REFINABLE MAPS ONTO LOCALLY *n*-CONNECTED COMPACTA

By

Hisao Като

In [4], J. Ford and J. W. Rogers introduced the notion of refinable maps and they proved that each refinable map from a continuum to a locally connected continuum is monotone [4, Corollary 1.2]. In [5, Theorem 2.2], we proved that each refinable map from a compactum to an **FANR** induces a shape equivalence. In this paper we shall prove that if a map $r: X \to Y$ between compacta is refinable and $Y \in LC^n$ $(n \ge 0)$, then $r^{-1}(y) \in AC^n$ for each $y \in Y$. Moreover if Y is an **ANR**, then r is a **CE**-map.

It is assumed that all spaces are metrizable and maps are continuous. A connected compactum is a continuum. A map $f: X \rightarrow Y$ between compacta is an ε -mapping, $\varepsilon > 0$, if f is surjective and diam $f^{-1}(y) < \varepsilon$ for each $y \in Y$. If x and y are points of a metric space, d(x, y) denotes the distance from x to y. A map $r: X \rightarrow Y$ between compact is *refinable* [4] if for any $\varepsilon > 0$ there is an ε -mapping $f: X \to Y$ such that $d(r, f) = \sup \{ d(r(x), f(x)) | x \in X \} < \varepsilon$. Such a map f is called an ε -refinement of r. Note that every refinable map is surjective, every near homeomorphism is refinable and if there is a refinable map from a compactum X to a compactum Y, then X is Y-like. But simple examples show that any converse assertions of them are not true. A space X is locally n-connected $(X \in LC^n)$ if for each $x \in X$ and an open neighborhood U of x in X, there is an open set V with $x \in V \subset U$ such that each map $h: S^k \to V$ is null-homotopic in U for $0 \leq k \leq n$, where S^k denotes the k-sphere. A compactum X in the Hilbert cube Q is approximatively n-connected $(X \in AC^n)$ if for each open neighborhood U of X in Q there is an open neighborhood $V \subset U$ of X in Q such that each map $h: S^k \to V$ is null-homotopic in U for $0 \leq k \leq n$ (see [2]). A map $f: X \rightarrow Y$ between compacta is a *CE-map* if f is surjective and $f^{-1}(y)$ is an *FAR* (see [2]) for each $y \in Y$.

The following lemma is well-known.

LEMMA 1 ([7, Lemma 1]). Let f be a map from a compactum X to an ANR Y and $\varepsilon > 0$. Then there is a positive number $\delta > 0$ such that if g_1 is any δ -map-Received November 22, 1979.

Hisao KATO

ping from X to any compactum Z, then there is a map $g_2: Z \rightarrow Y$ such that $d(f, g_2g_1) < \varepsilon$.

LEMMA 2. Let X and Y be closed subsets of AR-spaces M and N respectively, and let $\hat{f}: M \to N$ be an extension of a map $f: X \to Y$. If X and Y are locally nconnected and $f: (X, x) \to (Y, f(x))$ induces a zero-homomorphism $\pi_k(f): \pi_k(X, x) \to \pi_k(Y, f(x))$ for $0 \le k \le n$, then for each open neighborhood V of Y in N there is an open neighborhood U of X in M such that $\pi_k(\hat{f}|U): \pi_k(U, x) \to \pi_k(V, f(x))$ is a zero-homomorphism.

PROOF. By [3, Theorem 8.7] the natural morphisms $i_k : \pi_k(X, x) \rightarrow \text{pro-}\pi_k(X, x)$ and $j_k : \pi_k(Y, y) \rightarrow \text{pro-}\pi_k(Y, y)$ are isomorphisms for $0 \le k \le n$. Since $j_k \pi_k(f) = \text{pro-}\pi_k(\hat{f})i_k$, $\text{pro-}\pi_k(\hat{f}): \text{pro-}\pi_k(X, x) \rightarrow \text{pro-}\pi_k(Y, y)$ is a zero-homomorphism, which implies the existence of U in the statement of Lemma.

THEOREM. Let X and Y be compacta and $r: X \rightarrow Y$ be a refinable map. If $Y \in LC^n$ $(n \ge 0)$, then $r^{-1}(y) \in AC^n$ for each $y \in Y$. Moreover if Y is an ANR, then r is a CE-map.

