighborhood of £ with respect to 9Jz, then U is
canonical with respect to every refinement of 9Jz. Since X is hereditarily para-
compact, we can assume that each Uz is locally finite in X—FE. Now the ‘only
if *-part follows immediately from the first statement of Remark 2.7 (3). To show
the ‘if -part let X be a free L*-space with a free L*-structure {F,{Uy: FeT}}
such that for each Fe&, Uy is locally finite in X—~F7. Let ¢z be the collection
of all 9Jp-saturated neighborhoods of F. Note that C{/y is closure-preserving in
X, and {X—V:Vecyy} is closure-preserving in X—F, that is, in the terminology
of [11], CVr is closure-preserving in both sides. Let zeX—F. If zen{V: Vecys),
define We(z)=(X~F)—{X—V:zeV,Ve)*. If 2¢n{V: Vecys), define Welz)=
X—({V:2eX—V, Ver*U{X— V:zeV, Vecys}*). Then Wx(z)is an open neigh-
borhood of x not meeting . Put 9 p={Wr(z): zeX~F}). We have only to show
that if U is a subcanonical neighborhood of F with respect to 9J», then U is a
canonical neighborhood of F with respect to 9/». By the definition of subcanonicity,
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there exist a sequence {U;:ieN} of qJp-saturated neighborhoods of F and a sequ-
ence {UJ;:ieN} of subcollections of ¢z such that U, cX—~UFfcU;,cU for each
i. By the definition of Wa(x), if Welz)N(X— U0, then Wr(x)NU;,=0. This
implies that U is canonical with respect to 9#/», which completes the proof.

Similarly we have:

TreoreEM 2.9. A space X is an L-space if and only if X is an L*-space with
an L*-structure {Uy: FeC) such that for each FeC,Ur is locally finite in X—F.

Prorostrion 210. Every subspace of a free L*-space is a free L*-space, and
every countable product of free L*-spaces is a free L*-space.

Proor. The former statement is clear. To show the latter let X,,#neN, be
free L*-spaces with free L*-structures {Fn, {Ur,: FreFa}. Put X=[[2 Xo X
is paracompact because every countable product of paracompact ¢-spaces is a para-
compact ¢-space (Okuyama [16, Theorem 4.7]). Put F={p;'(Fn): FueFrn, neN} and
for each F=p;(F,)eF, put Ur={p(U): UeUr,}, where p,: X—X, is the pro-
jection. It is then easy to check that {&F,{Ur:FeF}} is a free L*-structure on
X. This completes the proof.

ProposiTioN 2.11. Every closed subset and every open subset of an L*-space
are L*-space.

Proor. The former statement is clear. To show the latter let X be an L*-
space and G an open set of X. Using the regularity of X and the paracompactness
of G, we can find a locally finite open covering {U,:acA} of G such that U.cG
for each acA, and further a closed covering {E,:acA} of G such that E.c U, for
each acA. By the former statement, U, is an L*-space for each «. For each
neN define A,={{ay, -, aa) : a1, -+, n are mutually distinct » elements of A}, Put
Ulay, =+, an) = Nfoy U= {Ee » ae A—{ay, -, an}}*, Un={Uas, -, an) & {ay, -, ant€ AL
and U=\U2,U.. Then ¢ is a locally finite open covering of G. Let /' be a
closed set of G. For each acA let €/, be a g-locally finite open covering of U,—F
such that every open neighborhood of #n U, in U, is a subcanonical neighborhood
with respect to C(/,. For each {ay, -, an}€ An put SV, =, an)=/\jL Vel Ulas, -+,
), V= U{CU(ay, -, an) : {as, -, au} €A} and CU=\U2, Vn. Then Y is a ¢-locally
finite open covering of G—F. We shall show that every open neighborhood of #
in G is a subcanonical neighborhood with respect to ¢/. It suffices to show that
for each open neighborhood W of F in G, there are Ci/-saturated neighborhood H
of Fin G and a subcollection 9 of ¢V such that X—Wcgy* and HNgy*=0.
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For each a take a <y/,-saturated neighborhood H, of FN17, in U, and a subcol-
lection 9, of <. such that U,— Wcy¥ and H,n9w*=0. Now put W(a, -, wa)
=ASa Wasl Ules, -, am)y, Wa=U{TW (a1, -y an): fay, -, ay}eAhn} and 9 =\U2, Wa.
Also put Hlas, -, an) =N\ Hoy0 Ulas, -+, @), Hy= U{H(an, -, an) 2 {e, -+ )€ Ay
and H=\U2, H,. It is easily checked that W and 4 satisfy the required proper-
ties; to check that HNgW*=0, note that if {ay, ---, @y} A, and {B1, ***, BPm}€ Am have
no common element, then Ulay, =+, an) N U(By, -+, fu)=H. This completes the proof.

Whether every subset of an L*-space is an L*-space is unknown. Example
4.4 shows that even finite product of L*-spaces is not necessarily an L*-space.

A space is called a locally free L*-space (resp. a locally L*-space) if each point
of the space has a neighborhood which is a free L*-space (resp. an L*-gpace) as
a subspace. The following result is not so trivial:

ProrosiTION 2.12. A paracompact locally free L*-space (resp. a paracompact
locally L*-space) is a free L*-space (resp. an L*-space).

