
TSUKUBA J. MATH.
Vol. 4 (1980). 21–66

THE PRINCIPAL $2$-BLOCKS OF FINITE GROUPS
WITH ABELIAN SYLOW $2$-SUBGROUPS

By

Shigeo KOSHITANI

Introduction

Let $G$ be a finite group, $p$ a prime number and $B$ a p-block of $G$ with
defect group $D$ . There is an important problem in representation theory of
finite groups that is to give a description of $B$ when the structure of $D$ is
given. Concerning with this problem there are some successful results. E. C.

Dade [9] proved his results when $D$ is cyclic. R. Brauer [6] proved his results

for the case where $p=2$ and $D$ is dihedral by making use of his powerful

methods ([3], [4], [5]). Using Brauer’s methods J. B. Olsson [18] obtained his
results when $p=2$ and $D$ is generalized quaternion or quasidihedral. In [3, IV]

R. Brauer investigated $B$ when $p=2$ and $D$ is elementary abelian of order 4.
In the present paper we study $B$ when $p=2$ and $B$ is the principal 2-block

of $G$ with an abelian Sylow 2-subgroup $P$. Let $e(G)=|N_{G}(P):C_{G}(P)|$ . Let
$B_{0}(G)$ be the principal 2-block of $G$ , and let $O(G)$ and $O^{\prime}(G)$ be the maximal
normal subgroup of $G$ of odd order and the minimal normal subgroup of $G$ of

odd index, respectively. By the results on finite groups with abelian Sylow

2-subgroups ([2], [16], [17], [20], [21]), the structure of $O^{\prime}(G/O(G))$ is almost

determined. In general, however, $B_{0}(G)$ is different from $B_{0}(S)$ where $S=$

$O^{\prime}(G/O(G))$ . The main purpose of this paper is to investigate the relation

between $B_{0}(G)$ and $B_{0}(S)$ . In particular we shall prove that $B_{0}(G)$ is isomorphic

to $B_{0}(S)$ for the cases where $e(G)=e(S)=prime,$ $9$ and 21.
In section 1 we shall state several lemmas and propositions which will be

useful for our aim. One of them is Alperin’s theorem on isomorphic principal

blocks [1]. Let $S=O^{\prime}(G/O(G))$ . In section 2 we shall consider $B_{0}(G)$ for the

case where $e(G)=2^{m}-1$ . In particular, we shall prove that if $G$ is nonsolvable

and if $e(G)$ is prime then $e(G)=2^{m}-1$ for some $m\geqq 2$ and $B_{0}(G)$ is isomorphic

to $B_{0}(S)$ . In sections 3 and 4 we shall investigate $B_{0}(G)$ for the cases when

$e(G)=9$ and 21, respectively. Indeed, we shall prove that if $e(G)=e(S)=9$ or 21

then $B_{0}(G)$ is isomorphic to $B_{0}(S)$ . It is noted that when $e(G)\neq e(S),$ $B_{0}(G)$ is

not necessarily isomorphic to $B_{0}(S)$ . In sections 5 and 6 we shall determine
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$B_{0}(G)$ when $P$ is elementary abelian of order 8 and 16, respectively.
Throughout this paper we shall use the following notation. When $S$ is a

subset of $G,$ $N_{G}(S)$ and $C_{G}(S)$ denote the normalizer and the centralizer of $S$ in
$G$ , respectively. Specially, for each $x\in G$ we write $C_{G}(x)$ for $C_{G}(\{x\})$ . If
$x,$ $y\in G$ , we write $x^{y}$ for $y^{-1}xy$ . When $S$ is a subset of $G,$ $\langle S\rangle$ denotes the
subgroup of $G$ generated by $S$ . When $x_{1},$ $\cdots,$ $x_{n}$ are elements of $G$ and $S$ is a
subset of $G$ , we also write $\langle x_{1}, \cdots, x_{n}, S\rangle$ for the subgroup of $G$ generated by
$\{x_{1}, \cdots , x_{n}\}\cup S$ . The cyclic group of order $n$ is denoted $Z_{n}$ for a positive
integer $n$ . We write $G^{\prime}$ and $Z(G)$ for the commutator subgroup of $G$ and the
center of $G$ , respectively. We denote by $Aut(G)$ the group of all automorphisms
of $G$ . Let us denote by $O_{p},(G)$ the maximal normal subgroup of $G$ of order
prime to $p$ , and by $O^{p^{l}}(G)$ the minimal normal subgroup of $G$ of index prime
to $p$ . In particular, for $p=2$ we write $O(G)$ and $O^{\prime}(G)$ for $O_{2^{l}}(G)$ and $O^{2^{\prime}}(G)$ ,
respectively. When $P$ is an abelian Sylow 2-subgroup of $G$ , we write $e(G)$ (or

shortly e) for $|N_{G}(P):C_{G}(P)|$ . When $B$ is a p-block of $G$ , let us denote by $Irr(B)$

the set of all irreducible complex characters in $B$ , by $IBr(B)$ the set of all
irreducible Brauer characters in $B$ , by $k(B)$ the number of elements of $Irr(B)$ , by
$k^{\prime}(B)$ the number of elements of $Irr(B)$ with degree one, and by $l(B)$ the number
of elements of $IBr(B)$ . We write $B_{0}(G)$ (or shortly $B_{0}$ ) for the principal p-block of
$G$ , and for each $x\in G$ we write $b_{x}$ for $B_{0}(C_{G}(x))$ . When $\psi_{1}$ and $\psi_{2}$ are complex
characters of $G$ , let $(\psi_{1}, \psi_{2})=(1/|G|)\Sigma_{g\in G}\psi_{1}(g)\psi_{2}(g^{-1})$ , that is to say, $(\psi_{1}, \psi_{2})$ is
the inner product of $\psi_{1}$ and $\psi_{2}$ . We write $1_{G}$ for the trivial complex (or Brauer)

character of $G$ . When $H$ is a normal subgroup of $G,$ $\psi|_{H}$ denotes the restric-
tion of $\psi$ to $H$ for a character $\psi$ of $G,$ $W|_{H}$ denotes the restriction of IV to $H$

for a representation $W$ of $G$ , and $I_{G}(\tilde{\psi})$ denotes the inertial group of $\tilde{\psi}$ in $G$ for
a character $\tilde{\psi}$ of $H$, that is to say, $I_{G}(\tilde{\psi})=\{g\in G|\tilde{\psi}^{g}=\tilde{\psi}\}$ , where $\tilde{\psi}^{g}$ is the
conjugate of $\tilde{\psi}$ .

1. Preliminaries

In this section we state some lemmas and propositions which will be needed
for our aim. We fix a prime number $p$ and we consider p-modular representa-
tions of a finite group $G$ .

LEMMA 1.1. Let $G$ be a finite group with a Sylow p-subgroup $P$, and let
$K=O_{p^{\prime}}(G),\overline{G}=G/K$ and $\overline{P}=(PK)/K$. Then we have the following.

(i) $B_{0}(G)=B_{0}(\overline{G})$ .
(ii) $N_{G}(P)/C_{G}(P)\cong N_{\overline{G}}(\overline{P})/C_{\overline{G}}(\overline{P})$ .
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PROOF. We get (i) by [10, Theorem 65.2] and $[11, V(4.3)]$ . Since $N_{\overline{G}}(\overline{P})=$

$(N_{G}(P)\cdot K)/K$ from [15, I 7.7 Hilfssatz $(c)$] and since $C_{\overline{G}}(\overline{P})=(C_{G}(P)\cdot K)/K$ from
[19, Lemma 2.2], we easily get (ii).

We shall frequently use the next four propositions in order to prove our
main theorems.

PROPOSITION 1.2. (Brauer). Let $G=QC_{G}(Q)$ where $Q$ is a p-group, and let
$\overline{G}=G/Q$ . Then $l(B_{0}(G))=l(B_{0}(\overline{G}))$ .

PROOF. See [10, Lemma 64.5 and Theorem 65.2(2)].

PROPOSITION 1.3 (Brauer). Let $H$ be a normal subgroup of G. If $W$ is an
ordinary or modular irreducible representation in $B_{0}(G)$ , then any irreducible

constituent of $W|_{H}$ .lies in $B_{0}(H)$ .

PROOF. This is the special case of [3, I Lemma 1].

PROPOSITION 1.4 (Brauer). Let $H$ be a normal subgroup of G. Then for any
$\tilde{\chi}\in Irr(B_{0}(H))$ , there is some $\chi\in Irr(B_{0}(G))$ such that $(\chi|_{H},\tilde{\chi})\neq 0$ .

PROOF. This is the special case of [3, II Lemma 1].

PROPOSITION 1.5 (Brauer). Let $P$ be a Sylow p-subgroup of $G$ , and let
$P\cdot C_{G}(P)=P\times V$ . Then $k^{\prime}(B_{0}(G))=|G:VG^{\prime}|$ .

PROOF. See [3, IV Proposition $(4G)$].

Next, we state Alperin’s theorems on isomorphic principal p-blocks which

are very important for our aim.
Let $F$ be an algebraically closed field of characteristic $p$ and $FG$ the group

algebra of $G$ over $F$. Let $H$ be a normal subgroup of $G$ witb $p$ I $|G:H|$ . We

write $B_{0}(G)\cong B_{0}(H)$ , if the category of all finitely generated FG-modules in
$B_{0}(G)$ is isomorphic to the category of all finitely generated FH-modules in
$B_{0}(H)$ and if the isomorphism is given by the restriction from $G$ to $H$ (cf. [1]).

