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REFINABLE MAPS ONTO LOCALLY
n-CONNECTED COMPACTA

By

Hisao KATO

In [4], J. Ford and J. W. Rogers introduced the notion of refinable maps and
they proved that each refinable map from a continuum to a locally connected
continuum is monotone [4, Corollary 1.2]. In [5, Theorem 2.2], we proved that
each refinable map from a compactum to an FANR induces a shape equivalence.
In this paper we shall prove that if a map »: X—Y between compacta is refin-
able and YeLC" (n=0), then r"*(y)= AC™ for each yeY. Moreover if Y is an
ANR, then 7 is a CE-map.

It is assumed that all spaces are metrizable and maps are continuous. A
connected compactum is a continuum. A map f: X—Y between compacta is an
e-mapping, €>0, if f is surjective and diam f~*(y)<e for each yeY. If x and y
are points of a metric space, d(x, y) denotes the distance from x to y. A map
r: X—Y between compacta is refinable if for any ¢>0 there is an e-mapping
f: X—Y such that d(r, f)=sup{d(r(x), f(x))|x= X} <e. Such a map f is called an
e-refinement of r. Note that every refinable map is surjective, every near homeo-
morphism is refinable and if there is a refinable map from a compactum X to a
compactum Y, then X is Y-like. But simple examples show that any converse
assertions of them are not true. A space X is locally n-connected (XeLC") if
for each x€X and an open neighborhood U of x in X, there is an open set V
with x€ VCU such that each map A: S*—V is null-homotopic in U for 0<k<n,
where S* denotes the k-sphere. A compactum X in the Hilbert cube Q is appro-
ximatively n-connected (X AC™) if for each open neighborhood U of X in Q
there is an open neighborhood VC U of X in Q such that each map A:S*—V is
null-homotopic in U for 0=k=n (see [2]). A map f: X—Y between compacta
is a CE-map if f is surjective and f~'(y) is an FAR (see [2]) for each yeY.

The following lemma is well-known.

LEMMA 1 ([7, Lemma 1]). Let f be a map from a compactum X to an ANR
Y and €>0. Then there is a positive number 0>0 such that if g, is any 0-map-
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ping from X to any compactum Z, then there is a map g,:Z—Y such that
d(f, g2g1)<€.

LEMMA 2. Let X and Y be closed subsets of AR-spaces M and N respectively,
and let f: M—N be an extension of a map f: X—Y. If X and Y are locally n-
connected and f: (X, x)—(Y, f(x)) induces a zero-homomorphism 7:(f): (X, x)—
7Y, f(X)) for 0Sk=n, then for each open neighborhood V of Y in N there is
an open neighborhood U of X in M such that (f1U): mo(U, x)—r(V, f(2) is a

zero-homomorphism.

PROOF. By [3, Theorem 8.7] the natural morphisms i, : 7 ,(X, x)—pro-= (X, x)
and Jj,: 7Y, y)—pro-m,(Y, y) are isomorphisms for 0<k=<n. Since j,m (f)=
pro-m(f)ik, pro-nk(f) : pro-m (X, x)—pro-m,(Y, y) is a zero-homomorphism, which
implies the existence of U in the statement of Lemma.

THEOREM. Let X and Y be compacta and r: X—Y be a refinable map. If
YeLC"® (n=0), then r(y)e AC™ for each yeY. Moreover if Y is an ANR,

then r is a CE-map.

PROOF. Since X is a compactum, X can be embedded into the Hilbert cube
Q. Let yeY and let G be any open neighborhood of 7 *(») in Q. Choose a
compact ANR U such that r~(y)ClnteUCUCG. Since U is a compact ANR,
there is a positive number ¢,>0 such that any &,-near maps to U are homotopic.
Let e,=d(r (), Q—U)=inf{d(x,, x)| x,€77'(¥), xe@Q—U}>0. Since YeLC",
there is a sequence Vi, V,, V;, --- of open sets in Y such that

(1) V,oV,oV,oV,D-,

@ AV=01

(3) each map h:S*—V,, (0=k=n) is null-homotopic in V.
Since 7 is refinable, there are maps r;: X—Y such that each r; is an (1/1)-refine-
ment of 7 and

(4) r{(r- () V.. for each i

Then we shall show that lim [7,"AV.)]=r"%»). In fact, suppose, on the contrary,
that there is a sequence x,, € r;;(‘?"i) such that lim x,,=x, and 7(x,)#y. Choose
an open neighborhood W of x, in X such that (W) < Ss(r(x,)), where 0=
(1/4)d(r(x,), »)>0 and for a set A S;(A) denotes the §-neighborhood of A. By (2),
choose a sufficiently large integer n; such that x,,€ W, d(r, 7,,)<0 and V5, CSs(y).
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Then 7(x,,)€S5(7(xy)) and 7,,(xs,)E V,,CSi(y), hence
d(r(xe), M=d(r(x0), (X0 ) Fd((Xn,), Tn,(Xn)Fd(¥n (Xn,), ¥)
<0+0+0=30, which implies the contradiction.

