ON SOME SYSTEMS OF LINEAR OPERATORS CONNECTED WITH ARITHMETICAL INVERSION FORMULAS

By

M. I. Pulatova

1. In the paper of W.P. Romanov [1] and the present author's work [2] the following operators played an important role:

$$
\begin{equation*}
L_{n} f(x)=\frac{1}{n} \sum_{k=0}^{n-1} f\left(x+\frac{k}{n}\right) \quad(n=1,2,3, \cdots) . \tag{1}
\end{equation*}
$$

These operators are defined on the class of periodic functions $f(x)$ with period 1.
In this paper we shall investigate operators (1) from another point of view and establish their connection with the harmonical components of the function $f(x)$. We shall use the formal method of arithmetical inversion of series, mentioned by P. L. Čebyšev in 1851 (cf. [3; pp. 229-236]): If

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{n k}=A_{n} \quad(n=1,2,3, \cdots) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{m}=\sum_{k=1}^{\infty} \mu(k) A_{m k} \quad(m=1,2,3, \cdots) \tag{3}
\end{equation*}
$$

where $\mu(k)$ is the Möbius function.
Čebyšev [3] was not based on this formal transformation. In fact the matter is quite difficult-mequalities (3) are not always true even if the solution c_{m} of the system (2) does exist ; they are true on the assumption

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|c_{m}\right|<\infty . \tag{4}
\end{equation*}
$$

In case where the inequality (4) does not hold, the equations (2) may be solved in c_{m} but not uniquely.
2. A sufficient condition for the correctness of formulas (3) will be given by

Theorem I. If c_{m} and $A_{n}(m, n=1,2,3, \cdots)$ satisfy (2) and if there holds the inequality

$$
\begin{equation*}
\sum_{m=1}^{\infty} 2^{v(m)}\left|c_{m}\right|<\infty \tag{5}
\end{equation*}
$$

Received October 22, 1980.
where $\nu(m)$ denotes the number of different prime divisors of m, then the formulas (3) are true, and the series in these formulas are absolutely convergent.

Proof. We have, by (2) and a well-known property of $\mu(k)$, formal transformations

$$
\begin{aligned}
\sum_{k=1}^{\infty} \mu(k) A_{m k} & =\sum_{k=1}^{\infty} \mu(k) \sum_{l=1}^{\infty} c_{m k l}=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \mu(k) c_{m k l} \\
& =\sum_{n=1}^{\infty} c_{m n} \sum_{k \mid n} \mu(k)=c_{m}
\end{aligned}
$$

since the intermediate double series is majorized by the series

$$
\begin{aligned}
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty}\left|\mu(k) c_{m k l}\right| & =\sum_{n=1}^{\infty}\left|c_{m n}\right| \sum_{k \mid n}|\mu(k)| \\
& =\sum_{n=1}^{\infty} 2^{2(n)}\left|c_{m n}\right| \leqq \sum_{n=1}^{\infty} 2^{(m n)}\left|c_{m n}\right|
\end{aligned}
$$

which is convergent by the assumption (5).
Note that if in Theorem I the condition (5) is replaced by (4), then the theorem analogous to Theorem I cannot hold any longer. In this case we shall prove the following result (cf. [4]).

Theorem II. If the numbers c_{m} and $A_{n}(m, n=1,2,3, \cdots)$ satisfy (2) and if the condition (4) is fulfilled, then

$$
\begin{equation*}
c_{m}=\lim _{N \rightarrow \infty} \sum_{d[[N]} \mu(d) A_{m d} \quad(n=1,2,3, \cdots), \tag{6}
\end{equation*}
$$

where $[N]$ denotes the least common multiple of the numbers $2,3, \cdots, N$.
Proof. Formal transformations will give

$$
\begin{align*}
\sum_{d[[N]} \mu(d) A_{m d} & =\sum_{d \mid[N]} \mu(d) \sum_{k=1}^{\infty} c_{m d k}=\sum_{n=1}^{\infty} c_{m n} \sum_{\substack{d \mid n \\
d[L N]}} \mu(d) \\
& =c_{m}+\sum_{\substack{n=N+1 \\
(n,[N])=1}}^{\infty} c_{n} . \tag{7}
\end{align*}
$$

By (4) we have now that

$$
\left|\sum_{\substack{n=N+1 \\(n,[N])=1}}^{\infty} c_{m n}\right| \leqq \sum_{n=N+1}^{\infty}\left|c_{m n}\right| \rightarrow 0 \quad(N \rightarrow \infty)
$$

This with (7) proves our Theorem II.
If we repeal the assumption (4) then in general the numbers c_{m} are not
uniquely determined by the numbers A_{n}.
In this circumstance we have

Theorem III. There exist numbers $c_{1}, c_{2}, \cdots, c_{m}, \cdots$ which are not all equal to 0 and such that the series (2) are convergent and their sums $A_{n}=0$ for all n.