PROPOSITION 1.6 (Alperin). Let $F$ be as above, and let $P$ be a Sylow p-sub-

group of G. If $H$ is a normal subgroup of $G$ which satisfies the conditions that
$p\parallel|G:H|,$ $G/H$ is solvable and $G=H\cdot C_{G}(P)$ , then we get the following.

(i) $B_{0}(G)\cong B_{0}(H)$ .
(ii) $A_{0}(G)\cong A_{0}(H)$ as F-algebras, where $A_{0}(G)$ and $A_{0}(H)$ are the block ideals
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of $FG$ and $FH$ corresponding to $B_{0}(G)$ and $B_{0}(H)$ , respectively.

PROOF. See [1, Theorems 1 and 2].

COROLLARY 1.7 (Alperin). Let $H$ be a normal subgroup of $G$ of prime index
$q$ with $q\neq p$ . Let $B_{0}=B_{0}(G)$ and $b_{0}=B_{0}(H)$ . Assume that $k(B_{0})=k(b_{0})$ and $l(B_{0})$

$=l(b_{0})$ , and that $I_{G}(\tilde{\chi})=G$ for every $\tilde{\chi}\in Irr(b_{0})$ . Then we have the following.
(i) The correspondence $Irr(B_{0})\rightarrow Irr(b_{0})$ given by $x\leftrightarrow x|_{H}$ is a bijection.
(ii) The correspondence $IBr(B_{0})\rightarrow IBr(b_{0})$ given by $\phi-\phi|_{H}$ is a bijection.
(iii) $B_{0}\cong b_{0}$ .

PROOF. (i) Since $I_{G}(\tilde{\chi})=G$ for every $\tilde{\chi}\in Irr(b_{0})$ , the correspondence is sur-
jective by Clifford’s theorem, [8, (53.17) Theorem] and Propositions 1.3 and 1.4.
Since $k(B_{0})=k(b_{0})$ , we obtain (i).

(ii) By (i), [1, Lemma 1] holds. Thus, by the proof of [1, Lemma 3], the
correspondence is surjective. Hence (ii) holds since $l(B_{0})=l(b_{0})$ .

(iii) Since [1, Lemmas 1 and 3] hold, we get (iii) by the proofs of Alperin’s

theorems [1, Theorems 1 and 2].

In the remainder of this paper we assume $p=2$ and let $G$ and $P$ be a finite
group and its abelian Sylow 2-subgroup of order $2^{n}$ , respectively. We use the
notation $B_{0}$ and $e$ for $B_{0}(G)$ and $e(G)$ , respectively.

COROLLARY 1.8 (Alperin). Let $H$ be a normal subgroup of $G$ of odd prime
index. Let $B_{0}=B_{0}(G)$ and $b_{0}=B_{0}(H)$ . Assume that $k(B_{0})=k(b_{0})$ and $l(B_{0})=l(b_{0})$ ,

and that $H$ has an involution $x$ such that $\chi(x)=\pm 1$ for every $\chi\in Irr(B_{0})$ and
$\tilde{\chi}(x)=\tilde{x}^{J}(x)=\pm 1$ for all $\tilde{\chi},\tilde{\chi}^{\prime}\in Irr(b_{0})$ with $\tilde{\chi}(1)=\tilde{\chi}^{\prime}(1)$ . Then $B_{0}\cong b_{0}$ .

PROOF. By Clifford’s theorem and Proposition 1.3, we have $\chi|_{H}\in Irr(b_{0})$ for
all $\chi\in Irr(B_{0})$ . Thus, by Proposition 1.4, $I_{G}(\tilde{\chi})=G$ for all $\tilde{\chi}\in Irr(b_{0})$ . Thus the
corollary is proved by Corollary 1.7 (iii).

LEMMA 1.9. Let $P$ be an abelian Sylow 2-subgroup of G. Suppose that $k(B_{0})$

$=|P|$ and that $G$ has an involution $x$ with $l(b_{x})=1$ . Then $\chi(x)=\pm 1$ for all
$\chi\in Irr(B_{0})$ .

PROOF. Since $l(b_{x})=1,$ $b_{x}$ has the unique Cartan invariant $|P|$ . Hence, by

[10, Theorems 63.3(2), 63.2 and 65.4], we get $\sum\chi(x)^{2}=|P|$ where the sum runs
through all $\chi\in Irr(B_{0})$ . By [4, II (7A) and $(4C)$], $\chi(x)$ is a nonzero integer for
every $\chi\in Irr(B_{0})$ since $|x|=2$ . Therefore, the assumption $k(B_{0})=|P|$ implies the
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lemma.

PROPOSITION 1.10 (Bender, Janko, Janko-Thompson, Walter, Ward). If $G$

has abelian Sylow 2-subgroups, then $O^{\prime}(G/O(G))$ is a direct product of an abelian

2-group and simple groups of one of the following types;

(1) the special linear group $SL(2,2^{n})$ for $n\geqq 2$ ,

(2) the projective special linear group $L_{2}(q)$ for $q>3$ with $q\equiv 3$ or 5 (mod8),

(3) the Janko’s first simple group $J_{1}$ ,

(4) the simple group $R(q)$ of $Ree$ type.

PROOF. For groups of types (1) and (2), see [14, p. 40]. For $J_{1}$ see [16],

and for $R(q)$ see [21]. The proposition is $obtain^{\backslash }ed$ from [2], [16], [17], [20]

and [21].

In the rest of this paper we use the notation $SL(2,2^{n}),$ $L_{2}(q),$ $J_{1}$ and $R(q)$

as in Proposition 1.10 (cf. [13, p. 415]). We also use the notation $GL(m, 2)$ for

the general linear group (cf. [14, p. 40]).

The next lemma shows that Brauer’s conjecture on heights of irreducible
complex characters in p-blocks with abelian defect groups is affirmative for the

principal 2-blocks of finite groups with abelian Sylow 2-subgroups.

LEMMA 1.11. If $G$ has abelian Sylow 2-subgroups, then all irreducible complex

characters in $B_{0}(G)$ have height zero.

PROOF. We may assume $0(G)=1$ by Lemma 1.1. Let $H$ be a normal sub-

group of $G$ of odd index. If $\chi\in Irr(B_{0}(G))$ , then there is some $\tilde{\chi}\in Irr(B_{0}(H))$

with $\chi(1)=m\tilde{x}(1)$ for a positive integer $m$ from Clifford’s theorem and Proposi-

tion 1.3. By [8, (53.17) Theorem], $m$ divides $|G:H|$ . This shows that if $\tilde{\chi}(1)$

is odd then $\chi(1)$ is also odd. Thus, we may assume $0^{\prime}(G)=G$ . Then, by Pro-

position 1.10, we can write $G=Q\times(\Pi S_{i})$ where $Q$ is an abelian 2-group and

each $S_{i}$ is a simple group of one of the following types;

(i) $SL(2,2^{n})$ for $n\geqq 2$ ,

(ii) $L_{2}(q)$ for $q>3$ with $q\equiv 3$ or 5 $(mod 8)$ ,

(iii) $J_{1}$ ,
(iv) $R(q)$ .

When $S_{i}$ is of type (i) or (ii), every $\chi\in Irr(B_{0}(S_{i}))$ has odd degree from [10,

Theorems 38.2 and 38.1]. When $S_{i}$ is of type (iii) or (iv), every $\chi\in Irr(B_{0}(S_{i}))$

has odd degree from [16, Lemma 5.1] and [21, Chap. I], respectively. These

show that every $\chi\in Irr(B_{0}(G))$ has odd degree. This completes the proof.
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The next three lemmas are useful in order to obtain $e=e(G)$ .

LEMMA 1.12. Let $P$ be a Sylow 2-subgroup of $G$ .
(i) If $G=SL(2,2^{n})$ for $n\geqq 2$ , then $P$ is elementary abelian of order 2 and

$N_{G}(P)/C_{G}(P)$ is cyclic of order $2^{n}-1$ .
(ii) If $G=L_{2}(q)$ for $q>3$ with $q\equiv 3$ or 5 (mod8), then $P$ is noncyclic of

order 4 and $N_{G}(P)/C_{G}(P)$ is cyclic of order 3.
(iii) If $G=J_{1}$ or $R(q)$ , then $P$ is elementary abelian of order 8 and

$N_{G}(P)/C_{G}(P)$ is noncyclic of order 21.

PROOF. (i) By [14, Theorems 2.8.1 and 2.8.3], $P$ is elementary abelian of
order $2^{n}$ . Let $q=2^{n}$ , and let $F_{q}$ be the finite field of $q$ elements. We may

assume that $P=\{\left(\begin{array}{ll}1 & 0\\f & 1\end{array}\right)|f\in F_{q}\}$ (cf. the proof of [14, Theorem 2.8.3]). Clearly,

$C_{G}(P)=P$. Let $u$ be a generator of the multiplicative group $F_{q}-\{0\}$ , and let

$s=\left(\begin{array}{lll}u & 0 & \\0 & u & -1\end{array}\right)$ in $G$ . Then, $ N_{G}(P)=\langle P, s\rangle$ and $s$ has order $q-1$ . Hence we get

that $N_{G}(P)/P$ is cyclic of order $q-1$ .
(ii) $P$ is noncyclic of order 4 from [14, Lemma 15.1.1]. Hence $Aut(P)$ is

isomorphic to the symmetric group of degree 3. Since $G$ is not 2-nilpotent, we
get (ii).