PROOF. Since X is a compactum, X can be embedded into the Hilbert cube Q. Let $y \in Y$ and let G be any open neighborhood of $r^{-1}(y)$ in Q. Choose a compact **ANR** U such that $r^{-1}(y) \subset \operatorname{Int}_{Q} U \subset U \subset G$. Since U is a compact **ANR**, there is a positive number $\varepsilon_1 > 0$ such that any ε_1 -near maps to U are homotopic. Let $\varepsilon_2 = d(r^{-1}(y), Q-U) = \inf \{d(x_1, x_2) | x_1 \in r^{-1}(y), x_2 \in Q-U\} > 0$. Since $Y \in LC^n$, there is a sequence V_1, V_2, V_3, \cdots of open sets in Y such that

- (1) $V_1 \supset \overline{V}_2 \supset V_2 \supset \overline{V}_3 \supset \cdots$,
- (2) $\bigcap_{i=1}^{\infty} \overline{V}_i = \{y\},$
- (3) each map $h: S^k \to V_{i+1}$ $(0 \le k \le n)$ is null-homotopic in V_i .

Since r is refinable, there are maps $r_i: X \to Y$ such that each r_i is an (1/i)-refinement of r and

(4) $r_i(r^{-1}(y)) \subset V_{i+2}$ for each *i*.

Then we shall show that $\lim [r_i^{-1}(\bar{V}_i)] = r^{-1}(y)$. In fact, suppose, on the contrary, that there is a sequence $x_{n_i} \in r_{n_i}^{-1}(\bar{V}_{n_i})$ such that $\lim x_{n_i} = x_0$ and $r(x_0) \neq y$. Choose an open neighborhood W of x_0 in X such that $r(W) \subset S_{\delta}(r(x_0))$, where $\delta = (1/4)d(r(x_0), y) > 0$ and for a set $A S_{\delta}(A)$ denotes the δ -neighborhood of A. By (2), choose a sufficiently large integer n_i such that $x_{n_i} \in W$, $d(r, r_{n_i}) < \delta$ and $V_{n_i} \subset S_{\delta}(y)$.

Then $r(x_{n_i}) \in S_{\hat{o}}(r(x_0))$ and $r_{n_i}(x_{n_i}) \in \overline{V}_{n_i} \subset S_{\hat{o}}(y)$, hence

$$d(r(x_0), y) \leq d(r(x_0), r(x_{n_i})) + d(r(x_{n_i}), r_{n_i}(x_{n_i})) + d(r_{n_i}(x_{n_i}), y)$$

 $<\!\delta\!+\!\delta\!+\!\delta\!=\!3\delta$, which implies the contradiction.

Let $0 < \varepsilon < Min \{\varepsilon_1, \varepsilon_2\}$. Since $\lim [r_i^{-1}(\bar{V}_i)] = r^{-1}(y)$, there is a natural number i_0 such that

(5)
$$r_i^{-1}(\bar{V}_i) \subset S_{\varepsilon/3}(r^{-1}(y))$$
 for each $i \ge i_0$.

By Lemma 1, there is a natural number $m \ge i_0$ such that there is a map $g_m: Y \rightarrow Q$ such that

(6) $d(i_X, g_m r_m) < \varepsilon/3$, where $i_X : X \rightarrow Q$ is the inclusion.

Then we shall show

(7)
$$g_m(V_m) \subset g_m(\bar{V}_m) \subset U$$
.

In fact, for each $x \in r_m^{-1}(\vec{V}_m)$, by (5) and (6) we have

$$d(g_m r_m(x), r^{-1}(y)) \leq d(g_m r_m(x), x) + d(x, r^{-1}(y)) < \varepsilon/3 + \varepsilon/3 < \varepsilon,$$

hence $g_m r_m(x) \in S_{\varepsilon}(r^{-1}(y)) \subset U$.

Now, take two AR-spaces M and N containing V_{m+1} and V_m respectively as closed subsets, and let $\hat{i}: M \to N$ be an extension of the inclusion $i: V_{m+1} \to V_m$. Since U is an ANR, by (7) there is an open neighborhood V'_m of V_m in N and an extension $\hat{g}_m: V'_m \to U$ of $g_m | V_m: V_m \to U$. Since $V_{m+1}, V_m \in LC^n$, by Lemma 2 and (3) there is an open neighborhood V'_{m+1} of V_{m+1} in M such that

(8) $\pi_k(\hat{i} | V'_{m+1}) : \pi_k(V'_{m+1}) \longrightarrow \pi_k(V'_m)$ is a zero-homomorphism for each $0 \le k \le n$.

Let U' be an open neighborhood of $r_m^{-1}(\bar{V}_{m+2})$ in Q such that $U' \subset U$ and there is an extension $\hat{r}_m : U' \to V'_{m+1}$ of $r_m | r_m^{-1}(\bar{V}_{m+2}) : r_m^{-1}(\bar{V}_{m+2}) \to V_{m+1}$. Since $\hat{g}_m \hat{i} \hat{r}_m | r_m^{-1}(\bar{V}_{m+2}) = g_m i r_m | r_m^{-1}(\bar{V}_{m+2})$, by (6) there is an open neighborhood $U'' \subset U'$ of $r_m^{-1}(\bar{V}_{m+2})$ in Q such that

(9) $d(\hat{g}_m \hat{i} \hat{r}_m | U'', i_{U'}) < \varepsilon$, where $i_{U'}: U'' \rightarrow U$ is the inclusion.

