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ON EXTENSIONS OVER ARTINIAN RINGS
WITH SELF-DUALITIES

(Dedicated to Professor Goro Azumaya on his 60th birthday)

By

Kunio YAMAGATA

Let $A$ be a left and right Artinian ring with an A-bimodule $Q$ such that
both $AQ$ and $Q_{A}$ are finitely generated, soc $(Q_{A})\cong top(A_{A})$ and soc $(_{A}Q)\cong top(_{A}A)$ .
Such a bimodule $Q$ is called a QF-module [3]. Let $T$ be a ring extension over
$A$ with kernel $Q[2]$ . In this note we study when a given right T-module $M$

has a waist $MQ$ .
In \S 1 we will recall definitions and some properties of extensions from [3].

In \S 2 it will be given some criteria for a module $M$ to have a waist $MQ$ . In
particular, for the trivial extension $T=A\ltimes Q$ it will be proved that an inde-
composable projective right T-module $P$ has a waist $PQ$ if and only if every
nonzero morphism from $P/PQ$ to any indecomposable projective right A-module
is monomorphic; if and only if the indecomposable projective left T-module
$Hom_{T}(P, T)$ has a waist $QHom_{T}(P, T)$ .

Throughout this paper, Artinian rings will be left and right Artinian and
all modules will be finitely generated.

1. Preliminaries

Let $A$ and $T$ be Artinian rings such that there is a ring epimorphism
$\rho$ : $T\rightarrow A$ . Then a given A-bimodule $Q$ may be regarded as a T-bimodule, by
setting

$t_{1}qt_{2}=\rho(t_{1})q\rho(t_{2})$ , $q\in Q$ , $t_{1},$ $t_{2}\in T$ .
Moreover, if $Ker\rho$ is isomorphic to $Q$ as T-bimodules, $T$ is said to be an ex-
tension over $A$ with kernel $Q[2]$ . In this case, $Q$ will be identified with the
ideal $Ker\rho$ in $T$, if there is no confusion. In the following we will recall from
[3] some properties of the extensions. Let $T$ be an extension over $A$ with

$\kappa$

$\rho$

kernel $Q:0\rightarrow Q\rightarrow T\rightarrow A\rightarrow 0$ . Then $Q^{2}=0$ in $T$, and hence every idempotent in
$A$ is lifted to $T$. Let $e$ and $e$ be idempotents in $A$ and $T$, respectively, such
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that $\rho(e)=e$ . Then for any A-module $M$, it holds that $me=me$ for $m\in M$, by
regarding $M$ as a T-module via $\rho$ . If $\rho$ is a splittable ring epimorphism, $T$ is
called a trivial extension of $A$ by $Q$ and it is isomorphic to the following extension

$0\rightarrow Q\rightarrow^{\kappa_{0}}A\ltimes Q\rightarrow^{\rho_{0}}A-0$ ,

where $A\ltimes Q$ is a direct sum $A\oplus Q$ as additive groups with the multiplication

$(a_{1}, q_{1})(a_{2}, q_{2})=(a_{1}a_{2}, a_{1}q_{2}+q_{1}a_{2})$

for $a_{1},$ $a_{2}\in A$ and $q_{1},$ $q_{2}\in Q$ , and

$\kappa_{0}(q)=(0, q)$ , $\rho_{0}(a, q)=a$ for $a\in A,$ $q\in Q$ .

LEMMA 1.1. [3, 1.2]. Let $A$ be an Artinian ring with a QF-module Q. Then
every extension over $A$ with kernel $Q$ is quasi-Frobenius.

By this lemma, for any extension $T$ there is a duality between $mod T$ and
$mod T^{O}$ , where $mod T$ denotes the category of finitely generated right T-modules
and $T^{o}$ the opposite ring of $T,$ .more precisely $Hom_{T}$ $( , T)$ defines a duality
between $mod T$ and $mod T^{o}$ . We denote the functor $Hom_{T}$ $( , T)$ by $($ $)^{*}$ .
Let $M$ be a right T-module and $I$ a subset of $T$. Then $l_{M}(I)$ denotes the (left)

annihilator of $I$ in $M$. Similarly, for a left T-module $N,$ $r_{N}(I)$ denotes the (right)

annihilator of $I$ in $N$. The following lemma is easily proved (cf. [3, 2.1]).