To prove this we put $c_{m}=\mu(m) / m$. Verification of the statement of the theorem is based on the famous formula of Euler-von Mangoldt

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{\mu(m)}{m}=0 . \tag{8}
\end{equation*}
$$

As is well known, the convergence of the series in (8) is quite a deep fact which is equivalent to the prime number theorem (cf. [9]). We have

$$
A_{n}=\sum_{k=1}^{\infty} \frac{\mu(n k)}{n k}=\frac{\mu(n)}{n} \sum_{\substack{k=1 \\(k, n)=1}}^{\infty} \frac{\mu(k)}{k} .
$$

On the other hand we have

$$
\begin{aligned}
0 & =\prod_{p \mid n}\left(1-\frac{1}{p}\right)^{-1} \cdot \sum_{m=1}^{\infty} \frac{\mu(m)}{m}=\prod_{p \mid n}\left(1-\frac{1}{p}\right)^{-1} \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right) \cdot \sum_{\substack{k=1 \\
(k, n)=1}}^{\infty} \frac{\mu(k)}{k} \\
& =\sum_{\substack{k=1 \\
(k, n)=1}}^{\infty} \frac{\mu(k)}{k} .
\end{aligned}
$$

Therefore $A_{n}=0$ for all n, and among the numbers c_{m} there are infinitely many of them that are not equal to 0 . This proves the theorem.
3. Let us use the results of $\S 2$ in the theory of "arithmetical means with displacements," i. e. in the theory of operators $L_{n} f(x)$ defined by (1).

Theorem IV. If for arbitrary x the formula

$$
f(x)=a_{0}+\sum_{m=1}^{\infty}\left(a_{m} \cos 2 \pi m x+b_{m} \sin 2 \pi m x\right)
$$

is right, then we have

$$
L_{n} f(x)-a_{0}=\sum_{k=1}^{\infty}\left(a_{n k} \cos 2 \pi n k x+b_{n k} \sin 2 \pi n k x\right)
$$

for $n=1,2,3, \cdots$.
Proof. We have by a simple calculation

$$
\begin{aligned}
L_{n} f(x)-a_{0} & =\frac{1}{n} \sum_{k=0}^{n-1} \sum_{m=1}^{\infty}\left(a_{m} \cos 2 \pi m\left(x+\frac{k}{n}\right)+b_{m} \sin 2 \pi m\left(x+\frac{k}{n}\right)\right) \\
& =\sum_{m=0}\left(a_{m o d} \cos 2 \pi m x+b_{m} \sin 2 \pi m x\right)
\end{aligned}
$$

If we put

$$
\begin{aligned}
& c_{m}=a_{m} \cos 2 \pi m x+b_{m} \sin 2 \pi m x \\
& A_{n}=L_{n} f(x)-a_{0}
\end{aligned}
$$

then, on the basis of Theorem I, the statement of Theorem V follows from the formula (10).

Theorem V. If for arbitrary $\varepsilon>0$ the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) n^{\varepsilon} \tag{11}
\end{equation*}
$$

converges, then for $n=1,2,3, \cdots$ the formulas

$$
\begin{equation*}
a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x=\sum_{d=1}^{\infty} \mu(d)\left(L_{d n} f(x)-a_{0}\right) \tag{12}
\end{equation*}
$$

are true. The series in (12) are absolutely and uniformly convergent for all x.
The proof is immediate from the estimate

$$
2^{\sharp(n)} \leqq \tau(n)=O\left(n^{\epsilon}\right) \quad \text { for any fixed } \varepsilon>0
$$

and Theorem I. Here, $\tau(n)$ denotes the number of positive divisors of n.
Analogously, from Theorem II follows

Theorem VI. If

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty \tag{13}
\end{equation*}
$$

then we have for every x

$$
\begin{equation*}
a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x=\lim _{N \rightarrow \infty} \sum_{d\lceil N]} \mu(d)\left(L_{d n} f(x)-a_{0}\right) \tag{14}
\end{equation*}
$$

uniformly for all n.

We note that the condition (11) of Theorem V is satisfied in the following two cases (cf. [15]) :

1) $f(x)$ is a function of bounded variation in [0,1] and belongs to Lip $\alpha, \alpha>0$;
2) $f(x)$ belongs to $\operatorname{Lip} \alpha, \alpha>1 / 2$.

