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ON EXTENSIONS OVER ARTINIAN RINGS
WITH SELF-DUALITIES

(Dedicated to Professor Goro Azumaya on his 60th birthday)

By

Kunio YAMAGATA

Let A be a left and right Artinian ring with an A-bimodule Q such that
both 4,Q and Q, are finitely generated, soc (Q,)=top(A4,) and soc (,Q)=top (LA).
Such a bimodule Q is called a QF-module [3]. Let T be a ring extension over
A with kernel Q [2]. In this note we study when a given right 7T-module M
has a waist MQ.

In §1 we will recall definitions and some properties of extensions from [3].
In §2 it will be given some criteria for a module M to have a waist MQ. In
particular, for the trivial extension T=AXQ it will be proved that an inde-
composable projective right T-module P has a waist PQ if and only if every
nonzero morphism from P/PQ to any indecomposable projective right A-module
is monomorphic; if and only if the indecomposable projective left 7T-moduiile
Homgy (P, T') has a waist Q Homy, (P, T). '

Throughout this paper, Artinian rings will be left and right Artinian and
all modules will be finitely generated.

1. Preliminaries

Let A and T be Artinian rings such that there is a ring epimorphism
p: T—A. Then a given A-bimodule Q may be regarded as a 7-bimodule, by
setting
hqt,=p(t)qp(t), q€Q, t, LET.

Moreover, if Ker p is isomorphic to Q as T-bimodules, T is said to be an ex-
tension over A with kernel Q [2]. In this case, Q will be identified with the
ideal Ker p in T, if there is no confusion. In the following we will recall from
[3] some properties of the extensions. Let T be an extension over A with

K
kernel Q: 0——+Q—>T—€A—>O. Then Q*=0 in 7, and hence every idempotent in
A is lifted to T. Let e and e be idempotents in A and T, respectively, such
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that p(e)=e. Then for any A-module M, it holds that me=me for meM, by
regarding M as a T-module via p. If p is a splittable ring epimorphism, 7T is
called a trivial extension of A by Q and it is isomorphic to the following extension

Ko Do
0—Q—AXQ—>A—0,
where AxQ is a direct sum APQ as additive groups with the multiplication

(ay, g1)(as, g2)=(a\a,, a:q,+q.as)
for a,, a,= A and q,, ¢g.=Q, and

£()=(0, ¢), poa, ¢y=a for acA, q=Q.

LEMMA 1.1. [3, 1.2]. Let A be an Artinian ring with a QF-module Q. Then

every extension over A with kernel Q is quasi-Frobenius.

By this lemma, for any extension T there is a duality between mod T and
mod 7°, where mod T denotes the category of finitely generated right 7T-modules
and T° the opposite ring of 7, .more precisely Hom; ( , T) defines a duality
between mod 7 and mod 7°. We denote the functor Homz( , 7T) by ( )*
Let M be a right T-module and I a subset of 7. Then I4(/) denotes the (left)
annihilator of I in M. Similarly, for a left T-module N, ry(I) denotes the (right)
annihilator of / in N. The following lemma is easily proved (cf. [3, 2.1]).

LEMMA 1.2. Let A be an Artinian ring with a QF-module Q and T an
extension over A with kernel Q. Then for a projective right T-module P, the
following statements hold.

(1) PQ 1is injective in mod A.

(2) PQ=IxQ).

(3) P/PQ is projective in mod A.

2. Modules M with waists MQ.

To begin with, we will prove that a QF-module is just the module which
defines a duality between finitely generated left A-modules and finitely generated
right A-modules.

PROPOSITION 2.1. Let A be an Artinian ring with a QF-module Q. Then
Hom, ( , Q) defines a duality between mod A and mod A°. Moreover, for every
extension T over A with kernel Q, the functor Homr( , T) is equivalent to
Hom,( , Q) on mod A and mod A°.
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Proor. Let T be an extension over A with kernel Q (for the existence, con-
sider the trivial extension T—=A X Q). Then it suffices to show that Homs( , T)
and Hom, ( , Q) are coincident on mod A, because T induces a duality between
mod 7 and mod 7° by and, for finitely generated A-module
X, Homr (X, T) is also finitely generated. Let M be in mod A and f€Hom; (M, T).
Then f(M)Q=0 because MQ=0 in mod 7. Hence it follows from
that f(M)CQ. Therefore Homy (M, T)=Hom; (M, Q). Moreover it is clear that
Hom; (M, Q)=Hom, (M, Q).