Let 0<e<Min{e,, ¢,}. Since lim [r;‘(V,-)]:r‘l(y), there is a natural number 1,
such that

(5) i (VS s(r~{(v))  for each i=i,.

By [Lemma 1, there is a natural number m=1i, such that there isa map gn: Y—Q
such that

6) dix, gnrm)<e/3, where iy : X—Q is the inclusion.
Then we shall show

) gn(Va)Cgn(Va)CU.
In fact, for each xe7;(V,), by (5) and (6) we have

A(gm?m(x), ¥ M =d(gnrn(x), x)+d(x, r(¥)<e/3+e/3<e,

hence g, 7 (x)eS.(r () U.

Now, take two AR-spaces M and N containing V,., and V, respectively as
closed subsets, and let :: M—N be an extension of the inclusion i: Vyi1i— V.
Since U is an ANR, by (7) there is an open neighborhood V/, of V, in N and
an extension g, : V,—U of gn|Vnm: Va—U. Since Vyiy, VacsLC™, by
2 and (3) there is an open neighborhood V.., of V.., in M such that

8) 7@ Vi) : wp(Vie) —> wo(V?%) is a zero-homomorphism
for each 0k<n.

Let U’ be an open neighborhood of 7l (Vm+s) in Q such that U’C U and there is an
extension 7u: U'—Viey of 70|70 (Vi) : #md(Vmso)—=Vmer. Since Zmitm| 77 Vinss)
=gni?m| 77V mss), by (6) there is an open neighborhood U’CU’ of 7;/(Vmss) in
Q such that

(9) d(@nitm|U”, iy)<e, where iy.: U’—U is the inclusion.
By (9), we have
(10) GmtPm| Uiy in U.

By (8) and (10), #.(iy.): 7w .(U")—xm,(U) is a zero-homomorphism. Note that
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rY()Cr M Vms2)TU”. Hence r ()€ AC™
If Y is a compact ANR, the proof is similar. This completes the proof.

REMARK 1. Note that if n=0, implies the result of J. Ford and
J. W. Rogers.

By and [3, Theorem 8.5], we have the following.

COROLLARY 1. If a map r: X—Y between compacta is refinable and YELC™
(n=1), for any compactum BCY and x&r X(B), pro-m,(r|r~(B)): pro-z+(r~'(B), x)
—pro-m (B, r(x)) is an isomorphism of pro-groups for 1<k=n and an epimorphism
of pro-groups for k=n-1.

COROLLARY 2. Let X and Y be compacta and r: X—Y be a refinable map.
If YeLC" and Fd(Y)=<n (see [2]), then r induces a shape equivalence.

ProoF. By [5, Theorem 1.8], Fd (X)=Fd(Y)=<n. By and the result
of [3, Theorem 8.14], [6] or [8], » induces a shape equivalence.

COROLLARY 3. If a map r: X—Y between compacta is refinable and Y 1s a
finite-dimensional ANR, then r induces a hereditary shape equivalence, i.e., for
any compactum B, r|r"Y(B): r"(B)—B induces a shape equivalence.

COROLLARY 4. Let r be a map from a (S,VS,V -+ VSy)-like continuum onto
S,VS,V - VS, where S;VS,V -+ VS, denotes the one point union of n circles.
Then the followings are equivalent.

(1) r is refinable.

(2) r is a CE-map.

(3) 7 is monotone.

ProOF. By [5, Theorem 3.2], (1) and (3) are equivalent. By [Theoreml, (1)
implies (2). Obviously (2) implies (3).

REMARK 2. In the statement of [Theorem, we cannot replace AC" by C"
(n-connected).

REMARK 3. By [4, p. 264], there is a refinable map »: X—Y such that X,
Y are 1-dimensional continua and 7 (y,)& AC® for some y,€Y (cf. [5, Example
2.77). In [5, Example 2.6], for each n=1, 2, 3, ---, we constructed a refinable
map 7: X—Y such that X and Y are n-dimensional continua, Y€LC"™' and
Sh(X)#Sh(Y). In fact, for some y,€Y, r''(y,) AC*. Thus those show that
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in the statement of we cannot replace LC™ by LC""!. Moreover, in
[5, Example 2.8], we constructed a near homeomorphism 4 : X—X such that X
is a n-dimensional continuum, XeLC"™* and » does not induce a shape equi-
valence. In fact, for some y,= X, r (v, AC™.
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