Sufficient conditions for (13) can be found in [5], [6], and [7].

If we substitute in (12) $-x$ for x, then we get

$$
\begin{align*}
& a_{n} \cos 2 \pi n x=\sum_{d=1}^{\infty} \mu(d) L_{d n}\left(\frac{f(x)+f(-x)}{2}-a_{0}\right), \tag{15}\\
& b_{n} \sin 2 \pi n x=\sum_{d=1}^{\infty} \mu(d) L_{d n}\left(\frac{f(x)-f(-x)}{2}\right) . \tag{16}
\end{align*}
$$

These formulas can be used in harmonic analysis. For instance, if we put $x=0$ in (15) we obtain

$$
\begin{equation*}
a_{n}=\frac{1}{n} \sum_{d=1}^{\infty} \frac{\mu(d)}{d}\left(\sum_{k=0}^{d n-1} f\left(\frac{k}{d n}\right)-\int_{0}^{1} f(x) d x\right) . \tag{17}
\end{equation*}
$$

If we substitute in (14) $-x$ for x, then we find

$$
\begin{align*}
& a_{n} \cos 2 \pi n x=\lim _{N \rightarrow \infty} \sum_{d[[N]} \mu(d) L_{d n}\left(\frac{f(x)+f(-x)}{2}-a_{0}\right), \tag{18}\\
& b_{n} \sin 2 \pi n x=\lim _{N \rightarrow \infty} \sum_{d[[N]} \mu(d) L_{d n}\left(\frac{f(x)-f(-x)}{2}\right) . \tag{19}
\end{align*}
$$

Taking $x=0$ in (18) we obtain

$$
\begin{equation*}
a_{n}=\frac{1}{n} \lim _{N \rightarrow \infty} \sum_{d[[N]} \frac{\mu(d)}{d}\left(\sum_{k=0}^{d n-1} f\left(\frac{k}{d n}\right)-\int_{0}^{1} f(x) d x\right) . \tag{20}
\end{equation*}
$$

The formulas (18), (19) and (20) hold true for every $f(x) \in L(0,1)$ with absolutely convergent Fourier series.
4. There exist some other systems of linear operators which are also connected with arithmetical inversion formulas. For instance consider for odd n

$$
\begin{equation*}
L_{n}^{*} f(x)=\frac{1}{n}\left(f(x)+2 \sum_{k=1}^{n-1}(-1)^{k} f\left(x+\frac{k}{n}\right)-f(x+1)\right) . \tag{21}
\end{equation*}
$$

We have
Theorem VII. If the function $f(x+t)-f(x+1-t)$ is expanded for $t \in[0,1]$ in the series

$$
\begin{equation*}
f(x+t)-f(x+1-t)=\sum_{n=1}^{\infty} c_{n}(f) \cos n \pi t, \tag{22}
\end{equation*}
$$

then

$$
\begin{equation*}
L_{n}^{*} f(x)=\sum_{k=1}^{\infty} c_{k n}(f) \quad(n=1,3,5, \cdots) \tag{23}
\end{equation*}
$$

We note that

$$
\begin{align*}
c_{n}(f) & =2 \int_{0}^{1}(f(x+t)-f(x+1-t)) \cos n \pi t d t \\
& = \begin{cases}0 & \text { for even } n, \\
4 \int_{0}^{1} f(x+t) \cos n \pi t d t & \text { for odd } n .\end{cases} \tag{24}
\end{align*}
$$

Proof. Let us introduce a 2-periodical even function $g(t)$ such that

$$
g(t)=f(x+t)-f(x+1-t) \quad \text { for } t \in[0,1]
$$

We have then

$$
\sum_{k=0}^{n-1} g\left(\frac{2 k}{n}\right)=\sum_{m=1}^{\infty} c_{m}(f) \sum_{k=0}^{n-1} \cos \frac{2 \pi k m}{n}=n \sum_{m \equiv 0(\bmod n)} c_{m}(f) .
$$

On the other hand we have for each odd n

$$
\begin{align*}
\sum_{k=0}^{n-1} g\left(\frac{2 k}{n}\right) & =g(0)+2 \sum_{k=1}^{(n-1) / 2} g\left(\frac{2 k}{n}\right) \\
& =f(x)-f(x+1)+2 \sum_{k=1}^{(n-1) / 2}\left(f\left(x+\frac{2 k}{n}\right)-f\left(x+\frac{n-2 k}{n}\right)\right) \\
& =f(x)-f(x+1)+2 \sum_{\nu=1}^{n-1}(-1)^{\nu} f\left(x+\frac{\nu}{n}\right) \\
& =n L_{n}^{*} f(x) . \tag{26}
\end{align*}
$$

Comparing (25) and (26) we obtain the formulas (23). The formulas (23) have the same structure as those in (2). Therefore, by the theorems in §2, we get formulas expressing $c_{n}(f)$ through $L_{n}^{*} f(x)$.