Proor. The latter statement has heen essentially proved in the preceding
proposition ; indeed replace G in Proposition 2.11 by a given paracompact locally
L*-space. To show the former statement, let X be a paracompact locally free
L*-space. There exists a s-discrete open covering 9/ ={W,: acA} of X such that
for each acA, W, is a free L*-space. Note that X is perfectly normal because it
is a paracompact o-space. Fix a€A and put W=W,. We have only to construct
a pair {F,{U(F): FeF}} of o-discrete collection & of closed sets of X and o-locally
finite open coverings U(F) of X—F, Fe&F, such that each member of & is included
in W and such that for each point xeW and each neighborhood U of z in X,
there are a finite subcollection {F), ---, Fi} of & and subcanonical neighborhoods U;
of F; with respect to U(F;), 1=i=k, such that zeN}t, F;cNE, UscU. Write
W=\, W;, where W; are open sets of X such that W, Wi, jeN. Further
write for each 7, X—W ;=\, Win, where W,, are open sets of X such that
X=W;innC Wi and W C Winii, meN. Let 9U(W;), jeN, be the countable open
covering of X—W; defined by UW )={Ws} U{Wmes—W jm : meN}. Clearly W;,,
is a (sub) canonical neighborhood of W, with respect to TJ(W,). Let (&, ((Vz: Ee
&Y be a free L*-structure on W. For each Ee&, let U(E) be the o-locally finite
open covering of X—F defined by CU(E)z{X»—(WjUE):jeN}U(U;:, Pe|Wy). It
is then easy to see that if G is a subcanonical neighborhood of E in W with
respect to €7z, then for every j, GU(X—W,) is a subcanonical neighborhood of
E in X with respect to ¢J(E). Now put § =&U{W,:jeN} and consider the pair
{FAUWF): FeF})). Clearly & is a o-discrete collection of cloesd sets of X each
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member of which is included in W, and for each Fe&, UJ(F) is a o-locally finite
open covering of X—F. To show that the pair satisfies the required conditions,
let x be a point in W and U a neighborhood of z. Since {&,{Vr: Ee&}} is a
free L*-structure on W, there exist a finite subcollection {E,,---, Ex} of & and
subcanonical neighborhoods G; of E; in W with respect to Vry 1=1=k, such that
zeNkL EsaNE, GicU. Fix j so that ze W, and note that for each 1=i=<k, (GiU
(X~W )N W,iCG.. Now we have ze(N\k, E)NW,c(N& (GiUX—W )N
W;cU, where as mentioned above G;U(X—W;,,) and Wj,, are respectively
subcanonical neighborhoods of E; and W, with respect to J(£;) and UW;), 1=
i=k. This completes the proof.

Remarks 2.13. It is also true that every paracompact locally free L-space is
a free L-space. The proof is obtained from the above proof by replacing “free
L*-” and “subcanonical” by “free L-” and *canonical” respectively and by
modifying the definition of ¢J(F) as follows: Write X—E=\U;2, Hg,;, where Hg,;
are open sets of X such that Hg ;CHg ji1, jeN. Put Hp={Hg} U{Hp jro—Hp.;:
jeN} and G ={Wo} U{W,,.—W;:jeN}. Define U(E)={Hg o} U{(Hz jiro—Hg. j)—W;:
JENIU(CVEAK s AW).

3. A closed-embedding theorem and dimension for free L*-spaces.

Let X be a patched space, that is, a paracompact perfectly normal space ex-
pressed as the finite union of metrizable subsets. A finite disjoint covering of X
by metrizable subsets is called a patch on X. (Some members of a patch may be
empty sets.) p(X) denotes the number inf{|¥|:Y is a patch on X}, where two
vertical segments mean the cardinality. For a natural number #, an n-patched
space is now defined to be a patched space X with p(X)=n. As constructed in
[13, Example 5.3] there exists, for each #=2, an n-patched space which is not an
(n—1)-patched space.

The following lemma was pointed out by J. Chaber in a letter to the author
(cf. [15, Lemma 4.6)).

Lemma 3.1 (Chaber). If X is an n-patched space, them X has a patch {X;:
1sisn) such that \JL, Xi is an open set of X for each j=1, ---, n.

Proor. Let 2 be a patch on X with |3|=#n. Write ¥={M,;:1=k=<#n} and put
S={My:1<k=<n). By Corson and Michael [3, Lemma 4.4] there exists for each
k, a ag-locally finite collection ¢J of open sets of M, such that for each reM; and
each neighborhood V of x in M, there is some member UeqJ, with zelUcV.
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For each i=1,2,--,n, define X;={xeX:x is contained in precisely i members of
%). Then for each j=1,2,-, 2, \JZ, X; is an open set of X and ' 2, X;=X. To
show that each X, is metrizable, fix i and put Ak, ~-~,ki)=((“\”f:1]\7lkm)ﬂX;, for
1shi<ki<--<ki=n. Clearly {Mk,, -, k) : 1=k <k<--<k;=n} is a disjoint open
covering of X;. Since Mk, -, k)C{M,, 1=m=i* and Mk, -, k)T N\ia [\71,%,
(Ut U WM s, -+, Ri) 18 a o-locally finite base of Mk, ---, k) ; thus Mk, -, k)
is metrizable by the Nagata-Smirnov metrization theorem. Consequently X; is
metrizable, which completes the proof.

ProOPOSITION 3.2. Ewery 2-patched space is a free L*-space.

