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REFINABLE MAPS ONTO LOCALLY
$n$-CONNECTED COMPACTA

By

Hisao KATO

In [4], J. Ford and J. W. Rogers introduced the notion of reiinable maps and
they proved that each refinable map from a continuum to a locally connected
continuum is monotone [4, Corollary 1.2]. In [5, Theorem 2.2], we proved that
each refinable map from a compactum to an FANR induces a shape equivalence.
In this paper we shall prove that if a map $r:X\rightarrow Y$ between compacta is refin-
able and $Y\in LC^{n}(n\geqq 0)$ , then $r^{-1}(y)\in AC^{n}$ for each $y\in Y$. Moreover if $Y$ is an
$ANR$ , then $r$ is a CE-map.

It is assumed that all spaces are metrizable and maps are continuous. A
connected compactum is a continuum. A map $f:X\rightarrow Y$ between compacta is an
$\epsilon$ -mapping, $\epsilon>0$ , if $f$ is surjective and diam $ f^{-1}(y)<\epsilon$ for each $y\in Y$. If $x$ and $y$

are points of a metric space, $d(x, y)$ denotes the distance from $x$ to $y$ . A map
$r:X\rightarrow Y$ between compacta is refinable [4] if for any $\epsilon>0$ there is an $\epsilon$ -mapping
$f:X\rightarrow Y$ such that $ d(r, f)=\sup\{d(r(x), f(x))|x\in X\}<\epsilon$ . Such a map $f$ is called an

$\epsilon$ -refinement of $r$. Note that every refinable map is surjective, every near homeo-
morphism is refinable and if there is a refinable map from a compactum $X$ to a
compactum $Y$, then $X$ is Y-like. But simple examples show that any converse
assertions of them are not true. A space $X$ is locally n-connected $(X\in LC^{n})$ if
for each $x\in X$ and an open neighborhood $U$ of $x$ in $X$, there is an open set $V$

with $x\in V\subset U$ such that each map $h:S^{k}\rightarrow V$ is null-homotopic in $U$ for $0\leqq k\leqq n$ ,
where $S^{k}$ denotes the k-sphere. A compactum $X$ in the Hilbert cube $Q$ is appro-
ximatively n-connected $(X\in AC^{n})$ if for each open neighborhood $U$ of $X$ in $Q$

there is an open neighborhood $V\subset U$ of $X$ in $Q$ such that each map $h:S^{k}\rightarrow V$ is
null-homotopic in $U$ for $0\leqq k\leqq n$ (see [2]). A map $f:X\rightarrow Y$ between compacta
is a CE-map if $f$ is surjective and $f^{-1}(y)$ is an FAR (see [2]) for each $y\in Y$.

The following lemma is well-known.

LEMMA 1 ([7, Lemma 1]). Let $f$ be a map from a compactum $X$ to an $ANR$
$Y$ and $\epsilon>0$ . Then there is a positive number $\delta>0$ such that if $g_{1}$ is any $\delta$-map-
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ping from $X$ to any compactum $Z$, then there is a map $g_{\Delta}$ : $Z\rightarrow Y$ such that

$ d(f, g_{2}g_{1})<\epsilon$ .

LEMMA 2. Let $X$ and $Y$ be closed subsets of AR-spaces $M$ and $N$ respectively,

and let $f:M\rightarrow N$ be an extension of a map $f:X\rightarrow Y$ . If $X$ and $Y$ are locally n-

connected and $f:(X, x)\rightarrow(Y, f(x))$ induces a zero-homomorphism $\pi_{k}(f):\pi_{k}(X, x)\rightarrow$

$\pi_{k}(Y, f(x))$ for $0\leqq k\leqq n$ , then for each open neighborhood $V$ of $Y$ in $N$ there is

an open neighborhood $U$ of $X$ in $M$ such that $\pi_{k}(f|U):\pi_{k}(U, x)\rightarrow\pi_{k}(V, f(x))$ is a

zero-homomorphism.