Theorem VIII. If for the function $f(x)$ we have the formulas (23) and if for some $\varepsilon>0$ the series

$$
\begin{equation*}
\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty}\left|c_{n}(f)\right| n^{\varepsilon}<\infty \tag{27}
\end{equation*}
$$

then we have for every odd n

$$
\begin{equation*}
c_{n}(f)=\sum_{\substack{d=1 \\ d o d d}}^{\infty} \mu(d) L_{n d}^{*} f(x) \tag{28}
\end{equation*}
$$

and the series in (28) is absolutely convergent.
Replacing (27) by the assumption

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}(f)\right|<\infty \tag{29}
\end{equation*}
$$

we get
Theorem IX. If for the function $f(x)(29)$ is true, then the numbers $c_{n}(f)$ are uniquely determined by

$$
\begin{equation*}
c_{n}(f)=\lim _{N \rightarrow \infty} \sum_{d U U_{N}} \mu(d) L_{n d}^{*} f(x), \tag{30}
\end{equation*}
$$

where $U_{N}=3 \cdot 5 \cdots \cdot p$ is the product of all odd prime numbers $\leqq N$.
5. The analogues of Theorem III for $L_{n} f(x)$ and $L_{n}^{*} f(n)$ are given by

Theorem X. There exists a continuous function $f_{1}(x) \neq 0$ such that for $x=0$ we have

$$
L_{n} f_{1}(0)=0 \quad(n=1,2,3, \cdots),
$$

and

$$
L_{n}^{*} f_{1}(0)=0 \quad(n=1,3,5, \cdots) .
$$

For this function we take

$$
\begin{equation*}
f_{1}(x)=\sum_{m=1}^{\infty} \frac{\mu(m)}{m} \cos 2 \pi m x . \tag{31}
\end{equation*}
$$

It is evident that $f_{1}(x) \not \equiv 0$. The uniform convergence of the series (31) follows from a result of H. Davenport [8].

By the theory of prime numbers [9] we know that

$$
L_{n} f_{1}(0)=2 \sum_{k=1}^{\infty} \frac{\mu(n k)}{n k}=\frac{\mu(n)}{n} \sum_{(k, n)=1} \frac{\mu(k)}{k}=0 .
$$

Using (23) and (24) we get

$$
L_{n}^{*} f_{1}(0)=2 \sum_{2 k-1 \equiv 0(\bmod n)} \frac{\mu(2 k-1)}{2 k-1}=2 \frac{\mu(n)}{n} \sum_{(m, 2 n)=1} \frac{\mu(m)}{m}=0 .
$$

This proves the theorem.
From this theorem it follows that an arbitrary continuous function $f(x)$ is not uniquely determined by the values of the operators $L_{n} f(x)$ and $L_{n}^{*} f(x)$ at the point $x=0$.

References

[1] Романов, Н. П., Пространство Гильберта и теория чисел. Изв. Акад. Наук СССР, Сер. мат., 15 (1951), 131-152.
[2] Пулатова, М.И., Арифметические ортогональные последовательности. Автореферат диссертации на соискание ученой стерени кандидата физ.-мат. наук. Москва, 1970 г.
[3] Чебьшев, П. Л., Полное собрание сочинений. Том І. И. Л., 1944, стр. 229-236.
[4] Киселев, А. А., и Онуфриева, Л. А., Сборник " Исследования по современным проблемам конструктивой теории функции," Москва, 1961 г, стр. 188-189.
[5] Zygmund, A., Trigonometric Series, Vol. I. Cambridge Univ. Press, Cambridge, London et al., 1959, Chap. VI.
[6] Бари, Н. К., Тригонометрические ряды. М. Физ.-Матгиз, 1961.
[7] Kahane, J.-P., Séries de Fourier absolument convergentes. Ergebnisse der Math. und ihrer Grenzgeb. Bd. 50. Springer-Verl., Berlin et al., 1970.
[8] Davenport, H., On some infinite series involving arithmetical functions (II). Quart. J. Math. (Oxford), (2), 8 (1937), 313-320.
[9] Prachar, K., Primzahlverteilung. Grundlehren der math. Wiss. 91. Springer-Verl., Berlin et al., 1957.

Бухарский государственный педагогический институт

им. С. Орджоникидзе
Бухара, СССР