Proor. Let X be a 2-patched space. By the preceding lemma there exists a
closed set M of X such that M and X—M are both metrizable. Let 4 =\U2>, 4
be a base of M such that for each i, 4(; is discrete in M. By the collectionwise
normality of X, we can find for each i, a discrete collection @; of open sets of X
such that ¢;|M=.90;. Put ¢=\J2, ¢; and write ¢={G,:acA}. For each acA
write Go=\U;2, G.;, where G,; are open set of X such that G.;CGgji, jeN. We
can find for each a€A and jeN, a countable open covering U/(G.;) of X—G,; such
that G.j.1 is a subcanonical neighborhood of G.; with respect to 9J(G.;) (see the
construction of U(W ;) in Proposition 2.12). On the other hand let 9(M) be a
g-discrete base of X—M. Note that every open neighborhood of M is a sub-
canonical neighborhood with respect to U(M). By the perfect normality of X,
we can assume that QU(M) is o-discrete in X. Write U(M)={V,:BeB}. For each
peD, write Vy=\2, Fae where Fa, keN, are closed sets of X. We can find for
each peB and keN, a countable open covering U(Fu) of X—Fp such that V, is
a subcanonical neighborhood of Fg with respect to 9 (Fs). Now define a s-discrete
collection & of closed sets of X by F={M}U{G.;:acA, je NYU{Fu: BeB, keN},
and consider the pair {&F,{U(F):Fe<}. To show that the pair is a free L*-
structure on X, let = be a point of X and U a neighborhood of ». In case zeX
—M, take BeB so that zeV,cU. Further take % so that weFyu. Then we have
xeFpC Vac U, where as stated above, V; is a subcanonical neighborhood of Fp
with respect to U ). In case zeM, take a€A so that xeG,NMcU. Further
take j so that x€G,;. Put W=X—(G.j1—U); then W is an open neighborhood
of M and hence, as noted above, a subcanonical neighborhood of M with respect
to Y(M). Now we have 2eG.;N MCG.;:N WC U, where as stated before, Guju
is a subcanonical neighborhood of G.; with respect to U(G,;). This completes
the proof.

Remark 3.3. As will be seen in Examples 4.5 and 4.1, a 2-patched space is
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not necessarily an L*-space, and also not necessarily a free L-space. The author
does not know whether every #-patched space, #=3, is a free L*-space ; the above
proof seems not to be extended to induction.

DeriNITION 3.4. A space X is an a.e. metrizable space if X is a paracompact
perfectly normal space including a discrete set D such that X—D is metrizable.

An almost metric space defined by Nagami [12, Definition 3.1] is an a.e.
metrizable space. More precisely a space is an almost metric space if and only
if it is an a.e. metrizable L-space (cf [12, Lemma 3.2]). An a.e. metrizable space
is clearly a 2-patched space. As will be seen in Example 4.2, there is an a.e.
metrizable space which is not even a stratifiable space.

ProrositioN 3.5. An a.e. metrizable space is an L*-space.

Proor. Let X be an a.e. metrizable space with a discrete set D whose
complement is metrizable. By the perfect normality, X admits a o-locally finite
net. Let F be a closed set of X. Let @ be a e¢-locally finite base of X—(DUF),
and take open sets V and W of X such that D—FcVcVcWcWcX—-F. Put
U={WIU(@|(X-V)). Then U is ao-locally finite open covering of X—F'; further
it is clear that every open neighborhood of F'is a subcanonical neighborhood with
respect to ¢J. This completes the proof.

We can now state a closed-embedding theorem for free L*-spaces.

THEOREM 3.6. The following five statements about a space X are equivalent.

1) X is a free L*-space.

(2) X is embedded as a closed set in the countable product of a.e. metrizable
spaces.

(8) X is embedded in the countable product of a.e. metrizable spaces.

(4) X is embedded in the countable product of 2-patched spaces.

(6) X is embedded in the countable product of L*-spaces.

The implications (2)—(3)—(4) are clear. The implication (4)—(1) is a consequ-
ence of Proposition 2.10 and Proposition 3.2. The implications (3)—(5) and (5)-»(1)
follow from Proposition 3.5 and Proposition 2.10 respectively. Before verifying
the implication (1)—(2), we need some preliminaries.

A space X is called submetrizable if there is a contraction (=one-to-one map)
from X onto some metric space. Recall that a paracompact space whose square
has a G,-diagonal is submetrizable ((1, Lemma 8.2]). Since every paracompact o-
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space has such a property ([16, Theorem 4.6]), every free L*-space is submetrizable.
The following lemma plays a key role in constructing an embedding map.

LEmMA 3.7. Let X be a submetrizable space and U a o-locally finite collection
of cozevo sets of X. Then there exist a metric space M and a contraction f from
X onto M such that f(U) is an open set of M for every UeqJ.

Proor. In case qJ is e¢-discrete, the lemma has been proved in [13, Lemma
3.1]. Thus we have only to check the following lemma.

LemmMma 3.8. Let X be a space and U a o-locally finite collection of cozero
sets of X. Then there exists a o-discrete collection <) of cozere sets of X such
that each member of U is the union of some members of C|).

Proor. Write U=\U>2, U;, where each qJ; is locally finite in X, and put
Usj={Un---NU;: Uy, -+, Uy are distinct j members of 9/7;}. Since U, is a locally
finite covering of cozero sets of ¥, there is a o-discrete covering <(/;; of cozero
sets of ¢} which refines J;; (cf. [9, 2-27]). It is then clear that each member
of ¢J; is the union of some members of \ U2, V. Since U¥; is a cozero set of
X, we can write U¥=\Uz., Win, where each Wi is a cozero set of X such that
Wi]‘kCCU;ij- Now put CVy=Cij|Win and CV=U{Vyjx 4,7, keN}. Then < is a
g-discrete collection of X consisting of cozero sets of X and satisfying the required
condition. This completes the proof.