(iii) If $G=J_{1}$ , we obtain (iii) from [16, VI p. 160]. Assume $G=R(q)$ . By

[21, p. 63], $P$ is elementary abelian of order 8 and $|N_{G}(P):C_{G}(P)|=21$ . Then
we know that $N_{G}(P)/C_{G}(P)$ is noncyclic since $Aut(P)\cong GL(3,2)cGL(4,2)\cong A_{8}$

from [15, II 2.5 Satz] where $A_{8}$ is the alternating group of degree 8.

LEMMA 1.13. (i) $GL(4,2)\cong A_{8}$ , the alternating group of degree 8.
(ii) If $H$ is a subgroup of $A_{8}$ of odd order, then $|H|=1,3,5,7,9,15$ or 21.
(iii) $A_{8}$ has subgroups of orders 1, 3, 5, 7, 9, 15 and 21, and the subgroups of

order 9 and the subgroups of order 21 are noncyclic.

PROOF. (i) We have already showed (i) in the proof of Lemma 1.12(iii).

(ii) Since $|A_{8}|=2^{6}\cdot 3^{2}\cdot 5\cdot 7$ , $|H|=1,3,5,7,9,15,21$ , 35,45, 63, 105 or 315.
Since the groups of order 35 are cyclic, $|H|\neq 35$ . By elementary calculations,
$A_{8}$ has no subgroups of order 45, so that $|H|\neq 45$ . Similarly, $|H|\neq 63$ . If $|H|$

$=105$ , then $H$ has an element of order 35. Evidently, this is a contradiction.
Hence $|H|\neq 105$ . If $|H|=315$, then $H$ has an element of order 35, and this is a
contradiction. So that $|H|\neq 315$ .

(iii) By Sylow’s theorem, $A_{8}$ has subgroups of orders 3, 5, 7 and 9. Since
$A_{8}$ has no elements of order 9, Sylow 3-subgroups of $A_{8}$ are noncyclic of order
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9. If $G=SL(2,2^{4})$ , then $P$ is elementary abelian of order 16 and $N_{G}(P)/C_{G}(P)$ is
cyclic of order 15 from Lemma 1.12(i). Thus, by (i), $A_{8}$ has subgroups of order
15. Let $ H=\langle(124)(536), (1234567)\rangle$ . Then $H$ is a noncyclic subgroup of $A_{8}$ of
order 21. Since $A_{8}$ has no elements of order 21, all subgroups of $A_{8}$ of order
21 are noncyclic.

LEMMA 1.14. (i) If $H$ is a subgroup of $GL(3,2)$ of odd order, then $|H|=$

$1,3,7$ or 21.
(ii) $GL(3,2)$ has subgroups of orders 1, 3, 7 and 21, and the subgroups of

order 21 are noncyclic.

PROOF. (i) By [10, Lemma 35.2(1)], $|GL(3,2)|=2^{3}\cdot 3\cdot 7$ . So that we easily

get (i).

(ii) By the proof of (i) and Sylow’s theorem, $GL(3,2)$ has subgroups of
orders 3 and 7. By Lemma 1.12(iii), $GL(3,2)$ has noncyclic subgroups of order
21. Since $GL(3,2)c_{>}GL(4,2)$ , all subgroups of $GL(3,2)$ of order 21 are non-
cyclic from Lemma 1.13(i) and (iii).

The next two lemmas are useful in order to determine $B_{0}$ when Sylow

2-subgroups of $G$ are elementary abelian of order 8 or 16.

LEMMA 1.15. Let $P$ be an abelian Sylow 2-subgroup of $G$ , and let $B_{0}=B_{0}(G)$ .
Assume that $G$ has an involution $x$ with $l(b_{x})=1$ .

(1) If $|P|=8$ , then $k(B_{0})=8$ .
(2) If $|P|=16$ , then $k(B_{0})=8$ or 16.

PROOF. Let $\{\chi_{1}, \cdot. \chi_{k(B_{0})}\}=Irr(B_{0})$ . Since $l(b_{x})=1$ , by [10, Theorems 63.2
and 65.4], for each $\chi_{i}$ let $d_{i1}^{x}$ be the generalized decomposition number of $B_{0}$

relative to $x$ . By Lemma 1.11 and [4, II (7A) and $(4C)$], every $d_{i1}^{x}$ is an odd
integer. Since $b_{x}$ has the unique Cartan invariant $|P|$ , by [10, Theorem 63.3],

$\sum_{i=1}^{k(B_{0})}(d_{iJ}^{x})^{2}=|P|$ . These imply (1) and (2).

LEMMA 1.16. Let $G=L_{2}(q)$ for $q>3$ with $q\equiv 3$ or 5 (mod8), and let $B_{0}=$

$B_{0}(G)$ . Then we have the following.
(i) $l(B_{0})=3$ and the degrees of all irreducible Brauer characters in $B_{0}$ are

1, $(q-1)/2$ and $(q-1)/2$ .
(ii) The decomposition matrix of $B_{0}$ is as follows:
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100 100
010 110
001 101
111 111.

$3<q\equiv 3(mod 8)$ $3<q\equiv 5(mod 8)$

PROOF. Since $G$ is not 2-nilpotent, $l(B_{0})>1$ from [10, Corollary 65.3]. Thus

$k(B_{0})=4$ and $l(B_{0})=3$ by [3, IV Proposition $(7D)$].

Case 1. $3<q\equiv 3$ (mod s): Let $Irr(B_{0})=\{\chi_{1}, \cdots, \chi_{4}\}$ . By [10, Theorem 38.1],

we may assume $x_{1}=1_{G},$ $\chi_{2}(1)=x_{3}(1)=(q-1)/2$ and $\chi_{4}(1)=q$ . By [14, Theorem 2.8.2],

$G$ has a Frobenius subgroup $E$ of order $q(q-1)/2$ . We know the character

tables of $E$ and $L_{2}(q)$ from [10, Theorems 13.8 and 38.1]. Thus, by [8, \S 84

Exercise 2], $\chi_{2}|_{G_{0}}$ and $\chi_{3}|_{G_{0}}$ are both irreducible Brauer characters of $G$ , where
$\chi_{i}|_{G_{0}}$ is the restriction of $\chi_{i}$ to the set $G_{0}$ of all 2’-elements of $G$ . Since $x_{2}\neq x_{3}$

on $G_{0}$ , and since $x_{4}=x_{1}+x_{2}+x_{3}$ on $G_{0}$ , we know (i) and the decomposition matrix
of $B_{0}$ . Case 2. $3<q\equiv 5$ (mod8): As in Case 1 we can prove the lemma.

REMARK 1. If $G$ has an abelian Sylow 2-subgroup $P$ and if $e(G)=1$ , then
$B_{0}(G)\cong B_{0}(P)$ since $G$ is 2-nilpotent by [10, Theorem 18.7].

2. The case $e=2^{m}-1$

In this section we consider the case when $e=2^{m}-1$ for $m\geqq 2$ . We use the

notation $G,$ $P,$ $n,$ $e$ and $B_{0}$ as before, that is to say, $P$ is an abelian Sylow

2-subgroup of $G$ with order $2^{n}(n\geqq 2),$ $e=e(G)$ and $B_{0}=B_{0}(G)$ . To begin with
we state the next three lemmas which will be needed for the main result of
this section.

LEMMA 2.1. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong SL(2,2^{n})$ for some $n\geqq 3$ . Assume $e=2^{n}-1$ . Then $B_{0}\cong B_{0}(S)$ .

PROOF. We may assume $S=SL(2,2^{n})$ . There are an element $t\in N_{s}(P)$ and
an involution $x\in P$ such that $ N_{S}(P)=\langle t, C_{s}(P)\rangle$ and $P=\{1, x, x^{t}, \cdots , x^{\iota^{2^{n}-2}}\}$ (cf.

the proof of Lemma $1.12(i))$ . Since $e=2^{n}-1,$ $ N_{G}(P)=\langle t, C_{G}(P)\rangle$ . Clearly $y^{t}\neq y$

for all $y\in P-\{1\}$ , so that $N_{M}(P)=C_{M}(P)$ where $M=C_{G}(x)$ . Hence $M$ is 2-nil-
potent from [10, Theorem 18.7]. Thus, by [10, Corollary 65.3], $l(b_{x})=l(B_{0}(M))$

$=1$ . Now, we prove the lemma by induction on $|G|$ . Suppose $G\neq S$ . Since
$|G/S|$ is odd, by [12, Theorem], $G$ has a normal subgroup $H$ of odd prime
index 1 with $S\subseteqq H$. Let $b_{0}=B_{0}(H)$ . By induction, $b_{0}\cong B_{0}(S)$ . Hence, by the
character table of $SL(2,2^{n})$ [ $10$ , Theorem 38.2], we get
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1 $x$

$1_{H}$ 1 1
$\tilde{\theta}_{i}$ $2^{n}-1$ $-1$ for $i=1,$ $\cdots,$

$2^{n-1}$

$\tilde{\chi}_{j}$ $2^{n}+1$ 1 for $j=1,$ $\cdots,$
$2^{n-1}-1$

where $\{1_{H},\tilde{\theta}_{i},\tilde{\chi}_{j}|i=1, \cdots , 2^{n-1} ; j=1, \cdots , 2^{n-1}-1\}=Irr(b_{0})$ . Let $C_{G}(P)=P\times V$. If

$G=VH$, then $G=C_{G}(P)\cdot H$, so that $B_{0}\cong b_{0}$ from Proposition 1.6. Hence we may

assume $G\neq VH$. Then $H=VH$, so that $C_{H}(P)=P\times V$. Thus, by Proposition 1.5,
$k^{\prime}(b_{0})=|H:VH^{\prime}|$ . Since $b_{0}\cong B_{0}(S)$ , $k^{\prime}(b_{0})=1$ . Thus, $H=VH^{\prime}$ . This implies
$H=VG^{\prime}$ since $G/H$ is cyclic. Hence $k^{\prime}(B_{0})=l$ from Proposition 1.5. By Clifford’s
theorem and Proposition 1.3, for each $\chi\in Irr(B_{0})$ one of the following five cases
occurs:

(a) $\chi|_{H}=1_{H}$ ,

(b) $\chi|_{H}=\tilde{\theta}_{i}$ for some $i$ ,

(c) $\chi|_{H}=\tilde{\theta}_{i_{1}}+\cdots+\tilde{\theta}_{i_{t}}$ for $i_{1}<\cdots<i_{l}$ , and all $\tilde{\theta}_{i_{k}}$ are G-conjugate,
(d) $\chi|_{H}=\tilde{x}_{j}$ for some $j$ ,

(e) $x|_{H}=\tilde{x}_{j_{1}}+\cdots+\tilde{x}_{J\iota}$ for $j_{1}<\cdots j_{l}$ , and all $\tilde{\chi}_{j_{k}}$ are G-conjugate.