LEMMA 1.2. Let $A$ be an Artinian ring with a QF-module $Q$ and $T$ an
extension over $A$ with kernel Q. Then for a projective right T-module $P$, the
following statements hold.

(1) $PQ$ is injective in $mod A$ .
(2) $PQ=l_{P}(Q)$ .
(3) $P/PQ$ is projective in $mod A$ .

2. Modules $M$ with waists $MQ$ .

To begin with, we will prove that a QF-module is just the module which
defines a duality between finitely generated left A-modules and finitely generated
right A-modules.

PROPOSITION 2.1. Let $A$ be an Artinian ring with a QF-module Q. Then
$Hom_{A}$ $( , Q)$ defines a duality between $mod$ $A$ and $mod$ A. Moreover, for every
extension $T$ over $A$ with kernel $Q$ , the functor $Hom_{T}$ $( , T)$ is equivalent to
$Hom_{A}$ $( , Q)$ on $mod$ $A$ and $mod$ A.
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PROOF. Let $T$ be an extension over $A$ with kernel $Q$ (for the existence, con-
sider the trivial extension $T=A\ltimes Q$). Then it suffices to show that $Hom_{T}$ $( , T)$

and $Hom_{A}$ $( , Q)$ are coincident on $mod A$ , because $T$ induces a duality between
$mod T$ and $mod T^{o}$ by Lemma 1.1 and, for finitely generated A-module
$X,$ $Hom_{T}(X, T)$ is also finitely generated. Let $M$ be in $mod$ $A$ and $f\in Hom_{T}(M, T)$ .
Then $f(M)Q=0$ because $MQ=0$ in $mod T$. Hence it follows from Lemma 1.2
that $f(M)\subset Q$ . Therefore $Hom_{T}(M, T)=Hom_{T}(M, Q)$ . Moreover it is clear that
$Hom_{T}(M, Q)=Hom_{A}(M, Q)$ .

In the following, $A$ means an Artinian ring with a QF-module $Q$ and $T$ an
extension over $A$ with kernel $Q$ :

$0-QTA-0\underline{\kappa}\underline{\rho}$ .
$u$ $v$

LEMMA 2.2. For a finitely generated right T-module $M$, let $ 0\rightarrow MQ\rightarrow M\rightarrow$

$M/MQ\rightarrow 0$ be the canonically exact sequence. Then the following assertions hold.
(1) $MQ=0$ if and only if $QM^{*}=0$ .
(2) $(M/MQ)^{*}\cong r_{M^{*}}(Q)$ by $v^{*},$ $M^{*}/r_{M}(Q)\cong(MQ)^{*}$ by $u^{*}$ .
(3) If $f:M\rightarrow N$ is a morphism in $mod T$, then $f(M)=(f^{*}(N^{*}))^{*}$ .

PROOF. (1) Since $($ $)^{*}$ defines a duality between $mod T$ and $mod T^{O}$ , it
suffices to show that $MQ=0$ implies $QM^{*}=0$ . Let $f\in M^{*}$ . Then $f(M)Q=f(MQ)$

$=0$ . Hence $f(M)\subset l_{T}(Q)$ . It then follows from Lemma 1.2 that $f(M)\subset Q$ . Hence
$Qf(M)=0$ , because $Q^{2}=0$ in $T$. This means that $Qf=0$ .

$u$ $v$

(2) Applying the duality $($ $)^{*}$ to the sequence $0\rightarrow MQ\rightarrow M\rightarrow M/MQ\rightarrow 0$ , we
have the canonically exact sequence

$v^{*}$ $u^{*}$

$0-(M/MQ)^{*}-M^{*}-(MQ)^{*}-0$ .
We may regard $v^{*}$ as an inclusion. It then follows from (1) that $(M/MQ)^{*}$

$\subset r_{M^{*}}(Q)$ . Conversely, let $f\in r_{M^{*}}(Q)$ . Since $Qf=0,$ $Qf(M)=0$ . Namely, $f(M)$