LEmMA 39. Let X be a space and F a closed set of X. Let U and C be
open coverings of X—F. If U and V are subcanonical neighborhoods of F with
respect to U and ) vespectively, then UNV is a subcanonical neighborhood of F
with rvespect to UNCY. Further if 9 is an open covering of X—F which is closed
under finite intersections (that is, the intersection of any finite members of G is
again a member of GY), then the intersection of finitely many subcanonical neigh-
borhoods of F with respect to T is again subcanonical with respect to G .

Proor. The first statement is easily checked, and the second is a consequence
of the first with Q/=Cy/; this completes the proof.

In contrast with the case of canonical neighborhoods, an easy example shows
that even if U and V are subcanonical neighborhoods of F with respect to a
common 9J, UNV is not necessarily subcanonical with respect to /.

Proof of the implication (1)-(2) in Theorem 3.6. Let X be a free L*-space
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with a free L*-structure {F, {Ur: PeF}). Write F=\U;2, F:, where &; is a discrete
collection of closed sets of X, and write F;={F(i, a):acA;. For each ieN let
i={V(i,a): acA;} be a discrete collection of open sets of X such that F(i, a)C
Vi, a) for each aeA;. For each ieN and acA,, let GL, jeN, be open sets of X
such that Cl G, V(i a), ClG{HCGl, jeN, and F@, a)=\;, Gi..

We first construct for each ie N and a€A; an open covering Ui, of V{(i, a)—
F(i, a) satisfying the following conditions :

(1) Ui is closed under finite intevsections.

(i) If U is a subcanonical neighborhood of F(i, &) in X with respect 10 Ur,a»
then for every jeN, UNGI, is a subcanownical neighborhood of F(i,a) in V(i, a) with
respect t0 Uia.

(iii) For every jeN, Gi, is a U.-saturated subcanonical neighborhood of F(i, )
in V(,a) with respect to Ua. ’

(V) Uia is o-locally finite in X—F¥.

To construct this, put Guw.={Gj,—F@, a):jeNU{X—ClGi :jeN}. Then for
each 7, Gi, is a Gi.-saturated subcanonical neighborhood of F(i, @) with respect to
Gi. Hence by the first part of Lemma 3.9, if U is a subcanonical neighborhood
of F(i, ) with respect to Ureu, ., then for every j, UNG, is a subcanonical neigh-
borhood of F'(i,a) with respect to Uru. oy AGi. Now put U= Niey Uiam)|
V(i, ), where Usen=Ur¢ o N\ Gi. for every meN. Then Ui is a desired open
covering of V(i, «)—F(i, «) satisfying (i), (ii), (iii) and (iv); this completes the first
construction.

We next find a o-locally finite open covering (. of X satisfying the following
condition :

) If »,y are distinct points of X, then therve exists H, H € 9, such that zeH,
yeH and HNH =0.

To find this, recall that X is submetrizable (see the remark preceding Lemma
3.7), that is, there is a contraction %# from X onto some metric space S. Let @
be a o-locally finite base of S and put ¥ .={#"'(0):0¢®}. Then 4. is a e¢-locally
finite open covering of X satisfying (v).

Let us now consider for each ieN, the s-locally finite open covering @; of
X—g¥ defined by

Pi=(HJ(X=FNU(U{Usa 1 a€ ANU{X~{CI GI, i ac As}*: jeN}. Using Lemma
3.7 together with the perfect normality of X, we obtain for each ieN, a metric
space M; and a contraction g; from X—%F¥ onto M; such that for every Pe@;,
g«(P) is an open set of B}, Let X; be the disjoint sum of A; and M;. The
topology on X; is given so that

(vi) M, is an open set of X, and the original topology on M; is not disturbed,
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and

(vii) each point acA; has an open neighborhood base of the form {{a}UgiG—
F@,)): G is a Ussaturated subcanonical neighborhood of F(@i,«) in V{,«) with
respect 10 Ula}-

The topology is well-defined by (i), by the latter half of Lemma 3.9, and by
the fact that 9/, CP;.

Let f:: X—X; be the onto map defined by fi(z)=¢(z) if xe X—F¥, and f(z)=«
if zeF(i,a). Clearly f; is continuous.

AsserTION 3.10. For each ieN, X; is «.e. metrizable.

Proor. Fix ieN. First note that for each j, {fiGL):acA;} is a discrete
collection of open sets of X;; the openness follows from (iii) and (vii), and the
discreteness is a consequence of the fact that fy(X—I{ClGi. :acA}*) and fi(UE),
aed;, are open sets of X; (by (vi) and the definitions of @; and ¢;). Particularly
A; is a discrete set of X;. By (vi) X;—A;=M,; is metrizable. To show that X;
is Hausdorff, let x,y be distinct points of X;. We have only to consider the case
when x=8, peA;, and yeM;. Take j so that f;'(y)eX—{(ClG{,:acA}*. Then
FidGip) and f(X—{ClGi,: aeAl*) are disjoint open sets of X, containing » and y
respectively ; hence X; is Hausdorff. We next show that X; is regular at each
point of A;. (This is the most essential part of the proof depending on subcano-
nicity.) Let BeA; and let V be an arbitrary neighborhood of g in X;. By (iii)
and (vii) there is a subcanonical neighborhood G of F(i, 8) in V(i 8) with respect
to Ui such that GCf7(V)NGL. There exist by the definition of subcanonicity,
a qJ-saturated subcanonical neighborhood V, of F(i, ) with respect to U and
a subcollection Vg of 4J; such that V(i g)—GoU¥ and VenUE=0. To show
that Clfi( V) CfiG), let 2eXi—fiG). If xefi(V(, ), then some member UeUg
contains f~'(x); while since UgC U P:, f{U) is an open set of X;. Consequ-
ently f«(U) is an open neighborhood of z not meeting fo(Vy). If xeX;—fi(V(, ),
then f«{(X —ClGl,) is an open set of X; containing x but not meeting (V). Hence
X; is regular at each point of A;. To show that X; is paracompact, let & be an
open covering of X;. There exists for each weA;, an open neighborhood D(i, )
of « included in some member of ¢ and also included in fi(Gi,). By the regularity
shown above, we can find for each aeA;, an open neighborhood W(i, «) of « such
that Cl W(i, a)c D@, ). Put T=X,—{Cl Wi, «): a€As}*; then T is an open set of
X; because {f(G):acA;) is discrete in X,. Put F=X,—{W(, o) acAj}*. Since
M; is metrizable, there is a locally finite open covering ¢’ of F' which refines @|F.
Now (D@, a): acA}U(D'|T) is a locally finite open covering of X; which refines
9. Thus X; is paracompact. The perfect normality of X; follows from the fact
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that X; is normal and that X, is the countable union of the closed sets A; and
Xi—{fi(Gi.): a€ Ai}*, jeN, each of which is metrizable and hence perfectly normal.
This completes the proof of Assertion 3.10.