Since $k^{\prime}(b_{0})=1$ , for each $\chi\in Irr(B_{0})\chi(1)=1$ if and only if $\chi|_{H}=1_{H}$ . Let $r,$ $s,$ $u$

and $v$ be the numbers of $\chi\in Irr(B_{0})$ of types (b), (c), (d) and (e), respectively.
Since $l(b_{x})=1$ , as in the proof of Lemma 1.9, $\sum\chi(x)^{2}=2^{n}$ where the sum runs
through all $\chi\in Irr(B_{0})$ . This shows $l+r+sl^{2}+u+vl^{2}=2^{n}$ . On the other hand,

by Proposition 1.4, for every $\tilde{x}\in Irr(b_{0})$ there is some $\chi\in Irr(B_{0})$ with $(\chi|_{H},\tilde{\chi})\neq 0$ .
So that $k(b_{0})\leqq 1+r+sl+u+vl$ . Since $k(b_{0})=2^{n}$ , we have a contradiction. This
completes the proof.

REMARK 1. We can not remove the assumption $e=2^{n}-1$ in Lemma 2.1.

Indeed, let $S=SL(2,8)$ and $P=\{\left(\begin{array}{ll}1 & 0\\f & 1\end{array}\right)|f\in F_{8}\}$ where $F_{8}$ is the finite field of 8

elements. Let $u$ be a generator of the multiplicative group $F_{8}-\{0\}$ . There is

an automorphism $h$ of $F_{8}$ with $h(u)=u^{2}$ . For each $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in S$ let $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=$

$\left(\begin{array}{ll}h(a) & h(b)\\h(c) & h(d)\end{array}\right)$ . Then we can consider $h\in Aut(S)$ and $h|_{p}\in Aut(P)$ where $h|_{P}$ is

the restriction of $h$ to $P$. Hence there is a semi-direct product $G$ of its normal
subgroup $S$ by $\langle h\rangle$ . Then $O^{\prime}(G)=S=SL(2,8)$ and $e(G)=21\neq 2^{3}-1$ . By [10,

Theorem 38.2], $l(B_{0}(S))=7$ . But we shall afterwards show that $l(B_{0}(G))=5$ , and
this shows $B_{0}(G)\not\cong B_{0}(S)$ .

LEMMA 2.2. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong L_{2}(q)\times(P/(Z_{2}\times Z_{2}))$ for some $q>3$ with $q\equiv 3$ or 5 $(mod 8)$ , or $S\cong SL(2,2^{m})$
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$\times(P/(\frac{Z_{2}\times\cdots\times Z}{m}2))$
for some $m\geqq 3$ . Assume $e=e(S)$ . Then $k(B_{0})=2^{n}$ and $l(B_{0})=e$ .

PROOF. Let $L=L_{2}(q)$ for $m=2$ , and let $L=SL(2,2^{m})$ for $m\geqq 3$ . Let $R$ be

a Sylow 2-subgroup of $L$ . We can write $S=L\times Q$ and $P=R\times Q$ . We use
induction on $n$ . If $n=m=2$ , then the lemma is proved by [3, IV Proposition
(7D) $]$ . If $n=m\geqq 3$ , by Lemma 2.1, $B_{0}\cong B_{0}(S)$ , so that $k(B_{0})=2^{n}$ and $l(B_{0})=2^{n}-1$

$=2^{m}-1$ (cf. [10, Theorem 38.2]). Next, suppose $n>m$ . There are an element
$t\in N_{L}(R)$ and an involution $x\in R$ such that $ N_{L}(R)=\langle t, C_{L}(R)\rangle$ and $R=\{1,$ $x,$

$x^{t}$ ,
... $x^{t^{2^{m}-2}}$}. Since $e=e(S),$ $ N_{G}(P)=\langle t, C_{G}(P)\rangle$ . Let $Q=\{1=y_{1}, y_{2}, \cdots, y_{2^{n-m}}\}$ . Then,

by [10, Lemma 18.5], the G-conjugate classes of $P$ are as follows:

{1}
$\{y_{i}\}$ for $i=2,$ $\cdots,$

$2^{n- m}$

$\{xy_{i}, x^{t}y_{i}, \cdots, x^{t^{2^{m}-2}}y_{i}\}$ for $i=1,$ $\cdots$ , $2^{n- m}$ .
Then, by [10, Theorems 68.4 and 65.4],

$k(B_{0})=l(B_{0})+\Sigma_{i=2}^{2^{n-m}}l(b_{\nu i})+\Sigma_{i=1}^{2^{n-m}}l(b_{xyi})$ .

Fix any $i$ with $2\leqq i\leqq 2^{n- m}$ , and let $M=C_{G}(y_{i})$ . Since $y_{i}\in Z(S)$ , let $\overline{S}=S/\langle y_{i}\rangle$ .
Similarly, let $\overline{M}=M/\langle y_{i}\rangle,\overline{P}=P/\langle y_{i}\rangle$ and $\overline{Q}=Q/\langle y_{i}\rangle$ . Since $\overline{S}\cong L\times\overline{Q}$ , we get
$e(\overline{S})=e(L)=2^{m}-1$ . Since $\overline{S}\subseteqq\overline{M}$, the canonical homomorphism $ N_{\overline{S}}(\overline{P})/C_{\overline{S}}(\overline{P})\rightarrow$

$N_{\overline{M}}(\overline{P})/Cff(\overline{P})$ is monomorphic. This shows $(2^{m}-1)|e(\overline{M})$ . On the other hand,

by [15, I 7.7 Hilfssatz $(c)$], we get $ N_{\overline{M}}(\overline{P})=(N_{M}(P)\cdot\langle y_{i}\rangle)/\langle y_{i}\rangle$ . This implies that
the canonical homomorphism $N_{M}(P)/C_{M}(P)\rightarrow N_{\overline{M}}(\overline{P})/C_{\overline{M}}(\overline{P})$ is epimorphic. Hence
$e(\overline{M})|e(\lrcorner\lambda P)$ . Since $S\subseteqq M\subseteqq G$ and $e=e(S)=2^{m}-1$ , we have $e(M)=e(S)=2^{m}-1$ by

considering the canonical monomorphisms as above. Thus $e(\overline{M})=2^{m}-1$ . Hence
we get $l(B_{0}(\overline{M}))=2^{m}-1$ by induction. Thus $l(b_{yi})=l(B_{0}(M))=2^{m}-1$ from Pro-
position 1.2. We may assume $O(G)=1$ by Lemma 1.1. Since $Q\neq 1$ , there is an
involution $y_{j}\in Q$ . By $Z^{*}$-theorem [10, Theorem 67.1], $y_{j}\in Z(G)$ . Hence $l(B_{0})$

$=l(b_{y}j)=2^{m}-1$ . Next, we consider $l(b_{xyi})$ for each $i=1,$ $\cdots,$
$2^{n-m}$ . For an integer

$k$ it is seen that $(xy_{i})^{t^{k}}=xy_{i}$ if and only if $(2^{m}-1)|k$ . Hence $N_{U}(P)=C_{U}(P)$

where $U=C_{G}(xy_{i})$ . Then $U$ is 2-nilpotent from [10, Theorem 18.7], so that
$l(b_{xyi})=l(B_{0}(U))=1$ by [10, Corollary 65.3]. These imply $k(B_{0})=2^{n}$ .

LEMMA 2.3. Assume as in Lemma 2.2. Then $B_{0}\cong B_{0}(S)$ .

PROOF. We use the same notation as in the proof of Lemma 2.2. We
prove the lemma by induction on $|G|$ . Suppose $G\neq S$ . By [12, Theorem], $G$

has a normal subgroup $H$ of odd prime index with $S\subseteqq H$. Let $b_{0}=B_{0}(H)$ . By
induction, $b_{0}\cong B_{0}(S)$ . It follows from Lemma 2.2 that $k(B_{0})=k(b_{0})=2^{n}$ and that
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$l(B_{0})=l(b_{0})=2^{m}-1$ . By the proof of Lemma 2.2, there is an involution $x\in G$

with $l(b_{x})=1$ . Hence $\chi(x)=\pm 1$ for all $\chi\in Irr(B_{0})$ from Lemma 1.9. Thus, by
Corollary 1.8, it is sufficient to show that

if $\tilde{\chi}\tilde{\chi}^{J}\in Irr(b_{0})$ with $\tilde{\chi}(1)=\tilde{\chi}^{\prime}(1)$ ,
$(^{*})$

then $\tilde{\chi}(x)=\tilde{\chi}^{\prime}(x)=\pm 1$ .