PROOF. By [3, Theorem 8.7] the natural morphisms $i_{k}$ : $\pi_{k}(X, x)\rightarrow pro-\pi_{k}(X, x)$

and $j_{k}$ : $\pi_{k}(Y, y)\rightarrow pro-\pi_{k}(Y, y)$ are isomorphisms for $0\leqq k\leqq n$ . Since $j_{k}\pi_{k}(f)=$

$pro-\pi_{k}(f)i_{k},$ $pro-\pi_{k}(f):pro-\pi_{k}(X, x)\rightarrow pro-\pi_{k}(Y, y)$ is a zero-homomorphism, which

implies the existence of $U$ in the statement of Lemma.

THEOREM. Let $X$ and $Y$ be compacta and $r:X\rightarrow Y$ be a refinable map. If
$Y\in LC^{n}(n\geqq 0)$ , then $r^{-1}(y)\in AC^{n}$ for each $y\in Y$ . Moreover if $Y$ is an $ANR$ ,

then $r$ is a CE-map.

PROOF. Since $X$ is a compactum, $X$ can be embedded into the Hilbert cube

$Q$ . Let $y\in Y$ and let $G$ be any open neighborhood of $r^{-1}(y)$ in $Q$ . Choose a
compact $ANRU$ such that $r^{-1}(y)\subset Int_{Q}U\subset U\subset G$ . Since $U$ is a compact $ANR$ ,

there is a positive number $\epsilon_{1}>0$ such that any $\epsilon_{1}$-near maps to $U$ are homotopic.

Let $\epsilon_{2}=d(r^{-1}(y), Q-U)=\inf\{d(x_{1}, x_{2})|x_{1}\in r^{-1}(y), x_{2}\in Q-U\}>0$ . Since $Y\in LC^{n}$ ,

there is a sequence $V_{1},$ $V_{2},$ $V_{3},$ $\cdots$ of open sets in $Y$ such that

(1) $ V_{1}\supset\overline{V}_{2}\supset V_{2}\supset\overline{V}_{3}\supset\cdots$ ,

(2) $\bigcap_{i=1}^{\infty}\overline{V}_{t}=\{y\}$ ,

(3) each map $h:S^{k}\rightarrow V_{i+1}(0\leqq k\leqq n)$ is null-homotopic in $V_{i}$ .

Since $r$ is refinable, there are maps $r_{i}:X\rightarrow Y$ such that each $r_{i}$ is an $(1/i)- refine-$

ment of $r$ and

(4) $r_{i}(r^{-1}(y))\subset V_{i+2}$ for each $i$ .

Then we shall show that $\lim[r_{i^{-1}}(\overline{V}_{i})]=r^{-1}(y)$ . In fact, suppose, on the contrary,

that there is a sequence $x_{n_{i}}\in r_{n_{l}}^{-1}(\overline{V}_{n}i)$ such that $\lim x_{n_{i}}=x_{0}$ and $r(x_{0})\neq y$ . Choose

an open neighborhood $W$ of $x_{0}$ in $X$ such that $r(W)\subset S_{\delta}(r(x_{0}))$ , where $\delta=$

$(1/4)d(r(x_{0}), y)>0$ and for a set $A$ $S_{\delta}(A)$ denotes the $\delta$ -neighborhood of $A$ . By (2),

choose a sufficiently large integer $n_{i}$ such that $x_{n_{i}}\in W,$ $ d(r, r_{n_{i}})<\delta$ and $V_{n_{i}}\subset S_{\delta}(y)$ .
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Then $r(x_{n_{i}})\in S_{\delta}(r(x_{0}))$ and $r_{n_{i}}(x_{7\iota_{i}})\in\overline{V}_{n_{i}}\subset S_{\delta}(y)$ , hence

$d(r(x_{0}), y)\leqq d(r(x_{0}), r(x_{n_{i}}))+d(r(x_{n_{i}}), r_{n_{i}}(x_{n_{i}}))+d(r_{n_{i}}(x_{n}i), y)$

$<\delta+\delta+\delta=3\delta$ , which implies the contradiction.