$\subset r_{T}(Q)=Q$ by Lemma 1.2. On the other hand, $u^{*}(f)(MQ)=f(MQ)=f(M)Q$ .
Hence $u^{*}(f)(MQ)\subset Q^{2}=0,$ $i$ . $e$ . $u^{*}(f)=0$ . This shows that $f\in(M/MQ)^{*}$ . Thus we
have shown that $(M/MQ)^{*}=r_{M^{*}}(Q)$ . The rest of assertions is an easy consequence

of the above sequence.
(3) Let $g:M\rightarrow f(M),$ $h:f(M)\rightarrow N$ be the canonical epimorphism and mono-

morphism such that $f=hg$ . Then $f^{*}=g^{*}h^{*}$ and $g^{*}:$ $f(M)^{*}\rightarrow M^{*}$ is monomophic

and $h^{*}:$ $N^{*}\rightarrow f(M)^{*}$ is epimorphic. Hence $f^{*}(N^{*})=h^{*}(N^{*})=f(M)^{*}$ . Thus we
have that $f(M)=(f^{*}(N^{*}))^{*}$ .
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COROLLARY 2.3. Let $P$ be an indecomposable projective right T-module.
Then the following diagram is commutative.

$0$ $(P/PQ)^{*}$ $P^{*}$ $(PQ)^{*}$ $0$

$\int$ 1

$0-QP^{*}$ $p*$ $P^{*}/QP^{*}$ $0$ ,

where all morphisms are canonical.

PROOF. This is immediately obtained from Lemma 1.2 and Proposition 2.1.

Let $M$ be a module and $W$ a nonzero proper submodule. Then $W$ is said
to be a waist in $M$ if $X\subset W$ or $W\subset X$ for every submodule $X$ of $M[1]$ , or we
say that $M$ has a waist $W$.

PROPOSITION 2.4. Let $M$ be a finitely generated right T-module such that
$MQ\neq 0$ . Then $MQ$ is a waist in $M$ if and only if $r_{M^{s}}(Q)$ is a waist in $M^{*}$ .
Particularly, for a primitive idempotent $e$ in $T,$ $eQ$ is a waist in $eT$ if and only

if $Qe$ is a waist in $Te$ .

PROOF. This is easily proved by Lemma 2.2 and [1, Proposition 4].

PROPOSITION 2.5. For any finitely generated indecomposable right T-module
$M$ with $MQ\neq 0$ , the following statements are equivalent.

(1) $MQ$ is a waist in $M$.
(2) For any morphism $f:M\rightarrow N$ in $mod T$ such that $f(MQ)\neq 0$ ,

$f(M)/f(MQ)\cong M/MQ$ .
(3) For any morphism $g:L\rightarrow M^{*}$ in $mod T^{o}$ such that $g(QL)\neq 0$,

$r_{g(L)}(Q)=r_{M^{r}}(Q)$ .
Moreover, if $MQ=l_{M}(Q)$ , the above statements are equivalent to

(4) For any morphism $f:N\rightarrow M$ in $mod T$ such that $f(NQ)\neq 0$ ,

$l_{J^{(N)}}(Q)=MQ$ .

PROOF. (1) $\Rightarrow(2)$ : Let $f:M\rightarrow N$ be a morphism in $mod T$ with $f(4tIQ)\neq 0$ .
Then $MQ$ a $Kerf$ and so $Kerf\subset MQ$ , because $MQ$ is a waist in $M$ by assumption.
Hence $f^{-1}(f(MQ))=MQ+Kerf=MQ$ . Thus we have that $M/MQ\cong f(M)/f(MQ)$ .

(2) $\Rightarrow(3)$ : Let $g:L\rightarrow M^{*}$ in $mod T^{o}$ with $g(QL)\neq 0$ . By applying the
functor $($ $)^{*}$ , we have a morphism $g^{*}:$ $M\rightarrow L^{*}$ in $mod T$ such that $g^{*}(MQ)\neq 0$ .
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For, $g(L)=(g^{*}(M))^{*}$ by (2.2). Since $Qg(L)\neq 0,$ $(g^{*}(M)Q)^{*}\neq 0$ . Hence $g^{*}(M)Q\neq 0$ .
Now then, it follows from the assumption that

$g^{*}(M)/g^{*}(MQ)\cong M/MQ$ .
Again, applying $($ $)^{*}$ , we have from Lemma 2.2 that

$r_{g^{*}(M)^{*}}(Q)=r_{M^{*}}(Q)$ .
On the other hand, it follows from Lemma 2.2 that $g^{*}(M)^{*}=g(L)$ . As a con-
sequence, we have $r_{g(L)}(Q)=r_{M^{*}}(Q)$