Let $\{\theta_{1}, \cdots, \theta_{2^{n-m}}\}$ be the set of all irreducible complex characters of $Q$ .
Case 1. $m=2$ : By the character table of $L_{2}(q)$ (cf. [10, Theorem 38.1]), we

can write
1 $x$

$\zeta_{1}$ 1 1
$\zeta_{2}$ $(q+\epsilon)/2$ $-\epsilon$ $\epsilon=\left\{\begin{array}{l}-1ifq\equiv 3(mod8)\\1ifq\equiv 5(mod8)\end{array}\right.$

$\zeta_{3}$ $(q+\epsilon)/2$ $-\epsilon$

$\zeta_{4}$

$q$ $\epsilon$ ,

where $\{\zeta_{1}, \cdots, \zeta_{4}\}=Irr(B_{0}(L_{2}(q)))$ . Since $b_{0}\cong B_{0}(S)$ and since $S=L_{2}(q)\times Q$ , we
may write $Irr(b_{0})=\{\tilde{\chi}_{ij}|i=1, \cdots, 4;j=1, \cdots, 2^{n-2}\}$ such that $\tilde{\chi}_{ij}|_{S}=\zeta_{i}\theta_{j}$ for all
$i,$ $j$ . Then

$\tilde{\chi}_{ij}(1)=\left\{\begin{array}{l}1 fori=1\\(q+\epsilon)/2fori=2,3\\q fori=4\end{array}\right.$

and

$\tilde{\chi}_{ij}(x)=\left\{\begin{array}{l}1 fori=1\\-\epsilon fori=2,3\\\epsilon fori=4.\end{array}\right.$

These imply $(^{*})$ .
Case 2. $m\geqq 3$ : By the character table of $SL(2,2^{m})$ (cf. [10, Theorem 38.2]),

we know
1 $x$

1 1 1
$\tilde{\theta}_{i}$ $2^{m}-1$ $-1$ for $i=1,$ $\cdots,$

$2^{m- 1}$

$\tilde{\chi}_{j}$ $2^{m}+1$ 1 for $j=1,$ $\cdots,$
$2^{m-1}-1$

where $\{1, \tilde{\theta}_{i},\tilde{\chi}_{j}|i=1, \cdots, 2^{m-1} ; j=1, \cdots, 2^{m-1}-1\}=Irr(B_{0}(SL(2,2^{m})))$ . Using this
we can show $(^{*})$ as in Case 1. This completes the proof.

Now, the above lemmas imply the next main result of this section.
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THEOREM 2.4. Let $P$ be an abelian Sylow 2-subgroup of G. Assume that $e$

is prime. Then we have the following.
(1) $l(B_{0})=e$ . And if $G$ is nonsolvable. then $k(B_{0})=|P|$ .
(2) When $G$ is nonsolvable, one of the following holds:

(i) $e=3$ , and $B_{0}\cong B_{0}(L_{2}(q)\times(P/(Z_{2}\times Z_{2})))$ for some $q>3$ with $q\equiv 3$ or 5

$(mod 8)$ ,
(ii) $e=2^{m}-1$ for some $m\geqq 3$ , and

$B_{0}\cong B_{0}(SL(2,2^{m})\times(P/(\frac{Z_{2}\times\cdots\times Z}{m}2)))$
.

PROOF. We can assume $O(G)=1$ by Lemma 1.1. Let $S=O^{\prime}(G)$ . Firstly

assume that $S$ is solvable. Then $S=P$, so that $C_{G}(P)=P$. Hence $G$ is a semi-
direct product of its normal subgroup $P$ by $Z_{e}$ . This shows $l(B_{0})=e$ . So it is
enough to consider the case where $G$ is nonsolvable. Since $e$ is prime, $e=e(S)$ .
By Proposition 1.10 and Lemma 1.12, one of the following two cases occurs:

(i) $e(S)=3$ , and $S\cong L_{2}(q)\times(P/(Z_{2}\times Z_{2}))$ for some $q>3$ with $q\equiv 3$ or 5 $(mod 8)$ ,

(ii) $e(S)=2^{m}-1$ for some $m\geqq 3$ , and
$S\cong SL(2,2^{m})\times(P/(\frac{Z_{2}\times\cdots\times Z}{m}2))$

.

Hence we obtain (1) and (2) from Lemmas 2.2 and 2.3, respectively.

REMARK 2. For the case where $G$ is solvable, the latter half of Theorem
2.4(1) does not hold in general. Indeed, let $P$ be an elementary abelian group of

order 16 with $ P=\langle x, y, z, w\rangle$ . Let $t\in Aut(P)$ such that $x^{t}=y,$ $y^{t}=xy,$ $z^{t}=w$

and $w^{t}=zw$ . There is a semi-direct product $G$ of its normal subgroup $P$ by

$\langle t\rangle$ . Then $G$ is solvable and $e=|G:P|=3$ . Since $u^{t}\neq u$ for all $u\in P-\{1\}$ , we
shall show that $k(B_{0})=8\neq 16$ (cf. Proposition 6.1). As another example, let $P$ be

the same as above, and let $t\in Aut(P)$ with $|t|=5$ . If $G$ is a semi-direct product

of $P$ by $\langle t\rangle$ and $G$ is not the direct product $P\times Z_{5}$ , then we shall show that
$k(B_{0})=8\neq 16$ (cf. Proposition 6.3).

3. The case $e=9$

In this section we consider the case when $e=e(S)=9$ , where $S=O^{\prime}(G/O(G))$ .
We use the notation $G,$ $P,$ $n,$ $e$ and $B_{0}$ as in \S 2.

LEMMA 3.1. Let $P$ be an elementary abelian Sylow 2-subgroup of $G$ of order

16. If $e=9$ , then $k(B_{0})=16$ and $l(B_{0})=9$ .

PROOF. By Lemma 1.13, $Aut(P)$ has noncyclic Sylow 3-subgroups of order

9. Hence we may assume that $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ for some $s,$ $t\in N_{G}(P),$ $P=$

$\langle x, y, z, w\rangle,$ $x^{s}=x,$ $y^{s}=y,$ $z^{s}=w,$ $w^{s}=zw,$ $x^{t}=y,$ $y^{t}=xy,$ $z^{t}=z$ and $w^{t}=w$ . By

[10, Lemma 18.5 and Theorems 68.4 and 65.4],
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$k(B_{0})=l(B_{0})+l(b_{x})+l(b_{z})+l(b_{xz})$ .
Since $e(C_{G}(xz))=1,$ $l(b_{xz})=1$ from [10, Theorem 18.7 and Corollary 65.3]. Since
$e(C_{G}(x))=e(C_{G}(z))=3$ , it follows from Theorem 2.4 that $l(b_{x})=l(b_{z})=3$ . By [10,
Corollary 65.3], $l(B_{0})\geqq 2$ since $e=9$ . Hence, by Lemma 1.15(2), $k(B_{0})=16$ , so
that $l(B_{0})=9$ .

LEMMA 3.2. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong L_{2}(q)\times L_{2}(q^{\prime})\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}))$ for some $q,$ $q^{\prime}>3$ with $q\equiv 3$ or 5 $(mod 8)$

and $q^{\prime}\equiv 3$ or 5 (mod8). If $e=9$ , then $k(B_{0})=2^{n}$ and $l(B_{0})=9$ .

PROOF. We may assume $S=L_{2}(q)\times L_{2}(q^{\prime})\times Q$ where $Q\cong P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2})$ .
We use induction on $n$ . If $n=4$ , Sylow 2-subgroups of $G$ are elementary abelian
of order 16, so that the lemma is proved by Lemma 3.1. Suppose $n>4$ . Let
$R_{1}$ and $R_{2}$ be Sylow 2-subgroups of $L_{2}(q)$ and $L_{2}(q^{\prime})$ , respectively. We may
assume $P=R_{1}\times R_{2}\times Q$ . We can write $R_{1}=\{1, x, x^{s}, x^{s^{2}}\}$ for some $s\in L_{2}(q)$ and
for an involution $x\in R_{1}$ . Similarly, $R_{2}=\{1, y, y^{t}, y^{t^{2}}\}$ for some $t\in L_{2}(q^{\prime})$ and
for an involution $y\in R_{2}$ . Since $e=e(S)=9$ , we know that $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$

and that $N_{G}(P)/C_{G}(P)$ is elementary abelian of order 9. Let $Q=\{1=z_{1},$ $z_{2},$
$\cdots$ ,

$z_{2n-4}\}$ . By [10, Lemma 18.5], $\{z_{i}, xz_{i}, yz_{i}, xyz_{i}|i=1, \cdots, 2^{n-4}\}$ is the set of all
representatives of G-conjugate classes of $P$. Thus, by [10, Theorems 68.4 and
65.4],

$k(B_{0})=l(B_{0})+\Sigma_{i=2}^{2^{n- 4}}l(b_{z}i)$

$+\Sigma_{i=1}^{2^{n- 4}}\{l(b_{xz}i)+l(b_{yz}i)+l(b_{xyz}i)\}$ .
As in the proof of Lemma 2.2, by induction, we get $l(b_{z}i)=9$ for all $i=2,$ $\cdots,$

$2^{n-4}$ .
By Lemma 1.1, we may assume $O(G)=1$ . Since $Q\neq l$ , as in the proof of Lemma
2.2, by making use of $Z^{*}$-theorem [10, Theorem 67.1], we have $l(B_{0})=9$ . Since
$s\not\in C_{G}(xz_{i})$ and since $t\in C_{G}(xz_{i})$ , we obtain $e(C_{G}(xz_{i}))=3$ . Hence $l(b_{xz}i)=3$ for all
$i=1,$ $\cdots$ , $2^{n-4}$ from Theorem 2.4(1). Similarly, by Theorem 2.4(1), $l(b_{yz}i)=3$ for
all $i=1,$ $\cdots,$

$2^{n-4}$ . Fix any $i$ with $1\leqq i\leqq 2^{n-4}$ . For integers $j$ and $k$ , it is seen
that $(xyz_{i})^{sJ_{t^{k}}}=xyz_{i}$ if and only if $3|j$ and $3|k$ . Hence as in the proof of
Lemma 2.2, $l(b_{xyz}i)=1$ for all $i=1,$ $\cdots,$

$2^{n-4}$ . Thus $k(B_{0})=2^{n}$ . This finishes the
proof.