By (9), we have

(10) $\hat{g}_m \hat{i} \hat{r}_m | U'' \simeq i_{U'}$ in U.

By (8) and (10), $\pi_k(i_U): \pi_k(U'') \rightarrow \pi_k(U)$ is a zero-homomorphism. Note that

 $r^{-1}(y) \subset r_m^{-1}(\bar{V}_{m+2}) \subset U''$. Hence $r^{-1}(y) \in AC^n$.

If Y is a compact ANR, the proof is similar. This completes the proof.

REMARK 1. Note that if n=0, Theorem implies the result of J. Ford and J. W. Rogers.

By Theorem and [3, Theorem 8.5], we have the following.

COROLLARY 1. If a map $r: X \to Y$ between compacta is refinable and $Y \in LC^n$ $(n \ge 1)$, for any compactum $B \subset Y$ and $x \in r^{-1}(B)$, $pro \cdot \pi_k(r \mid r^{-1}(B))$: $pro \cdot \pi_k(r^{-1}(B), x) \to pro \cdot \pi_k(B, r(x))$ is an isomorphism of pro-groups for $1 \le k \le n$ and an epimorphism of pro-groups for k=n+1.

COROLLARY 2. Let X and Y be compacta and $r: X \rightarrow Y$ be a refinable map. If $Y \in LC^n$ and $Fd(Y) \leq n$ (see [2]), then r induces a shape equivalence.

PROOF. By [5, Theorem 1.8], $\operatorname{Fd}(X) = \operatorname{Fd}(Y) \le n$. By Theorem and the result of [3, Theorem 8.14], [6] or [8], r induces a shape equivalence.

COROLLARY 3. If a map $r: X \rightarrow Y$ between compacta is refinable and Y is a finite-dimensional **ANR**, then r induces a hereditary shape equivalence, i.e., for any compactum B, $r|r^{-1}(B): r^{-1}(B) \rightarrow B$ induces a shape equivalence.

COROLLARY 4. Let r be a map from a $(S_1 \vee S_2 \vee \cdots \vee S_n)$ -like continuum onto $S_1 \vee S_2 \vee \cdots \vee S_n$, where $S_1 \vee S_2 \vee \cdots \vee S_n$ denotes the one point union of n circles. Then the followings are equivalent.

- (1) r is refinable.
- (2) r is a **CE-**map.
- (3) r is monotone.

PROOF. By [5, Theorem 3.2], (1) and (3) are equivalent. By Theorem, (1) implies (2). Obviously (2) implies (3).

REMARK 2. In the statement of Theorem, we cannot replace AC^n by C^n (*n*-connected).

REMARK 3. By [4, p. 264], there is a refinable map $r: X \to Y$ such that X, Y are 1-dimensional continua and $r^{-1}(y_0) \notin AC^0$ for some $y_0 \notin Y$ (cf. [5, Example 2.7]). In [5, Example 2.6], for each $n=1, 2, 3, \cdots$, we constructed a refinable map $r: X \to Y$ such that X and Y are n-dimensional continua, $Y \in LC^{n-1}$ and $Sh(X) \neq Sh(Y)$. In fact, for some $y_0 \notin Y$, $r^{-1}(y_0) \notin AC^n$. Thus those show that in the statement of Theorem we cannot replace LC^n by LC^{n-1} . Moreover, in [5, Example 2.8], we constructed a near homeomorphism $h: X \to X$ such that X is a *n*-dimensional continuum, $X \in LC^{n-1}$ and r does not induce a shape equivalence. In fact, for some $y_0 \in X$, $r^{-1}(y_0) \notin AC^n$.

References

- [1] Borsuk, K., Concerning homotopy properties of compacta, Fund. Math. 62 (1968) pp. 223-254.
- [2] Borsuk, K., Theory of shape, PWN. Warszawa 1975.
- [3] Dydak, J., The Whitehead and Smale theorems in shape theory, Dissertationes Math. 1979.
- [4] Ford, J. and Rogers, J.W., Refinable maps, Collq. Math. 39 (1978) pp. 263-269.
- [5] Kato, H., Refinable maps in the theory of shape, to appear in Fund. Math.
- [6] Kodama, Y., Decomposition spaces and the shape in the sense of Fox, Fund. Math. 97 (1977) pp. 200-208.
- [7] Lončar, I. and Mardešič, S., A note on inverse sequences of ANRs, Glasnik Math.
 3 (23) (1968) pp. 41-48.
- [8] Sher, R.B., Realizing cell-like maps in Euclidean space, Gen. Top. and its appl. 2 (1972) pp. 75-89.

Institute of Mathematics University of Tsukuba Ibaraki, Japan