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ON SOME SYSTEMS OF LINEAR OPERATORS CONNECTED

WITH ARITHMETICAL INVERSION FORMULAS

By

M. I. PULATOVA

1. In the paper of W. P. Romanov [1] and the present author's work [2] the

following onprators niavpd an imnorfant" rolp･

£≫/(*)4
n-1
2

k=0 'K) (≫ = 1,2,3, ･･･). (1)

These operators are defined on the class of periodic functions f{x) with period 1.

In this paper we shall investigate operators (1) from another point of view

and establish their connection with the harmonical components of the function

f{x). We shall use the formal method of arithmeticalinversion of series,mentioned

bv P. L. Cebvsev in 1851 fcf.T3: dd. 229-2361): If

fc=l
then

Cm =2] pi{k)Amk
k=＼

where dh) is the Mobius function.

0 = 1,2,3, ･･･)

(m = l,2,3, ･･･),

(2)

(3)

Cebysev [3] was not based on this formal transformation. In fact the matter

is quite difficult―equalities(3) are not always true even if the solution cm of the

system (2) does exist; they are true on the assumption

2 |cTO|<oo

ro= l

(4)

In case where the inequality (4) does not hold, the equations (2) may be solved

in f hiif nr≫f＼＼r＼＼n＼＼p＼＼T

2. A sufficientcondition for the correctness of formulas (3) will be given by

Theorem I. If cm and An (m, n ―1,2,3,■･･)satisfy(2) and if there holds the

inequality

E 2"(ra)M<cxD (5)

Received October 22, 1980.



166 M.I. PULATOVA

where v(m) denotes the number of different prime divisorsof m, then the formulas

(3) are true, and the series in these formulas are absolutely convergent.

Proof. We have, by (2) and a well-known property of pt(k),formal trans-

formations

f;
fi(k)Amk=

fc=i
1 = 1 k=＼ 1=1

-Yi CmnYi l*{k)= Cm,
71=1 k＼n

since the intermediate double series is maiorized bv the series

k-1 1=1

＼dk)cmu＼ = Yl k≪≫| S Ia*(&)I
n = l k＼n

n =1 >;-1

which is convergent by the assumption (5).

Note that if in Theorem I the condition (5)is replaced by (4),then the theorem

analogous to Theorem I cannot hold any longer. In this case we shall prove the

following result (cf.[4]).

Theorem II. // the numbers cm and An (m, n = l, 2,3,･･･) satisfy (2) and if

the condition (4) is fulfilled,then

cm = lim 2 fx(d)Amd (m = 1,2,3,"0

where [N] denotes the least common multiple of the numbers 2,3,･･･,N.

Proof. Formal transformations will give

2 fi(d)Amd= 2 ft(d)Yi cmdk=Yl cmn S P-id)

d＼[Nl d＼[N3 fe=l n=l (Jin

=cm +

By (4) we have now that

n=N+l

n = N+l
(n,[AT)=l

n=N

Cn

＼Cmn＼ ""*■0

+1

(6)

(7)

(JV-* oo).

This with (7) proves our Theorem II.

If we repeal the assumption (4) then in general the numbers cm are not
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uniquely determined by the numbers An,

In thiscircumstance we have

167

Theorem III. There exist numbers ch c2,･■･,cm, ■■■which are not all equal to

0 and such that the series (2) are convergent and their sums An=0 for all n.

To prove this we put cm=ii{m)＼m. Verificationof the statement of the theorem

is based on the famous formula of Euler-von Mangoldt

2

m = l

Km)

m
A (8)

As is well known, the convergence of the series in (8) is quite a deep fact which

is equivalent to the prime number theorem (cf.[9]). We have

An=
f:

k =

n{nk)

nk

On the other hand we have

= 2

][_

(fc,n) = l

})

m

k

pin)

n

Lt ―11

m ― 1 if If p 11

2

k-
(k,n) = l

k

I1 p) 'IIv'p)
(fc,n) = l

k

Therefore An―0 for ailn, and among the numbers cm there are infinitelymany

of them that are not equal to 0. This proves the theorem.

3. Let us use the results of §2 in the theory of "arithmetical means with

displacements," i.e. in the theory of operators Lnf(x) defined by (1).

Theorem IV. If for arbitrary x the formula

is right, then we have

for ≫= 1,2,3,-

)=tfo + 2j (a≫≪･cos27rma; + bm sin 2rcmx)

Lnf(x)―a0 ― 2 {(inkcos 2nnkx+bnk sin 2nnkx)

Proof. We have by a simple calculation
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Lnf(x)―a0 = ―
n
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n-l oo / k＼
Zj ZI (a cos 2^w? (a; H― ) + bm sin 2^-m

fc=0m=l ＼ W /

= z

m=0 (mod

(am cos lizmx+bm sin 2nmx).
n.)

lx+―))

If we put

Cm,=am cos2nmx + bmsin2nmx

An=Lnf(x)-aOi

then,on the basis of Theorem I, the statement of Theorem V follows from the

formula (10).