In the following, A means an Artinian ring with a QF-module @ and T an
extension over A with kernel Q:

0—Q—>T—A—>0.

LEMMA 2.2. For a finitely generated right T-module M, let 0—>MQ-E>ME>
M/MQ—0 be the canonically exact sequence. Then the following assertions hold.

(1) MQ=0 if and only if QM*=0.

(2) (M/MQY*=ry(Q) by v*, M*/ry(Q)=(MQ)* by u*.

(3) If f: M—N is a morphism in mod T, then f(M)=(f*(N*))*.

Proor. (1) Since ( )* defines a duality between mod T and mod 7°, it
suffices to show that MQ=0 implies QM*=0. Let feM*. Then f(M)Q=s(MQ)
=0. Hence f(M)CI(Q). It then follows from [Lemma 1.2 that f(M)CQ. Hence
Qf(M)=0, because Q?>=0 in 7. This means that Qf=0.

(2) Applying the duality ( )* to the sequence 0—>MQiM—v+M/MQ—>0, we

have the canonically exact sequence

v* u*
00— (M/MQ)* —> M* — (MQ)* — 0.

We may regard v* as an inclusion. It then follows from (1) that (M/MQ)*
Cru(Q). Conversely, let fery(Q). Since Qf=0, Qf(M)=0. Namely, f(M)
Cry(Q=Q by Lemma 1.2 On the other hand, w*(f)(MQ)=f(MQ)=f(M)Q.
Hence u*(f)(MQ)CQ?*=0, i.e. u*(f)=0. This shows that fe(M/MQ)*. Thus we
have shown that (M/MQ)*=r,(Q). The rest of assertions is an easy consequence
of the above sequence.

(3) Let g: M—f(M), h: f(M)— N be the canonical epimorphism and mono-
morphism such that f=hg. Then f*=g*h* and g*: f(M)*— M* is monomophic
and h*: N*—f(M)* is epimorphic. Hence f*(N*)=h*(N*)=f(M)*. Thus we
have that f(M)=(F*(N*))*.
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COROLLARY 2.3. Let P be an indecomposable projective right T-module.

Then the following diagram is commutative.

0 —= (P/PQ)* o = (PQ)* 0

§ §

0 = QP* e P* = P*/QP*

where all morphisms are canonical.

ProoOF. This is immediately obtained from Lemma 1.2 and [Proposition 2.1

Let M be a module and W a nonzero proper submodule. Then W is said
to be a waist in M if XCW or WCX for every submodule X of M [1], or we
say that M has a waist W. '

PROPOSITION 2.4. Let M be a finitely generated right T-module such that
MQ+#0. Then MQ is a waist in M if and only if ry(Q) is a waist in M*,
Particularly, for a primitive idempotent e in T, eQ is a waist in eT if and only
if Qe is a waist in Te.

ProoF. This is easily proved by and [1, Proposition 4].

PROPOSITION 2.5. For any finitely generated indecomposable right T-module
M with MQ+#0, the following statements are equivalent.

(1) MQ is a waist in M.

(2) For any morphism f: M— N in mod T such that f(MQ)+0,

SM)/f(MQ)y=M/MQ.
(3) For any morphism g: L—M* in mod T° such that g(QL)+0,
rey(Q)=ry(Q).

Moreover, if MQ=1,(Q), the above statements are equivalent to
(4) For any morphism f: N—M in mod T such that f(NQ)+0,

lf(N)(Q):MQ .

Proor. (1)>(2): Let f: M— N be a morphism in mod T with f(MQ)=0.
Then MQaKer f and so Ker fCMQ, because MQ is a waist in M by assumption.
Hence f-'(f(MQ)=MQ+Ker f=MQ. Thus we have that M/MQ=f(M)/f(MQ).

(2)>(3): Let g: L->M* in mod T° with g(QL)#0. By applying the
functor ( )*, we have a morphism g*: M—L* in mod T such that g*(MQ)=0.
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For, g(L)=(g*(M))* by (2.2). Since Qg(L)+0, (g*(M)Q)*+#0. Hence g*(M)Q+0.
Now then, it follows from the assumption that

g¥M)/ g MQ)=M/MQ .
Again, applying ( )* we have from that
rg'(M)*(Q):rM‘(Q) .