Let U, be the g-locally finite open covering of X defined by
Ue=H U{X—{Cl Gl acAj}*: j,ie NYU{GL, : a€A;, ieN}.

By Lemma 3.7 there exist a metric space X, and a contraction f, from X onto
X, such that for every UeQU., f{(U) is an open set of X..
Now define a map f: XX, x[[=, X; by

F(@)=fe(x), f(x), fol@), - )e XeX [[2, Xa

for each xeX. f is continuous because each factor is. f is one-to-one because fe
is. Further

AssSerTION 311, f: X—>X. X[ X is an into homeomorphism.

Proor. We have only to show that f is an open map to f(X). Let xeX and
U a neighborhood of z. By the definition of free L*-structures, we can find a
finite subcollection {F\,---, Fi} of & and subcanonical neighborhoods U; of F; with
respect to Ur,, 1=j=k, such that ze N\t FycNE U;cU. Let Fy=F3()), ad))e
Ficp, Where a(j)e i, and i(j)eN. By (ii) and Remark 2.7 (2), there exists for
each j=1,2, .-, k, a Uiap-saturated subcanonical neighborhood G; of F(3(5), a(f))
in V(i(4), a(5)) with respect to U« such that G;cU;. By (vil) fi;»,(G;) is an open
neighborhood of a(j) in Xy for each j=1,2,.--, k. Further since f,fi»n(G1)=Gy,
we have ([[{fi»(G)):1=7=k) X [1{Xi:ie N—{(), -, iR X Xo) N F(X)=F(NJ, Gy).
Consequently f(N\f£, G;) is an open neighborhood of f(z)in f(X) included in f(U).
Thus f is an open map to f(X); this completes the proof.

Finally we show
AsSERTION 3.12. f(X) is a closed set of XX [0 Xi.

Proor. Let ye(Xe X [1:2 Xo)—f(X). Let y. and v;, ieN, be respectively the
Xe-coordinate and the Xj-coordinate of y. Then one of the following two cases
occurs ; either f:Nyo)# /7 (y:) for some i with ;e X;—A;, or i (ye)e X— f7¥(ys) for
some ¢ with y;€A;. In the first case we can find, by (v), H, and H; of 4. such
that fo've)et:, fiyeH; and H,NH;=0. By the definition of U, f(H.) is an
open neighborhood of v, in X;, and by the definition of @®;, fil ;N (X—F¥F) is an
open neighborhood of w; in X;. Hence fo(H) Xf{HiN(X—F))X [[{Xu:ne N—{i}}
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is an open neighborhood of v not meeting f(X). In the second case, let f;'(vi)=
F(,B), yi=Be Ay If fil(y)eX—F¥, take 7 so that f7'(y.)e X—ICl Gi,: acA))*. Then
JX~{ClGl.: ac A}*) X fi(GL) X [T{Xn : ne N, n+#14} is an open neighborhood of y not
meeting f(X). If fiyo)eF(@,y) for some yeA;—{B, then f(GL)XFfGl) X T{Xn:
neN, n#i} is an open neighborhood of ¥ not meeting f(X). Hence f(X) is a
closed set of X X T[22, Xi, which completes the proof of Assertion 3.12. We com-
plete the proof of Theorem 3.6.

RemArk 3.13. (1) An analogous (but slightly modified) method allows us to
embed every free L-space as a closed set in the countable product of almost metric
spaces.

(2) It is to be noted that gf, f. and X, are only needed to strengthen an
embedding to a closed embedding; indeed the map [} fi: X—[[2X: is an
embedding map by itself.

(3) If dim X is not greater than n, then we can make dim X, ieN, and dim X,
not greater than ». This is possible by applying Pasynkov’s factorization theorem
(118, Theorem 29]) to the maps ¢;: X—F¥—~M;, ieN, and f,: X— X, respectively.

Theorem 3.6 particularly says
CororLARY 3.14. Fvery free L*-space is a free paiched space.
This gives us fundamental theorems of dimension theory for free L*-spaces.

CorOLLARY 3.15. Let X be a free L*-space. Then the following four siate-
ments about X are equivalent.

(1) dim X=n.

(2) X is the image of a free L*-space X, with dim X,=<0 by a closed map of
ord=n+1.

(3) X is the union of n+1 subsets X;, 1<i=n+1, with dim X;=0.