LEMMA 3.3. Assume as in Lemma 3.2. Then $B_{0}\cong B_{0}(S)$ .

PROOF. We use the same notation as in the proof of Lemma 3.2. We
prove the lemma by induction on $|G|$ . Assume $G\neq S$ . By [12, Theorem], $G$

has a normal subgroup $H$ of odd prime index with $S\subseteqq H$. Let $b_{0}=B_{0}(H)$ . By
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induction, $b_{0}\cong B_{0}(S)$ . By the proof of Lemma 3.2, there is an involution $xy\in G$

with $l(b_{xy})=1$ . It follows from Lemmas 3.2 and 1.9 that $\chi(xy)=\pm 1$ for all
$\chi\in Irr(B_{0})$ . By Lemma 3.2, $k(B_{0})=k(b_{0})$ and $l(B_{0})=l(b_{0})$ . Thus, by Corollary 1.8,
it is enough to prove that

if $\tilde{\chi}\tilde{\chi}^{\prime}\in Irr(b_{0})$ with $\tilde{\chi}(1)=\tilde{x}^{J}(1)$ ,
$(^{*})$

then $\tilde{\chi}(xy)=\tilde{\chi}^{\prime}(xy)=\pm 1$ .

As in the proof of Lemma 2.3 we know the character tables of $L_{2}(q)$ and $L_{2}(q^{\prime})$ .
Thus we can write

1 $x$

$\eta_{1}$ 1 1

$\eta_{2}$
$(q+\epsilon)/2$ $-\epsilon$ $\epsilon=\left\{\begin{array}{l}-1 ifq\equiv 3(mod8)\\1 ifq\equiv 5(mod8)\end{array}\right.$

$\eta_{3}$
$(q+\epsilon)/2$ $-\epsilon$

$\eta_{4}$ $q$ $\epsilon$

where $\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\}=Irr(B_{0}(L_{2}(q)))$ , and

1 $y$

$\zeta_{1}$ 1 1
$\zeta_{2}$ $(q^{\prime}+\epsilon^{\prime})/2$

$-\epsilon^{\prime}$ $\epsilon^{\prime}=\left\{\begin{array}{l}-1 ifq^{\prime}\equiv 3(mod8)\\1 ifq\prime\equiv 5(mod8)\end{array}\right.$

$\zeta_{3}$ $(q^{\prime}+\epsilon^{\prime})/2$
$-\epsilon^{\prime}$

$\zeta_{4}$ $q^{\prime}$
$\epsilon^{\prime}$

where $\{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\}=Irr(B_{0}(L_{2}(q^{\prime})))$ . Let $\{\theta_{1}, \cdots\theta_{2}n-4\}$ be the set of all irreducible
complex characters of $Q$ . Since $b_{0}\cong B_{0}(S)$ , we may write $Irr(b_{0})=\{\tilde{\chi}_{ijk}|i=1,$

$\cdots,$
$4$ ;

$j=1,$ $\cdots,$ $4;k=1,$ $\cdots$ , $2^{n-4}$} such that $\tilde{\chi}_{ijk}|_{S}=\eta_{i}\zeta_{j}\theta_{k}$ for all $i,$ $j,$ $k$ .
Case 1. $\epsilon=-1$ and $\epsilon^{\prime}=1$ : In order to show $(^{*})$ it is enough to prove that

$\{1, (q-1)/2, q^{\prime}, (q-1)q^{\prime}/2, q(q^{\prime}+1)/2\}\cap\{(q^{\prime}+1)/2, q, (q-1)(q^{\prime}+1)/4, qq^{\prime}\}=\emptyset$ since
$\tilde{\chi}_{ijk}(1)=\eta_{i}(1)\zeta_{j}(1)$ and $\tilde{\chi}_{ijk}(xy)=\eta_{i}(x)\zeta_{j}(y)$ for all $i,$ $j,$ $k$ . We can prove it.

Case 2. $\epsilon=\epsilon^{\prime}=-1$ : We know that $\{1, (q-1)/2, (q^{\prime}-1)/2, (q-1)(q^{\prime}-1)/4, qq^{\prime}\}$

$\cap\{q, q^{\prime}, (q-1)q^{\prime}/2, q(q^{\prime}-1)/2\}=\otimes$ . This implies $(^{*})$ as in Case 1.
Case 3. $\epsilon=\epsilon^{\prime}=1$ : Since $\{1, q, q^{\prime}, (q+1)(q^{\prime}+1)/4, qq^{\prime}\}\cap\{(q+1)/2,$ $(q^{\prime}+1)/2$ ,

$(q+1)q^{\prime}/2,$ $q(q^{\prime}+1)/2$} $=\emptyset$ , we can show $(^{*})$ . This completes the proof of the
lemma.

The above lemmas imply the next main result of this section.

THEOREM 3.4. Let $P$ be an abelian Sylow 2-subgroup of G. Assume $e=e(S)$
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$=9$ , where $S=O^{\prime}(G/O(G))$ . Then we have the following.
(1) $k(B_{0})=|P|$ and $l(B_{0})=9$ .
(2) $B_{0}\cong B_{0}(L_{2}(q)\times L_{2}(q^{\prime})\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2})))$ for some $q,$ $q^{\prime}>3$ with $q\equiv 3$

or 5 (mod8) and $q^{\prime}\equiv 3$ or 5 $(mod 8)$ .

RROOF. We may assume $0(G)=1$ by Lemma 1.1. Since $e(S)=9$ , by Propo-
sition 1.10 and Lemma 1.12, we get that $S\cong L_{2}(q)\times L_{2}(q^{\prime})\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}))$

for some $q,$ $q^{\prime}>3$ with $q\equiv 3$ or 5 (mod8) and $q^{\prime}\equiv 3$ or 5 (mod8). Hence we
obtain (1) and (2) from Lemmas 3.2 and 3.3, respectively.

4. The case $e=21$

In this section we deal with. the case when $e=e(S)=21$ , where $S=O^{\prime}(G/O(G))$ .
As in \S 1, let $J_{1}$ and $R(q)$ be the Janko’s first simple group and the simple
groups of Ree type, respectively (cf. [16], [21] and [13]). We use the notation
$G,$ $P,$ $n,$ $e$ and $B_{0}$ as before.

LEMMA 4.1. Let $P$ be an elementary abelian Sylow 2-subgroup of $G$ of
order 8. If $e=21$ , then $k(B_{0})=8$ and $l(B_{0})=5$ .

PROOF. By Lemma 1.14, $N_{G}(P)/C_{G}(P)$ is noncyclic of order 21. Hence we
can write that $N_{G}(P)=\langle s, t, C_{G}(P)\rangle,$ $P=\{1, x, x^{s}, x^{s^{2}}, z, xz, x^{s}z, x^{s^{2}}z\}=\{1,$

$z,$
$z^{t}$ ,

, $z^{t^{6}}$ } for some $s,$ $t\in N_{G}(P)$ and involutions $x,$ $z\in P$ with $z^{s}=z$ . Then, by [10,
Theorems 68.4 and 65.4], $k(B_{0})=l(B_{0})+l(b_{z})$ . Since $e(C_{G}(z))=3$ , $l(b_{z})=3$ from
Theorem 2.4(1). The calculation of the generalized decomposition matrix of $B_{0}$

relative to $z$ is due to J. B. Olsson [18, Theorems 3.15, 3.16 and 3.17]. Let
$ M=C_{G}(z),\overline{M}=M/\langle z\rangle$ and $\overline{b}_{z}=B_{0}(\overline{M})$ . By [10, Theorem 66.3], there is a basic
set $\overline{W}$ of $\overline{b}_{z}$ such that $\overline{W}$ contains the trivial Brauer character and the Cartan
matrix of $\overline{b}_{z}$ with respect to $\overline{W}$ has the form

2 1 1
1 2 1
1 1 2.