On the other hand, it follows from that g*(M)*=g(L). As a con-
sequence, we have r, ., (Q)=ry(Q)

(3)=>(1): From Proposition it suffices to show that ry.(Q) is a waist in M*.
Let X be a submodule of M* such that Xar,.(Q). We have only to show that
ry(Q)CX. Let p: P— X be a projective cover of M. Since Xary.(Q), there is
then an indecomposable _summand P’ of P such that p(P,)dry(Q). Let f: P’

/

—> XCM’, where p’ is the restriction of p on P’. Then f(QP’)+0. Because,
if f(QP)=0, then f(P)Crx(Q)Cru(Q), and hence p(P)=p'(P)Cru(Q), which
contradicts the cohice of P’. Thus we can apply the assumption (3) to f, so
that we have that r;»,(Q)=r,(Q). Therefore ry.(Q)C f(X), and hence r,(Q)C X.

For the condition (4), suppose that MQ=I[,(Q). It then follows from Pro-
position 2.4 that the (1) is equivalent to that QM* is a waist in M*. Hence we
know that the (4) is equivalent to the (1) in view of the equivalence of (1) and (3).

Let A be of finite representation type and 7 an extension which is also of
finite representation type. Then the number of isomorphism classes of inde-
composable right T-modules are twice as many the number of isomophism classes
of indecomposable right A-modules if and only if I,(Q) is injective in mod A
for any indecomposable right T-module M with MQ=+0 [3, 2.12]. For such an
extension T we have the following.

COROLLARY 2.6. Let T be an extension over A with kernel Q. Suppose that
for any indecomposable right T-module M with MQ+0, ly(Q) is injective in mod A.
Then every indecomposable projective right T-module P has a waist PQ. In
particular, if A is hereditary, every indecomposable projective right T-module P
has a waist PQ.

PROOF. Let P be an indecomposable projective right T-module. Let f: M—P
be a morphism in mod 7 such that f(MQ)+#0. Then f(M) is indecomposable,
because soc (f(M))=soc (P) which is simple. Hence, by assumption, I, (Q) is
injective in mod A. Since PQ is indecomposable injective in mod A by Proposi-
tion 2.1, it therefore follows that I,,(Q)=PQ. This shows that PQ is a waist
in P by Proposition 2.5, because PQ=I(Q) by [Proposition 2.1\
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LEMMA 2.7. Let R be a semi-perfect ring and e a primitive idempotent in R.
Then the following statements are equivalent.

(1) For any primitive idempotent ¢’ in R, every nonzero morphism from eP
to e’R is monomorphic. '

(2) For any primitive idempotent ¢’ in R, every nonzero morphism from Re

to Re’ is monomorphic.

ProorF. It is sufficient to show that (1)=>(2) by symmetry. Assume (1) and
let /: Re— Re’ be a nonzero morphism. Since the ring R is semi-perfect, every
finitely generated left module has a projective cover which is isomorphic to a
direct sum of primitive left ideals. Hence, to show that f is monomorphic it
suffices to show that for a nonzero morphism g: Re” — Re, where ¢” is a primi-
tive idempotent, fg: Re” — Re’ is nonzero. Applying Homg( , R), we have the

commutative diagram :

HomR (f, R) Homp (g: R)
Homg (Re’, R) > Homp (Re, R) > Hompz (Re”, R)

§ § f

e’R " > ¢R > ¢"R,
J g
where f and g are canonical morphisms which make the diagram commutative.
By assumption g is a monomorphism, and so gf is nonzero. Hence

Hompg (g, R)Hompg (f, R)#0, which clearly means that fg+0.

THEOREM 2.8. Let A be an Artinian ring with a QF-module Q, and T=AXQ
the trivial extension with the canonical epimorphism p: T— A. Let e be a primi-
tive idempotent in T and e=p(e). Then the following statements are equivalent.

(1) eQ is a waist in eT.

(2) If f: eA—e’A is a nonzero morphism for a primitive idempotent e’, then

f is a monomorphism.

(3) If f: Ae— Ae’ is a nonzero morphism for a primitive idempotent e’,

then f is a monomorphism.

(4) eQ=aQ for any nonzero element aceA.

PrROOF. (1)=>(2): Let f: eA—e’A be a nonzero morphism, where ¢’ is a
primitive idempotent in A, and let e’ be an idempotent in T such that ¢'=p(e’).
Let g: eT—e’T be an extension of f. Then g(eQ)+#0. Because, if g(eQ)=0 to
the contrary, then g(eT)Ce’Q by Lemma 1.2. Hence f=0, a contradiction. It
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therefore follows from [Proposition 2.5 that
eT/eQ=g(eT)/g(eQ).
This means that g(eT)/g(eQ) is projective in mod A. Hence

geT)/(e'QNg(eT))=g(eT)/g(eQ).