4 Ind X=n.

Proor. The equivalences of (1), (3) and (4) are direct consequences of Corol-
lary 3.14 and [15, Theorem 1.3]. The implication (2)—(3) follows from Nagami
(10, Lemma 4]. The implication (1)-(2) is essentially proved in [15, Theorem 1.3]:
To outline this, first note that the following analogue of [15, Proposition 2.9] is
valid by virtue of Theorem 3.6 and Proposition 2.10.

A space Y is a free L*-space if and only if it is the limit of an inverse
system {Y;, ¢;:ieN} such that ¥, is a metric space, each Y; is a patched free
L*-space and each g¢;: Y —Y; is an approximating contraction.
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Now the proof of (1)-+(2) of Corollary 3.15 is the same as the proof of (1)—
(2) of [15, Theorem 1.3] under the replacements of “free patched space” and
“ patched space” by “free L*-space” and “ patched free L*-space” respectively.
This completes the proof of Corollary 3.15.

CorOLLARY 3.16. Let X be a free L*-space and Y a subset of X. Then there
exists a Gg-set Z of X such that YCZ and dim Z=dim Y.

Proor. This is immediate from Corollary 3.14 and [15, Theorem 1.4].

CororrLaryY 3.17. Every free L*-space is the pevfect image of a free L*-space
of dim=0.

Proor. Let X be a free L*-space. By Theorem 3.6 X can be regarded as a
(closed) subset of the countable product of 2-patched spaces X, ieN. By [15,
Proposition 2.5] there exists for each ie N, an approximating contraction f; from
X; onto a metric space Z;. By a theorem of Morita [8], Z; is the image of a
metric space Y; with dim Y;<0 by a perfect map ¢;.. Put Ti={(y,2)e YixX;:
g(y)=Ffi{x)}C Yix X, and let »;: Ti—> Yy, si: T;—X; be the restrictions to 73 of the
projections. It follows from [15, Lemma 2.6] that »; is an approximating contrac-
tion, and hence dim 7;=0 by [15, Proposition 2.4]. By Nagami [10, Lemma 3] we
have dim [];2, 73=0. s; is a perfect map because ¢; is. Now define a perfect map
s 12 T 120 Xe by s(()=(s:(t:)) for (&)e[l2 7o Put T=s"YX) and t=s|T.
Clearly ¢ is a perfect map and dim 7’<0. Since each 7; is a 2-patched space, T
is a free L*-space by Theorem 3.6. This completes the proof.

4. Examples and problems.

ExaMpLE 4.1. There is a free L*-space which is not a free L-space:

Let S be Heath’s butterfly space ((4]); S is the subset of the Euclidean plane
of the form S,US, where S,={(x,0): 2 is irrational} and S,={(x,y):v>0 and both
of z and y are rationals}; the topology on S is given so that each point in S. has
a usual neighborhood base in the Euclidean topology and so that each point (z,0)
in S; has the neighborhood base of the form {U,(x):neN} where Unlx)={(z’,v’)
Sy’ <|z—a'|<1/n or (a',9y")=(x,0)}. As was proved by Heath [4], S is then a
cosmic space (=a regular space with a countable net) but not a stratifiable space.
Since every free L-space is stratifiable (cf. [11, Theorem 1.7] and [12, Theorem
34]), S is not a free L-space. On the other hand since a cosmic space is para-
compact and perfectly normal and since {S;, S.} is a patch on S, we see that S is
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a 2-patched space and, therefore, a free L*-space by Proposition 3.2.
Further we obtain the following stronger example.

ExampLE 4.2. There is a countable regular space X with a point p such that
X—{p} is metrizable but X is not stvatifiable

Let S be Heath’s space described above. Clearly S; is a closed set of S. For
each ne N put K,={+m/n:me N}CR and let K, be the collection of all components
of R—K,, where R is the real line indentified with the z-axis of the Euclidean
plane. Then f(,|S: is a disjoint open covering of S;. Let @, be the upper semi-
continuous decomposition on S defined by @D,=(Ka|S)U{{s}:s5€S). Let T, be its
decomposition space and let £, : S— 7, be the closed map naturally induced. Clearly
each T, is an a.e. metrizable space consisting of countable points. Note that for
each point seS and each neighborhood U of s in S, there exist e N and an open
set V of T, such that sefz}(V)cU. This implies that [[,2, bn:S—12, Ty is an
into homeomorphism. Recall that stratifiability is a countably productive and
hereditary property ([2, Theorems 2.3 and 2.4]). Since S is not stratifiable, T, is
not stratifiable for some # (in fact for every n). Fix such #. Since every para-
compact locally stratifiable space is stratifiable ([2, Theorem 2.6]), we can find a
point peT, and a neighborhood W of p in T, such that W—{p} is metrizable but
W is not stratifiable.

REMARK 4.3. In answer to a question raised by Borges [1], Heath presented
in [5] a countable regular space which is not stratifiable. His space is, however,
nowhere first countable and, therefore, not a.e. metrizable.