(3) $\Rightarrow(1)$ : From Proposition it suffices to show that $r_{M^{*}}(Q)$ is a waist in $M^{*}$ .
Let $X$ be a submodule of $M^{*}$ such that $x_{(}Ir_{M^{*}}(Q)$ . We have only to show that
$r_{M^{*}}(Q)\subset X$. Let $p:P\rightarrow X$ be a projective cover of $M$. Since $X\propto r_{M^{*}}(Q)$ , there is
then an indecomposable summand $P^{\prime}$ of $P$ such that $p(P,)$ a $r_{M^{r}}(Q)$ . Let $f:P^{\prime}$

$p^{\prime}$

$-X\subset M^{\prime}$ , where $p^{\prime}$ is the restriction of $p$ on $P^{\prime}$ . Then $f(QP^{\prime})\neq 0$ . Because,

if $f(QP^{\prime})=0$ , then $f(P^{\prime})\subset r_{X}(Q)\subset r_{M^{*}}(Q)$ , and hence $p(P^{\prime})=p^{\prime}(P^{\prime})\subset r_{M}(Q)$ , which
contradicts the cohice of $P^{\prime}$ . Thus we can apply the assumption (3) to $f$, so
that we have that $r_{f(P^{\prime})}(Q)=r_{M^{*}}(Q)$ . Therefore $r_{M^{*}}(Q)\subset f(X)$ , and hence $r_{M^{*}}(Q)\subset X$.

For the condition (4), suppose that $MQ=l_{M}(Q)$ . It then follows from Pro-
position 2.4 that the (1) is equivalent to that $QM^{*}$ is a waist in $M^{*}$ . Hence we
know that the (4) is equivalent to the (1) in view of the equivalence of (1) and (3).

Let $A$ be of finite representation type and $T$ an extension which is also of
finite representation type. Then the number of isomorphism classes of inde-
composable right T-modules are twice as many the number of isomophism classes
of indecomposable right A-modules if and only if $l_{M}(Q)$ is injective in $mod A$

for any indecomposable right T-module $M$ with $MQ\neq 0[3,2.12]$ . For such an
extension $T$ we have the following.

COROLLARY 2.6. Let $T$ be an extension over $A$ with kernel Q. Suppose that
for any indecomposable right T-module $M$ with $MQ\neq 0,$ $l_{M}(Q)$ is injective in $mod A$ .
Then every indecomposable projective right T-module $P$ has a waist $PQ$ . In
particular, if $A$ is hereditary, every indecomposable projective right T-module $P$

has a waist $PQ$ .

PROOF. Let $P$ be an indecomposable projective right T-module. Let $f:M\rightarrow P$

be a morphism in $mod T$ such that $f(MQ)\neq 0$ . Then $f(M)$ is indecomposable,

because soc $(f(M))=soc(P)$ which is simple. Hence, by assumption, $l_{f(M)}(Q)$ is
injective in $mod A$ . Since $PQ$ is indecomposable injective in $mod$ $A$ by Proposi-

tion 2.1, it therefore follows that $l_{f(M)}(Q)=PQ$ . This shows that $PQ$ is a waist
in $P$ by Proposition 2.5, because $PQ=l_{p}(Q)$ by Proposition 2.1.
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LEMMA 2.7. Let $R$ be a semi-perfect ring and $e$ a primitive idempotent in $R$ .
Then the following statements are equivalent.

(1) For any primitive idempotent $e^{\prime}$ in $R$ , every nonzero morphism from $eP$

to $e^{\prime}R$ is monomorphic.
(2) For any primitive idempotent $e^{\prime}$ in $R$ , every nonzero morphism from $Re$

to $Re^{\prime}$ is monomorphic.