On the other hand, f(eA)=g(eT)/(e’'QNg(eT)). Thus we know that f(eA) is pro-
jective in mod A. As a consequence, f is monomorphic because eA in indecom-
posable.

(2)>(3): This is proved in Lemma 2.7

(B)>@): It is sufficient to show that eQ=eae’Q for any O0+#cae’= A, where
e’ is a primitive idempotent in A. Let f: ¢’Q—eQ be a morphism defined by

fle'x)=eae’x for x=@Q. Applying the duality Hom,( , Q) (cf. Proposition 2.1)),

we have
Homy (eQ, Q) Hom. (f, &) »>Hom, (¢’Q, Q)
{ $
Ae " = Ae’ '
7

where f: Ae— Ae’ is a morphism which makes the diagram commutative. Since
f is nonzero, it follows from (3) that f is monomorphic, i.e. f is epimorphic.
Hence we have eQ=cae’Q.

4)=>(): Let tceT/eQ. Since T is the trivial extension AXQ, T is a
direct sum A@PQ in mod A (cf. §1). Let t=(a, q), where a=eA and g<eQ.
Then a+0 by the choice of t. Then clearly aQCt7T. By the assumption (4)
a@Q=e@. ‘Hence tTDeQ, which shows that eQ is a waist in eT.

Let e be a primitive idempotent in 7T such that eQ is a waist in eT and let
e=p(e). Then it is easy to see that there is some integer m such that eQ
=erad (T)™ (cf. [1, Proposition 1]). Hence it holds that

erad (T)/erad (T)***=erad (A)/erad (4A)**! for i<m
~eQrad (A "™/eQ rad (A)**-™ for i=m.

Thus may be useful to calculate the trivial extensions of Artinian
rings with self-dualities.

COROLLARY 29. Let A be an Artinian ring with a QF-module Q and let
T=AXQ be the trivial extension of A by Q. Then the following statements are
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equivalent.

(1) Every indecomposable projective right T-module P has a waist PQ.

(2) Every mnonzero morphism between indecomposable projective right A-
modules is monomorphic.

(3) Every submodule of any projective right A-module is a sum of projective
submodules.

(4) Every submodule of any indecomposable projective right A-module is a
sum of projective submodules.

(5) Every nonzero morphism between indecomposable projective left A-modules
1s monomorphic.

PrROOF. (1)>>(2): This is clear from Theorem 2.6.
(2)=>(3): Let P be a projective right A-module and M a nonzero submodule
of P. Let P:@IP,-, where each P; is indecomposable, and p;: P— P; be the
e

projection. Since M has a projective cover, it suffices to show that every non-
zero morphism f: P’— M is monomorphic, where P’ is indecomposable projective
in mod A. Since f(P’)#0, there is i such that p;f(P’)#0. Then p,f: P’—P; is
monomorphic by assumption, and so is f.

(3)=>(4): This is trivial.

(4)>(1): Let P be indecomposable projective in mod 7. Then P/PQ is
clearly indecomposable projective in mod A. Now let P/PQ=¢A and f: eA—e'A
a nonzero morphism. Then f(eA) is a sum of projective submodules by assump-
tion. Therefore f(eA) itself is projective because it has the unique maximal
submodule, so that f must be a monomorphism. Hence PQ is a waist in P by
Theorem 2.8

(2)©(5): This is an immediate consequence of

ExaMPLE 2.10. In conclusion we will note that in if T is not
the trivial extension, the condition (1) does not necessarily imply the others.

Let Z be the set of integers and p a prime number (p>1). Let A=Z/p’Z
and T=Z/p'Z. Then A is a serial local Artinian ring, in particular, it is quasi-
Frobenius. It is then easy to see that T is an extension over A with kernel Q,
where Q=Z/p*Z. T is however not trivial. Since T is serial local, it is clear

that the condition (1) in Corollary 2.9 holds, but the others do not hold.

REMARK. At the Second International Conference on Representations of
Algebras in Ottawa, the author heard from D. Simson that he had proved the
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equivalence of (2) and (5) in [Corollary 2.9 for arbitrary Artinial rings, which is
also obtained in our proof (cf. Lemma 2.7).
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