ExampLE 4.4. There are two L*-spaces whose product is not an L¥-space:

Let X={p}UNC}BN, where peN—N and N is the Stone-Cech compactifica-
tion of N. X is an a.e. metrizable space and, therefore, an L*-space. Note that
X is not first countable at p. Consider the product of X with the unit interval
[0,1]; the fact that the product is not an L*-space is essentially proved by Oku-
yama and Yasui [17, Theorem 3], but a proof is presented below for the reader’s
convenience. To show that Xx[0,1] is not an L*-space, suppose the contrary.
Then there is a o-locally finite open covering 47 of (Xx[0,1)—{(p,0)} such that
every open neighborhood of (p,0) is a subcanonical neighborhood with respect to
. In particular every open neighborhood of (p,0) includes a ¢J-saturated neigh-
borhood of ($,0). For each neN let ¢J, be the subcollection of 9J consisting of
all members of @7 which contain the point (p,1/#). Note that ¢/, is a countable
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collection for each », and write U,={U,;:jeN}. Now let G be an arbitrary
neighborhood of p in X. Take a ¢U-saturated neighborhood H of ($,0) included
in Gx[0,1], and take neN so that (p,1/n)efd. Then for some jeN, (p,1/n)e Un;C
H, which implies pepx(U.,)cG where px: Xx[0,1]-X is the projection. Thus
{px(Uny):m,jeN} is a countable neighborhood base of p, which is a contradiction.
Consequently X'x[0,1] is not an L*-space.

ExamPLE 4.5. There is a 2-paiched space which is not an L*-space:
The product Xx[0,1] above is such an example.
ExampLE 4.6. There is an L*-space which is not a patched space:

Lasnev [6] constructed a Lasnev space which is nowhere first countable. By
Lemma 3.1 such a space is not a patched space. But by [11, Theorem 1.6] every
Lagnev space is an L-space and, therefore, an L*-space.

ExameLe 4.7. There is a free L-space which is not an L*-space:

Let X be as in Example 4.4. Clearly X is (free) L-space, and hence X'X[0,1]
is a free L-space. But as proved there, Xx[0,1] is not an L*-space.

In view of the fact that an L-space is an M,;-space ([11, Theorem 1.7]), we
finally present the following example.

ExAMPLE 4.8. There is an a.e. metrizable (and hence L*-) M,-space which is

not an L-space.

Let X be the unit interval [0,1]. The topology on X is given so that each
point in X—{0} has a usual open neighborhood base in the Euclidean topology and
so that the point 0 has an open neighborhood base ¢ of the form

{Un2i(Ln—1]m(n), 1/n+1[m(n))U{0} :n=m(n)eN, keN},

where (-, -) denotes the open interval, and m(x) is not fixed but varies freely on
the integers not smaller than n. The space X is then an a.e. metrizable space.
Further X is an M;-space because ¢ is a closure-preserving open neighborhood
base of the point 0. To show that X is not an L-space, suppose the contrary and
let ¢J be an open covering of X—{0} such that every open neighborhood of {0} is
a canonical neighborhood with respect to 9J. We can assume that 9J is countable
and locally finite in X—{0}. Write 9/ ={U,:neN}, where U,+0 for each neN.
For each neN, take a point x, in U, so that z.4{1,1/2,1/3,---}. Put W=X—{z,:
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neN). Since {xn:neN} is a closed set of X—{0} not meeting {1,1/2,1/3,---}, W is
an open neighborhood of {0} and, therefore, a canonical neighborhood of {0} with
respect to 9J. Since U, N(X—W )0 for every ne N, we consequently have 0&Cl qJ*.
This means that 0 is an isolated point of X, which is a contradiction. Thus X is
not an L-space.

PrROBLEM 4.9. Is every patched space a free L*-space?

A positive answer to this problem gives a positive answer to the following
one.

ProBLEM 4.10. Is every free patched space a free IL*-space?

We conclude this paper by giving a partial answer to Problem 4.9 in the case
of K, -spaces.

DEFINITION 411 (van Douwen [19]). Let X be a space and Y a closed set of
X. Y is called K-embedded in X if there is a function &: J(Y)—»T(X) from the
topology of Y into the topology of X such that

1) Ynk(V)=V for each Veg(Y), and
(2) R(V)NR(W)=0 whenever VN W=0 and V, Weg(Y).

A space X is called a Ki-space if every closed set of X is K;-embedded in X.
The following version of Definition 4.11 is suitable for our purpose.

Lemma 412, Let X be a space and Y a closed set of X. Y is Ki-embedded
in X if and only if there is a function e:J(Y)—-I(X) such that

3) YNne(V)=V for each Veq(Y),
4) YnCle(V)=ClV for each Veq(Y), and
(5) eV)ce(W) whenever VW and V, Weg(Y).

Proor. Let k:9(Y)—>9(X) be a function satisfying (1) and (2). We can
assume that R(V)CkEW) whenever VoW and V, Weg(Y). Then the function
e=Fk satisfies (3)—(5). Conversely if e:J(Y)->g(X) satisfies (3)—(5), then put
k(V)=e(V)—Cle(Y—Cl V) for each Veg(Y). This completes the proof.

Note that hereditarily normal spaces are just those spaces X in which every
closed set Y admits a function e¢: g(Y)-J(X) satisfying (3) and (4).

ProrosiTioN 4.13. A paiched Ki-space is a free L*-space.
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This proposition is obtained inductively by using the following result together
with Lemma 3.1.

ProrosiTioN 4.14. Let X be a paracompact perfectly normal space including a
closed set 'Y such that Y is a free L*-space and X—Y is metrizable. If Y is
Ki-embedded in X, then X is a free L*-space.

Proor. Let (F,{Ur:Fe&F}} be a free L*structure on Y. We can assume
that for each Fe&,Ur is o-discrete in Y. Let ¢:T(Y)-»J(X) be a function
satisfying (3)—(5). For a moment fix Feg. We first construct a o¢-discrete col-
lection {#(U): UeUr} of open sets of X satisfying the following conditions.

6) Ynr(U)=U for each UeUp,

(M) CrHU)NClr(V)=6 whenever CLUNCI V=0 and U, VeUpr,
8) 7(U)ce(U) for each UeUy, and

9) (W(U):UeUr} is locally finite in X~ Y.