Let $0<\epsilon<{\rm Min}\{\epsilon_{1}, \epsilon_{2}\}$ . Since $\lim[r_{i}^{-1}(\overline{V}_{i})]=r^{-1}(y)$ , there is a natural number $i_{0}$

such that

(5) $r_{i}^{-1}(\overline{V}_{i})\subset S_{\text{\’{e}}/3}(r^{-1}(y))$ for each $i\geqq i_{0}$ .

By Lemma 1, there is a natural number $m\geqq i_{0}$ such that there is a map $g_{m}$ : $Y\rightarrow Q$

such that

(6) $d(i_{X}, g_{m}r_{m})<\epsilon/3$ , where $i_{X}$ : $X\rightarrow Q$ is the inclusion.

Then we shall show

(7) $g_{m}(V_{m})\subset g_{m}(\overline{V}_{m})\subset U$ .

In fact, for each $x\in r_{m}^{-1}(\overline{V}_{m})$ , by (5) and (6) we have

$ d(g_{m}r_{m}(x), r^{-1}(y))\leqq d(g_{m}r_{m}(x), x)+d(x, r^{-1}(y))<\epsilon/3+\epsilon/3<\epsilon$ ,

hence $g_{m}r_{m}(x)\in S_{\epsilon}(r^{-1}(y))\subset U$ .

Now, take two AR-spaces $M$ and $N$ containing $V_{m+1}$ and $V_{m}$ respectively as
closed subsets, and let $\hat{i}:M\rightarrow N$ be an extension of the inclusion $i:V_{m+1}\rightarrow V_{m}$ .
Since $U$ is an $ANR$ , by (7) there is an open neighborhood $V_{m}^{\prime}$ of $V_{m}$ in $N$ and
an extension $\hat{g}_{m}$ : $V_{m}^{\prime}\rightarrow U$ of $g_{m}|V_{m}$ : $V_{m}\rightarrow U$ . Since $V_{m+1},$ $V_{m}\in LC^{n}$ , by Lemma
2 and (3) there is an open neighborhood $V_{m+1}^{\prime}$ of $V_{m+1}$ in $M$ such that

(8) $\pi_{k}(\hat{i}|V_{m+1}^{\prime}):\pi_{k}(V_{m+1}^{\prime})-\pi_{k}(V_{m}^{\prime})$ is a zero-homomorphism

for each $0\leqq k\leqq n$ .

Let $U^{\prime}$ be an open neighborhood of $r_{m}^{-1}(\overline{V}_{m+2})$ in $Q$ such that $U^{\prime}\subset U$ and there is an
extension $\hat{r}_{m}$ ; $U^{\prime}\rightarrow V_{m+1}^{\prime}$ of $r_{m}|r_{m}^{-1}(\overline{V}_{m+2}):r_{m}^{-1}(\overline{V}_{m+2})\rightarrow V_{m+1}$ . Since $\hat{g}_{m}\hat{i}\hat{r}_{m}|r_{m}^{-1}(\overline{V}_{m+2})$

$=g_{m}ir_{m}|r_{m}^{-1}(\overline{V}_{m+2})$ , by (6) there is an open neighborhood $U^{\prime\prime}\subset U^{\prime}$ of $r_{m}^{-1}(\overline{V}_{m+z})$ in
$Q$ such that

(9) $ d(\hat{g}_{m}\hat{i}\hat{r}_{m}|U^{\prime\prime}, i_{U\prime})<\epsilon$ , where $i_{U^{\prime}}$ : $U^{\prime\prime}\rightarrow U$ is the inclusion.

By (9), we have

(10) $\hat{g}_{m}\hat{i}\hat{r}_{m}|U^{\prime\prime}\simeq i_{U^{\prime}}$ in $U$ .