PROOF. It is sufficient to show that (1) $\Rightarrow(2)$ by symmetry. Assume (1) and

let $f:Re\rightarrow Re^{\prime}$ be a nonzero morphism. Since the ring $R$ is semi-perfect, every

finitely generated left module has a projective cover which is isomorphic to a
direct sum of primitive left ideals. Hence, to show that $f$ is monomorphic it
suffices to show that for a nonzero morphism $g:Re^{\prime\prime}\rightarrow Re$ , where $e^{\prime\prime}$ is a primi-
tive idempotent, $fg:Re^{\prime\prime}\rightarrow Re^{\prime}$ is nonzero. Applying $Hom_{R}( , R)$ , we have the

commutative diagram:

$Hom_{R}(Re^{\prime}, R)\underline{Hom_{R}(f,R)}Hom_{R}(Re, R)Hom_{R}\underline{Hom_{R}(g,R)}(Re^{\prime}, R)$

$\Vert 1$

$\int$ $\Vert$ I

$e^{\prime}R-\underline{\sim}eR^{-}e^{\prime}R\hat{f}\hat{g}$

where $f$ and $\hat{g}$ are canonical morphisms which make the diagram commutative.
By assumption $\hat{g}$ is a monomorphism, and so $\hat{g}\hat{f}$ is nonzero. Hence
$Hom_{R}(g, R)Hom_{R}(f, R)\neq 0$ , which clearly means that $fg\neq 0$ .

THEOREM 2.8. Let $A$ be an Artinian ring with a QF-module $Q$ , and $T=A\ltimes Q$

the trivial extension with the canonical epimorphism $\rho$ : $T\rightarrow A$ . Let $e$ be a primi-
tive idempotent in $T$ and $e=\rho(e)$ . Then the following statements are equivalent.

(1) $eQ$ is a waist in $eT$.
(2) If $f:eA\rightarrow e^{\prime}A$ is a nonzero morphism for a primitive idempotent $e^{\prime}$ , then

$f$ is a monomorphism.
(3) If $f:Ae\rightarrow Ae^{\prime}$ is a nonzero morphism for a primitive idempotent $e^{\prime}$ ,

then $f$ is a monomorphism.
(4) $eQ=aQ$ for any nonzero element $a\in eA$ .

PROOF. (1) $\Rightarrow(2)$ : Let $f:eA\rightarrow e^{\prime}A$ be a nonzero morphism, where $e^{\prime}$ is a
primitive idempotent in $A$ , and let $e^{\prime}$ be an idempotent in $T$ such that $e^{\prime}=\rho(e^{\prime})$ .
Let $g:eT\rightarrow e^{\prime}T$ be an extension of $f$. Then $g(eQ)\neq 0$ . Because, if $g(eQ)=0$ to
the contrary, then $g(eT)\subset e^{\prime}Q$ by Lemma 1.2. Hence $f=0$ , a contradiction. It
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therefore follows from Proposition 2.5 that

$eT/eQ\cong g(eT)/g(eQ)$ .

This means that $g(eT)/g(eQ)$ is projective in $mod A$ . Hence

$g(eT)/(e^{\prime}Q\cap g(eT))\cong g(eT)/g(eQ)$ .
On the other hand, $f(eA)\cong g(eT)/(e^{\prime}Q\cap g(eT))$ . Thus we know that $f(eA)$ is pro-
jective in $mod A$ . As a consequence, $f$ is monomorphic because $eA$ in indecom-
posable.

(2) $\Rightarrow(3)$ : This is proved in Lemma 2.7.
(3) $\Rightarrow(4)$ : It is sufficient to show that $eQ=eae^{\prime}Q$ for any $0\neq eae^{\prime}\in A$ , where

$e^{\prime}$ is a primitive idempotent in $A$ . Let $f:e^{\prime}Q\rightarrow eQ$ be a morphism defined by
$f(e^{\prime}x)=eae^{\prime}x$ for $x\in Q$ . Applying the duality $Hom_{A}$ $( , Q)$ (cf. Proposition 2.1),

we have

$Hom_{A}(eQ, Q)Hom_{A}\underline{Hom_{A}(f,Q)}(e^{\prime}Q, Q)$

{ 1

$AeAe^{\prime}\overline{\hat{f}}$

where $f;Ae\rightarrow Ae^{\prime}$ is a morphism which makes the diagram commutative. Since
$f$ is nonzero, it follows from (3) that $f$ is monomorphic, $i$ . $e$ . $f$ is epimorphic.
Hence we have $eQ=eae^{\prime}Q$ .