To do this, write Upr=\U;2, Ur,: where each Uy,; is discretein X. By collection-
wise normality we can find for each i, a discrete collection {¢(U): UeqJ r.i} of
open sets of X such that Ucg(U) for each UeUp,:. For each i=2 and UeUp.,,
put Z(U)=X—{Clg(V)Ne(V)): Ve\Jizt Ur.;, CL VNCLU=0}*. It follows from (4)
that 2(U) is an open set of X including Cl U. Take an open set s(U) of X such
that ClUcs(U)cCls(U)ch(U). Write Y=/\2,Y; by open sets Y; such that
Cl Y, CY; for every i. Now define

r(U)=g(U)NeU) if UeJp,,1, and
r)=g(U)Ne(U)Ns(U)NY; if UeQJp,; and i=2.

Then {H(U): UcUr} satisfies (6)—(9).
Now let S be a o-discrete base of X—Y. We can assume S is o-discrete in
X. Define a o-discrete open covering 9D(F) of X—F by

DEF)={r(U): UeUriUS.

ASSERTION. If V is a subcanonical neighboorhood of F in Y with vespect to
Up, then VU(X~Y) is a subcanonical neighborhood of F in X with respect to
DF).

Proor. By the definition of subcanonical neighborhoods, there are a sequence
{Vi:ieN} of Up-saturated neighborhoods of F and a sequence {J;:ieN} of sub-
collections of UJ» such that

10) ViacY—U¥cVicV for every ieN.
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Then we have
11) FnClr(U): Ue:t*=0 for each ieN.
Indeed by (8) and (5)
(r(U): UeUd*cle(U): UeUsf* ce(UF),
but by (4) and (10)
FACLe(UH =Y NnCle(UF)
=FNClUF
=V NCLYUF=0,

which yields (11).
Put c;={UeUr: UcVi}; then clearly CVs- Vs Note that for each i,

(12) CHr(U): UeU*nNClr(U): UeCisa}*=0.
In fact since ClU¥NClcy¥,=0, it follows from (7) and (9) that
(CUH U : UeUNCHr(U ) - Ueca,}¥) N(X = Y)=0,
while by (4), (5), (8) and (10)
(YNCUrU): Ue )N (Y NCUH(U) : UeCs421™)
c(YNCle(UuHHN(Y NCle(@F.)
=ClyuFnClavl,
(Y= Vi )N(Y=UE)=0,
which yields (12). It follows from (11) and (12) that for each i,
13) ClU): UeUd* NFUCHHU) : UeVsr}*)=0.
Put 0,=X. By (13) we can take disjoint open sets P; and O, of X such that
CHrn(U): UeU}¥*c P, and
FUCHr(U): UeCys}*cOs.
It follows from (13) that
(X=0)UCHHU) : UeUs*)NEFUCHHT ) : UeCys}*)=0.
Next take disjoint open sets Py and O; of X such that
(X—0)UCHHU): UeUsy*cP; and
FUCHr(U): Uecs}*COs .

Repeating this process we obtain two sequences {Py-,:ieN} and {Op-,:ieN} of
open sets of X such that for each i,
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(14) (X=Ou-)UCHHU): UeUni}*CPuiy,
(15) FUCI{V(ZI) : U’ECVZi—l}*COzi_l and
(16) Pzi-lnoziH:@.

Now define for each i,
Dyiei={r(U): UeCVsi-}*U(Qzi— Y)UF  and
Dair={r(U): UeUsz1} U{SeS : ST Py}

From (6), (10), (12), (14), (15) and (16) it follows that for each i,

(A7) Dy-y is a P(F)-saturated neighborhood of F,
(18)  Dsi-y1 is a subcollection of P(F), and
(19) D2i|1CX_£D;§-1CDzi-1C VU(X—-Y)

This implies that VU(X—Y) is a subcanonical neighborhood of ¥ with respect to
9(F). This completes the proof of Assertion.

We return to the proof of Proposition 4.14. Define 9(Y)=S and, as con-
structed in Proposition 3.2, let {&€,{9(E): Fe&}} be a pair of o-discrete collection
& of closed sets of X and countable open covers 9(E), Fe&, of X—E such that
for any point x in X—Y and any member S of § with xeS, there exists a mem-
ber £/ of & such that xeEcS and S is a subcanonical neighborhood of £ with
respect to (/).

Now define

HK=FUlYive,

and consider the pair {X,{9D(K): KeX}}. To show that the pair is a free L*-
structure of X let zeX and let W be an open neighborhood of x. Since the case
when xe€eX—-Y is trivial, assume zeY. Then there exist a finite subcollection
{Fy, -+, Fi} of F and subcanonical neighborhoods U; of F; in Y with respect to
Uryp 1=i=k, such that zeN\E FseNE, UscWn Y. 1t follows from Assertion that
U;U(X—Y) is a subcanonical neighborhood of F in X with respect to 9(F;). By
the definition of subcanonical neighborhoods, we can find subcanonical neighborhoods
Wi of F;, 1=i=k, with respect to @(F;) such that W,cU;U(X~-Y). Put G=X—
(NEW:—W). Then G isan open neighborhood of Y and, therefore, a subcanonical
neighborhood of Y with respect to 9(Y)=S. Now we have

zeYN(NE B)cGn(Ng, WHcw,

which implies that {&,{9(K): Ke X}} is a free L*-structure on X. This completes
the proof of Proposition 4.14 and, therefore, of Proposition 4.13.
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