Then, by [10, Lemma 66.1], there is a basic set $W$ of $b_{z}$ such that $W$ contains
the trivial Brauer character and the Cartan matrix $C_{z}$ of $b_{z}$ with respect to $W$

has the form
4 2 2

$(^{*})$ 2 4 2
2 2 4.
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We use the following notation here. For an integer $r\geqq 0$ and a p-block $B$ , let
$E_{B}(p^{r})$ denote the multiplicity of $p^{r}$ as an elementary divisor of the Cartan
matrix of $B$ . If $Q$ is a $p$-subgroup of a finite group $A$ and if $B$ is a p-block

of $A$ , let $n_{B}(Q)$ denote the multiplicity of $Q$ as a lower defect group of $B$ (cf.

[5]. In [5], $n_{B}(Q)$ is denoted by $m_{B}^{(1)}(Q))$ . By [8, (89.8) Theorem], $E_{B_{0}}(8)=1$ .
Since all involutions in $G$ are coniugate, by $[5, (7G)],$ [ $18$ , Proposition 1.2] and
[10, Theorem 65.4], we get $E_{B_{0}}(2)=n_{b_{z}}(\langle z\rangle)$ . Since every lower defect group of
a 2-block of $G$ contains all 2-subgroups $U$ of $G$ with $U\subseteqq Z(G)$ , by $[5, (7G)]$ ,

$E_{b_{z}}(2)=n_{b_{z}}(\langle z\rangle)$ . By $(^{*}),$ $E_{b_{z}}(2)=2$ . Thus $E_{B_{0}}(2)=2$ , so that $l(B_{0})\geqq 3$ . This shows
$k(B_{0})\geqq 6$ . Let $\{\chi_{i}|i=1, \cdots, k(B_{0})\}=Irr(B_{0})$ . Since $l(b_{z})=3$ , let $N=(n_{i\alpha})_{1\leq i\leq k(B_{0}) ,1s\alpha\leq\$}$

be the matrix of the generalized decomposition numbers of $B_{0}$ relative to $z$

with respect to $W$. Since $|z|=2$ , every $n_{i\alpha}$ is an integer. By [4, II (7A) and
(4C) $],$ $(n_{i1}, n_{i2}, n_{i3})\neq(0,0,0)$ for every $\chi_{i}$ . For $\chi_{i},$ $\chi_{j}$ let $a_{ij}=\Sigma_{1\leq\alpha.\beta\leqq 3}8n_{i\alpha}u_{a\beta}n_{J\beta}$ ,

where $C_{z}^{-1}=(u_{\alpha\beta})_{1\leq a.\beta\leq 3}$ . By Lemma 1.11 and [4, II (7A) and $(5G)$], all $a_{ii}$ are
odd integers. Hence $n_{i1}+n_{i2}+n_{i3}$ is odd for every $\chi_{i}$ . Let $N_{\alpha}$ be the $\alpha$-th
column of $N$ for each $\alpha$ , and let $N_{a}N_{\beta}=\sum_{i=1}^{k(B_{0})}n_{i\alpha}n_{i\beta}$ for all $\alpha,$ $\beta$ . By [10,

Theorem 63.3(2)], ${}^{t}NN=C_{z}$ where ${}^{t}N$ is the transposed matrix of $N$. So $N_{\alpha}N_{\beta}$

$=4$ if $\alpha=\beta$ , and $N_{\alpha}N_{\beta}=2$ if $\alpha\neq\beta$ . Clearly, $12=tr(C_{z})=\Sigma_{i,\alpha}n_{i\alpha}^{2}$ where $tr(C_{z})$ is
the trace of $C_{z}$ . Then the next three possibilities arise for the nonzero entries
of $N$ :

(i) 2 entries are $\pm 2$ , and 4 entries are $\pm 1$ .
(ii) 1 entry is $\pm 2$ , and 8 entries are $\pm 1$ .
(iii) 12 entries are $\pm 1$ .

By elementary calculations as in [18, Theorems 3.15, 3.16 and 3.17] we can write

$\delta_{1}0$ $0$

$\delta_{2}0$ $0$

$0$ $\delta_{3}0$

$N=0$ $\delta_{4}0$

$0$ $0$ $\delta_{5}$

$0$ $0$ $\delta_{6}$

$\delta_{7}\delta_{7}\delta_{7}$

$\delta_{8}\delta_{8}\delta_{8}$

where $\delta_{i}=\pm 1$ . This shows $k(B_{0})=8$ , so that $l(B_{0})=5$ . This completes the proof.

LEMMA4.2. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong J_{1}\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ or $S\cong R(q)\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ . If $e=21$ , then $k(B_{0})=2^{n}$ and
$l(B_{0})=5$ .



The principal 2-blocks of finite groups 37

PROOF. We may assume $S=R\times Q$ where $R=J_{1}$ or $R(q)$ and $Q\cong P/(Z_{2}\times Z_{2}$

$\times Z_{2})$ . Let $T$ be a Sylow 2-subgroup of $R$ with $T\times Q=P$. By Lemma 1.12(iii),

$N_{R}(T)/C_{R}(T)$ is noncyclic of order 21. Hence we can write $ N_{R}(T)=\langle s, t, C_{R}(T)\rangle$

and $T=\{1, x, x^{s}, x^{s^{2}}, z, xz, x^{s}z, x^{s^{2}}z\}=\{1, x, x^{l}, \cdots , x^{t^{6}}\}$ for some $s,$ $t\in N_{R}(T)$

and for involutions $x,$ $z\in T$ with $z^{s}=z$ . Since $e=21,$ $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ . We
prove the lemma by induction on $n$ . If $n=3$ , the lemma is proved from Lemma
4.1 because $P=T$ and $P$ is elementary abelian of order 8 from Lemma 1.12(iii).

Suppose $n>3$ . Let $Q=\{1=y_{1}, y_{2}, \cdots, y_{2n-3}\}$ . By [10, Lemma 18.5], $\{y_{i},$ $zy_{i}|$

$i=1,$ $\cdots,$
$2^{n-3}$ } is the set of all representatives of G-conjugate classes of $P$.

Then, by [10, Theorems 68.4 and 65.4],

$k(B_{0})=l(B_{0})+\Sigma_{i=2}^{2^{n- 3}}l(b_{yi})+\Sigma_{\iota^{n_{1}-3}}^{2_{=}}l(b_{zy\iota})$ .

As in the proof of Lemma 2.2, by induction we get $l(b_{yi})=5$ for all $i=2,$ $\cdots$ , $2^{n-3}$ .
We can assume $0(G)=1$ by Lemma 1.1. Since $Q\neq 1$ , it follows from $z*$-theorem
that $l(B_{0})=5$ . Since $s\in C_{G}(zy_{i})$ and $t\not\in C_{G}(zy_{i})$ , we have $e(C_{G}(zy_{i}))=3$ . Hence
$l(b_{zyi})=3$ for all $i=1,$ $\cdots,$

$2^{n-3}$ from Theorem 2.4(1). Thus $k(B_{0})=2^{n}$ .

LEMMA 4.3. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong J_{1}\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ . If $e=21$ , then $B_{0}\cong B_{0}(S)$ .

PROOF. We can assume $S=J_{1}\times Q$ where $Q\cong P/(Z_{2}\times Z_{2}\times Z_{2})$ . We use induc-
tion on $|G|$ . Assume $G\neq S$ . By [12, Theorem], $G$ has a normal subgroup $H$ of
odd prime index $l$ with $S\subseteqq H$. Let $b_{0}=B_{0}(H)$ . By induction, $b_{0}\cong B_{0}(S)$ . Let $s$ ,
$t,$ $x,$ $z$ and $y_{i}$ be the same as in the proof of Lemma 4.2. Since $z$ is an involu-
tion in $J_{1}$ , by [16, Theorem], $ C_{J_{1}}(z)=A_{5}\times\langle z\rangle$ where $A_{5}$ is the alternating group
of degree 5. Hence $C_{S}(z)=A_{5}\times\langle z\rangle\times Q$ . Let $M=C_{G}(z)$ . Clearly $ C_{S}(z)\cong A_{5}\times$

$(P/(Z_{2}\times Z_{2}))$ and $C_{S}(z)$ is a normal subgroup of $M$ of odd index. By the proof
of Lemma 4.2, $e(M)=3$ . Hence, by Lemma 2.3, we get that $ b_{z}=B_{0}(M)\cong B_{0}(A_{5}\times$

$(P/Z_{2}\times Z_{2})))$ since $A_{5}\cong L_{2}(5)$ . By Lemma 1.16(ii), the Cartan matrix of $B_{0}(A_{5})$

has the form
1

1 4 2 2
2 2 1
2 1 2.