(4) $\Rightarrow(1)$ : Let $t\in eT/eQ$ . Since $T$ is the trivial extension $A\ltimes Q,$ $T$ is a
direct sum $A\oplus Q$ in $mod A$ (cf. \S 1). Let $t=(a, q)$ , where $a\in eA$ and $q\in eQ$ .
Then $a\neq 0$ by the choice of $t$ . Then clearly $aQ\subset tT$. By the assumption (4)

$aQ=eQ.$ Hence $tT\supset eQ$ , which shows that $eQ$ is a waist in $eT$.
Let $e$ be a primitive idempotent in $T$ such that $eQ$ is a waist in $eT$ and let

$e=\rho(e)$ . Then it is easy to see that there is some integer $m$ such that $eQ$

$=e$ rad $(T)^{m}$ (cf. [1, Proposition 1]). Hence it holds that

$e$ rad $(T)^{i}/e$ rad $(T)^{i+1}\cong e$ rad $(A)^{i}/e$ rad $(A)^{i+1}$ for $i<m$

$\cong eQ$ rad $(A)^{i-m}/eQ$ rad $(A)^{i+1-m}$ for $i\geqq m$ .
Thus Theorem 2.8 may be useful to calculate the trivial extensions of Artinian
rings with self-dualities.

COROLLARY 2.9. Let $A$ be an Artinian ring with a QF-module $Q$ and let
$T=A\ltimes Q$ be the trivial extension of $A$ by Q. Then the following statements are
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equivalent.
(1) Every indecomposable projective right T-module $P$ has a waist $PQ$ .
(2) Every nonzero morphism between indecomposable projective right A-

modules is monomorphic.
(3) Every submodule of any projective right A-module is a sum of projective

submodules.
(4) Every submodule of any indecomposable projective right A-module is a

sum of projective submodules.
(5) Every nonzero morphism between indecomposable projective $le\int t$ A-modules

is monomorphic.

PROOF. (1) $\Rightarrow(2)$ : This is clear from Theorem 2.6.
(2) $\Rightarrow(3)$ : Let $P$ be a projective right A-module and $M$ a nonzero submodule

of $P$. Let $P=\bigoplus_{i\in I}P_{i}$ , where each $P_{i}$ is indecomposable, and $p_{i}$ : $P\rightarrow P_{i}$ be the

projection. Since $M$ has a projective cover, it suffices to show that every non-
zero morphism $f:P^{\prime}\rightarrow M$ is monomorphic, where $P^{\prime}$ is indecomposable projective
in $mod A$ . Since $f(P^{\prime})\neq 0$ , there is $i$ such that $p_{i}f(P^{\prime})\neq 0$ . Then $p_{i}f:P^{\prime}\rightarrow P_{i}$ is
monomorphic by assumption, and so is $f$.

(3) $\Rightarrow(4)$ : This is trivial.
(4) $\Rightarrow(1)$ : Let $P$ be indecomposable projective in $mod T$. Then $P/PQ$ is

clearly indecomposable projective in $mod A$ . Now let $P/PQ\cong eA$ and $f:eA\rightarrow e^{\prime}A$

a nonzero morphism. Then $f(eA)$ is a sum of projective submodules by assump-
tion. Therefore $f(eA)$ itself is projective because it has the unique maximal
submodule, so that $f$ must be a monomorphism. Hence $PQ$ is a waist in $P$ by

Theorem 2.8.
(2) $\Leftarrow\ni(5)$ : This is an immediate consequence of Lemma 2.7.

EXAMPLE 2.10. In conclusion we will note that in Corollary 2.9 if $T$ is not
the trivial extension, the condition (1) does not necessarily imply the others.

Let $Z$ be the set of integers and $p$ a prime number $(p>1)$ . Let $A=Z/p^{2}z$

and $T=Z/p^{4}Z$. Then $A$ is a serial local Artinian ring, in particular, it is quasi-
Frobenius. It is then easy to see that $T$ is an extension over $A$ with kernel $Q$ ,

where $Q=Z/p^{2}Z$. $T$ is however not trivial. Since $T$ is serial local, it is clear
that the condition (1) in Corollary 2.9 holds, but the others do not hold.

REMARK. At the Second International Conference on Representations of
Algebras in Ottawa, the author heard from D. Simson that he had proved the



On extensions over Artinian rings with self-dualities 75

equivalence of (2) and (5) in Corollary 2.9 for arbitrary Artinial rings, which is
also obtained in our proof (cf. Lemma 2.7).
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