Theorem V. If for arbitrarye>0 the series

Z(＼an＼ + ＼bn＼)n'

?!= 1

converges, then for n = l, 2, 3,･･･ the formulas

an cos 2nnx + bn sin 2itnx = 2] /^(^)(Ldnf(x) ―a0)

d=l

are true. The seriesin (12) are absolutely and uniformly convergent for all x

The proof is immediate from the estimate

2* ^T(n)=0(ns) for any fixed s>0

and Theorem I. Here, z{n) denotes the number of positive divisors of n.

Analogously, from Theorem II follows

Theorem VI. If

Zdanl + lbnlXoo

71=1

then we have for every x

an cos 2-iznx+ bn sin2nnx ―lirn J] fKd)(Ldnf(x) ―aa)
N->°od＼lNJ

uniformly for all n.

(11)

(12)

(13)

(14)

We note that the condition (11) of Theorem V is satisfiedin the following

two cases (cf.[15]):

1) f(x) is a function of bounded variationin [0,1] and belongs to Lip a,a > 0;

2) f(x) belongs to Lip a,a > 1/2.

Sufficient conditions for (13) can be found in [5],[6],and [7].
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If we substitutein (12) ―x for x, then we get

anco$2nnx-2] n(d)Ldn[ ,

bn sin 2nnx = J] ft(d

(f=i
)-t-'dn＼ n 1

do)
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(15)

(16)

These formulas can be used in harmonic analysis. For instance, if we put x=0

in (15) we obtain

-=U^(M ―)dn )
＼f{x)dx

Jo

If we substitute in (14) ―x for x, then we find

)

an cos2nnx ―lim 2 fi(d)Ldn{ k a0)
;v-≪o<i|[iv] ＼ Z /

6Msin2rc≪ar= lim £ fi(d)Ldn(
f^~^~x^).

Taking x=0 in (18) we obtain

n n->oo aftiri d ＼£r0 ＼dn j
-^f(x)dx)

(17)

(18)

(19)

(20)

The formulas (18),(19) and (20) hold true for every /(x) L(0,1) with absolutely

convergent Fourier series.

4. There exist some other systems of linear operators which are also con-

nected with arithmetical inversion formulas. For instance consider for odd n

L$f(x) =
Uf{x)+2

n ＼

n ― i

s:=i

{-Iff
(*+v)-/(*+1))

(21)

We have

Theorem VII. // the function f(x+t)―f(x + l ―t) is expanded for *e[0,1] in

the series

then

Ax + O-/(a? + l-O=S cn(f)cosnnt,

(n = l,'5,5,-)

(22)

(23)

We note that
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cn(J) = 2＼(f(x+t)~f(x +1 -0) cos nntdt
Jo

(

/(x +1) cos nnt dt
o

for even n

for odd n.

Proof. Let us introduce a 2-periodicaleven function g(t)such that

g(t)=f(x+t)-f(x+l-t) for *e[0,l].

We have then

k°＼nr
f:

m = l

n-1

Cm{f)Tt C0S

k=0

2nkm

n

On the other hand we have for each odd n

n~1 I 2k ＼ (n-l)/2 / Oh ＼

Cn-l)/2
=f(x)-f(x + l)+2 Z

― n

m=0 (mod n)
cJJ)

(J 2k＼ I n-2k＼＼
(f(x + ―)-f(x+

K)

(24)

=nL*f(x). (26)

Comparing (25) and (26) we obtain the formulas (23). The formulas (23) have the

same structure as those in (2). Therefore, by the theorems in §2, we get formulas

expressing cn(f) through Lff(x).

Theorem VIII. If for the function f(x) we have the formulas (23) and if for

some e>0 the series

E ＼cn(f)＼nl<oo (27)
n=l
toodd

then we have for every odd n

cJJ)= S t<d)L&f(x), (28)

<Z=1dodd

and the seriesin (28) is absolutely convergent.

Replacing (27) by the assumption

SI C≫(/)|<oo (29)



Li r,

(k,n) = l ≪

rik)

(31)

=0

^p
j"(≫) y

M"0
_Q

n (m,2≫) = l W

we get
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Theorem IX. If for the function f{x) (29) is true, then the numbers cn{f)

are uniquely determined by

cB(/)= lim S fi(d)L*df(x)

where UN = 3-5 p is theproduct of all odd prime numbers ^N,

(30)

5. The analogues of Theorem III for Lnf{x) and L*f(n) are given by

Theorem X. There exists a continuous function fi(x)^0 such that for x―0

we have

and

LB/,(0)=0

≪/.(0) = 0

For this function we take

/l(*)=

L≫/1(0)=2f;

Using (23)and (24) we get

≪/i(0)=2 S

2fc―1=0 (mod ft)

(≫= 1,2,3,-),

(≫= 1,3,5,-).

cos 2nmx.

tin)

n

m

It is evident that fi(x)^O. The uniform convergence of the series (31) follows

from a result of H. Davenport [8].

By the theory of prime numbers [9] we know that

fi(nk)

nk

fi(2k-l)

2&-1

This proves the theorem.

From this theorem it follows that an arbitrary continuous function f(x) is

not uniquely determined by the values of the operators Lnf(x) and L%f(x) at the

point x―0.
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