By (8) and (10), $\pi_{k}(i_{U^{\prime}}):\pi_{k}(U^{\prime\prime})\rightarrow\pi_{k}(U)$ is a zero-homomorphism. Note that
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$r^{-1}(y)\subset r_{m}^{-1}(\overline{V}_{m+2})\subset U^{\prime\prime}$ . Hence $r^{-1}(y)\in AC^{n}$ .
If $Y$ is a compact $ANR$, the proof is similar. This completes the proof.

REMARK 1. Note that if $n=0$, Theorem implies the result of J. Ford and

J. W. Rogers.

By Theorem and [3, Theorem 8.5], we have the following.

COROLLARY 1. If a map $r:X\rightarrow Y$ between compacta is refinable and $Y\in LC^{n}$

$(n\geqq 1)$ , for any compactum $B\subset Y$ and $x\in r^{-1}(B),$ $pro-\pi_{k}(r|r^{-1}(B)):pro-\pi_{k}(r^{-1}(B), x)$

$\rightarrow pro-\pi_{k}(B, r(x))$ is an isomorphism of pro-groups for $1\leqq k\leqq n$ and an epimorphism

of pro-groups for $k=n+1$ .

COROLLARY 2. Let $X$ and $Y$ be compacta and $r:X\rightarrow Y$ be a refinable map.

If $Y\in LC^{n}$ and Fd $(Y)\leqq n$ (see [2]), then $r$ induces a shape equivalence.

PROOF. By [5, Theorem 1.8], Fd $(X)=Fd(Y)\leqq n$ . By Theorem and the result

of [3, Theorem 8.14], [6] or [8], $r$ induces a shape equivalence.

COROLLARY 3. If a map $r:X\rightarrow Y$ between $com$pacta is refinable and $Y$ is a

finite-dimensional $ANR$ , then $r$ induces a hereditary shape equivalence, $i$ . $e.$ , for
any compactum $B,$ $r|r^{-1}(B):r^{-1}(B)\rightarrow B$ induces a shape equivalence.

COROLLARY 4. Let $r$ be a map from a $(S_{1}\vee S_{2}\vee\cdots\vee S_{n})$-like continuum onto
$S_{1}\vee S_{2}\vee\cdots\vee S_{n}$ , where $S_{1}\vee S_{2}\vee\cdots\vee S_{n}$ denotes the one point union of $\uparrow l$ circles.

Then the followings are equivalent.
(1) $r$ is refinable.
(2) $r$ is a CE-map.
(3) $r$ is monotone.

PROOF. By [5, Theorem 3.2], (1) and (3) are equivalent. By Theorem, (1)

implies (2). Obviously (2) implies (3).

REMARK 2. In the statement of Theorem, we cannot replace $AC^{n}$ by $C^{n}$

(n-connected).

REMARK 3. By [4, p. 264], there is a refinable map $r:X\rightarrow Y$ such that $X$,

$Y$ are l-dimensional continua and $r^{-1}(y_{0})\not\in AC^{0}$ for some $y_{0}\in Y$ (cf. [5, Example

2.7]). In [5, Example 2.6], for each $n=1,2,3,$ $\cdots$ , we constructed a refinable
map $r:X\rightarrow Y$ such that $X$ and $Y$ are n-dimensional continua, $Y\in LC^{n-1}$ and

Sh $(X)\neq Sh(Y)$ . In fact, for some $y_{0}\in Y,$ $r^{-1}(y_{0})\not\in AC^{n}$ . Thus those show that
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in the statement of Theorem we cannot replace $LC^{n}$ by $LC^{n-1}$ . Moreover, in
[5, Example 2.8], we constructed a near homeomorphism $h:X\rightarrow X$ such that $X$

is a n-dimensional continuum, $X\in LC^{n-1}$ and $r$ does not induce a shape equi-
valence. In fact, for some $y_{0}\in X,$ $r^{-1}(y_{0})\not\in AC^{n}$ .
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