Thus, by [10, Lemma 66.1], the Cartan matrix $C_{z}$ of $b_{z}$ has the form

1
1 $2^{n}$ $2^{n-1}$ $2^{n- 1}$

$2^{n-1}$ $2^{n- 1}$ $2^{n- 2}$

$2^{n-1}$ $2^{n-2}$ $2^{n- 1}$ .
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By Lemma 4.2, $k(B_{0})=2^{n}$ . Let $\{\chi_{1}\ldots \chi_{2^{n}}\}=Irr(B_{0})$ . We can write $IBr(b_{z})=$

$\{\phi_{1}^{z}=1_{M}, \phi_{2}^{z}, \phi_{3}^{z}\}$ with $\phi_{2}^{l}(1)=\phi_{3}^{l}(1)=2$ from Lemma 1.16(i). For each $\chi_{i}$ and $\phi_{a}^{z}$ ,

let $n_{i\alpha}=d_{ia}^{z}$ be the generalized decomposition number of $B_{0}$ relative to $z$. Since
$|z|=2$ , every $n_{i\alpha}$ is an integer. Let $N=(n_{i\alpha})_{1_{1_{h}^{\leq i}\alpha^{\leq}s^{2_{\#}^{n}}}},$

$N_{\alpha}=(n_{ia})_{1\leq i\leq 2^{n}}$ for each $\alpha$ ,

and $N_{\alpha}N_{\beta}=\sum_{l=1}^{2^{n}}n_{i\alpha}n_{i\beta}$ for each $\alpha,$ $\beta$ . It follows from [10, Theorems 63.3(2),

63.2 and 65.4] that $N_{1}N_{1}=2^{n},$ $N_{2}N_{2}=N_{3}N_{3}=2^{n-1},$ $N_{1}N_{2}=N_{1}N_{3}=2^{n-1}$ and $N_{2}N_{3}=2^{n-2}$ .
For each $\chi_{i},$ $\chi_{j}$ , let $a_{ij}=\sum_{1\leq\alpha,\beta\leq 3}2^{n}n_{i\alpha}u_{\alpha\beta}n_{j\beta}$ , where $C_{z}^{-1}=(u_{\alpha\beta})_{1\leq\alpha.\beta\leq 3}$ . Then

$a_{ii}=3n_{i1^{2}}+4(n_{i2^{2}}+n_{i3^{2}})-4(n_{i1}n_{i2}+n_{i1}n_{i3})$

$\equiv n_{i1}^{2}\equiv n_{i1}(mod 2)$

for all $\chi_{i}$ . By Lemma 1.11, every $\chi_{i}$ has height zero. Hence, by [4, II (7A) and
(5G) $]$ , every $a_{ii}$ is odd, so that $n_{i1}$ is odd for all $i=1,$ $\cdots,$

$2^{n}$ . Since $N_{1}N_{1}=2^{n}$ ,

$n_{i1}=\pm 1$ for all $i=1,$ $\cdots,$
$2^{n}$ . Let $\delta_{i}=n_{i1}$ and $u_{i}=n_{i2}\delta_{i}$ for each $i$ . Since $N_{1}N_{2}=$

$N_{2}N_{2}=2^{n- 1},$ $\Sigma_{i=1}^{2^{n}}u_{i}=\sum_{\iota^{n}}^{2_{=1}}u_{i^{2}}$ . Thus, $u_{i}=1$ or $0$ for all $i=1,$ $\cdots$ , $2^{n}$ . Hence exa-
ctly $2^{n-1}u_{i}\prime s$ are 1 and the other $u_{i}\prime s$ are $0$ since $N_{1}\bigwedge_{2}^{\tau}/=2^{n-1}$ . Then we may

assume

$n_{i2}=\left\{\begin{array}{l}\delta_{i}fori=1,\cdots,2^{n- 1}\\0 fori=2^{n-1}+1,\cdots,2^{n}.\end{array}\right.$

Similarly, exactly $2^{n-1}(n_{i3}\delta_{i})s$ are 1 and the other $(n_{i\$}\delta_{i})s$ are $0$ . Since $1V_{2}N_{3}$

$=2^{n- 2}$ , we may assume

$n_{i3}=\left\{\begin{array}{l}\delta_{i}fori=1,\cdots,2^{n-2}andfori=2^{n-1}+1,\cdots,3\cdot 2^{n-2}\\0 fori=2^{n- 2}+1,\cdots,2^{n-1}andfori=3\cdot 2^{n- z}+1,\cdots,2^{n}.\end{array}\right.$

Since $\chi_{i}(z)=n_{i1}+2(n_{i2}+n_{i3})$ for each $i$ , we get

$\chi_{i}(z)=\left\{\begin{array}{l}\pm 5 fori=1,\cdots,2^{n-2}\\\pm 3 fori=2^{n-2}+1,\cdots,3\cdot 2^{n- 2}\\\pm 1 fori=3\cdot 2^{n-2}+1,\cdots,2^{n}.\end{array}\right.$

Let $C_{G}(P)=P\times V$. When $G=VH,$ $G=C_{G}(P)\cdot H$, so that $B_{0}\cong b_{0}$ from Proposition

1.6. Thus, we may assume $G\neq VH$. Hence $C_{H}(P)=P\chi V$. Since $b_{0}\cong B_{0}(S)$ , it
follows from Proposition 1.5 that $|H:VH^{\prime}|=k^{\prime}(b_{0})=2^{n-3}$ . By [10, Theorem 18.4],
$P\cap G^{\prime}=\{1, x, x^{l}, \cdots, x^{t^{6}}\}$ . Then the order of Sylow 2-subgroups of $G^{\prime}$ is 8.
This implies $2^{n-3}|$ $|G:VG^{\prime}|$ and $2^{n-2}$ I $|G:VG^{\prime}|$ . Thus, by Proposition 1.5,
$k^{\prime}(B_{0})=|G:VG^{\prime}|=l\cdot 2^{n-3}$ where $l=|G:H|$ . Since $b_{0}\cong B_{0}(S)$ , by Clifford’s theo-
rem, Proposition 1.3 and the character table of $J_{1}$ [ $16$ , p. 148], we get that
$\chi_{i}(z)=1$ for every $x_{i}\in Irr(B_{0})$ with degree one. These show that the number of
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$\chi_{i}\in Irr(B_{0})$ with $\chi_{i}(z)=1$ is at least $l\cdot 2^{n-3}$ . However, $\chi_{i}(z)=\pm 1$ only for $i=$

$3\cdot 2^{n-2}+1,$
$\cdots,$

$2^{n}$ . This is a contradiction since $l\cdot 2^{n-3}>2^{n-2}$ . This completes the
proof.

LEMMA4.4. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong R(q)\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ . If $e=21$ , then $B_{0}\cong B_{0}(S)$ .

PROOF. Let $R=R(q)$ . We may assume $S=R\times Q$ where $Q\cong P/(Z_{2}\times Z_{2}\times Z_{2})$ .
We prove the lemma by induction on $|G|$ . Assume $G\neq S$ . By [12, Theorem],
$G$ has a normal subgroup $H$ of odd prime index 1 with $S\subseteqq H$. Let $b_{0}=B_{0}(H)$ .
By induction, $b_{0}\cong B_{0}(S)$ . Let $s,$ $t,$ $x,$ $z$ and $y_{i}$ be the same as in the proof of
Lemma 4.2. Since $z$ is an involution in $R,$ $ C_{R}(z)=L_{2}(q)\times\langle z\rangle$ from [21, p. 62 III].

(It is noted that we use the notation $R(q)$ as in the sense of [13]). Hence
$C_{S}(z)=L_{2}(q)\times\langle z\rangle\times Q$ . Let $M=C_{G}(z)$ . Then $C_{S}(z)$ is a normal subgroup of $M$ of
odd index and $C_{S}(z)\cong L_{2}(q)\times(P/(Z_{2}\times Z_{2}))$ . By the proof of Lemma 4.2, $e(M)=3$ .
Then, by Lemma 2.3, $b_{z}=B_{0}(M)\cong B_{0}(L_{2}(q)\times(P/(Z_{2}\times Z_{2})))$ . By [21, Theorem (1)],

$3<q\equiv 3$ (mod8), so that as in the proof of Lemma 4.3 the Cartan matrix $C_{z}$ of
$b_{z}$ has the form

$2^{n- 1}$ $2^{n- 2}$ $2^{n- 2}$

$2^{n-2}$ $2^{n-1}$ $2^{n-2}$

$2^{n- 2}$ $2^{n- 2}$ $2^{n-1}$ .
By Lemma 4.2, $k(B_{0})=2^{n}$ . Let $\{\chi_{1}, , \chi_{2^{n}}\}=Irr(B_{0})$ . We can write 1Br$(b_{z})=$

$\{\phi_{1}^{z}=1_{M}, \phi_{2}^{l}, \phi_{3}^{z}\}$ with $\phi_{2}^{z}(1)=\phi_{3}^{z}(1)=(q-1)/2$ from Lemma 1.16(i). Let $n_{i\alpha},$ $N,$ $N_{\alpha}$

and $N_{a}N_{\beta}$ be the same as in the proof of Lemma 4.3. Every $n_{i\alpha}$ is an integer.

As in the proof of Lemma 4.3 we get $N_{\alpha}N_{\alpha}=2^{n-1}$ for all $\alpha=1,2,3$ , and $N_{\alpha}N_{\beta}$

$=2^{n-2}$ if $\alpha\neq\beta$ . Let $C_{G}(P)=P\times V$ . As in the proof of Lemma 4.3 we may

assume $G\neq VH$. Since $b_{0}\cong B_{0}(S),$ $k^{\prime}(b_{0})=2^{n-3}$ . So that $k^{\prime}(B_{0})=|G:VG^{\prime}|=l\cdot 2^{n- 3}$

as in the proof of Lemma 4.3, where $l=|G:H|$ . Since $b_{0}\cong B_{0}(S)$ , by [21, p. 74
and pp. 87-88], we can write $\{\tilde{\chi}_{ij}|i=1, \cdots, 8;j=1, \cdots, 2^{n- 3}\}=Irr(b_{0})$ and

1 $z$

$\tilde{\chi}_{1j}$ 1 1
$\tilde{\chi}_{2j}$ $q^{2}-q+1$ $-1$

$\tilde{\chi}_{sj}$ $q^{3}$ $q$

$\tilde{\chi}_{4j}$ $q(q^{2}-q+1)$ $-q$

$\tilde{\chi}_{5j}$ $(q-1)m(q+1+3m)/2$ $-(q-1)/2$

$\tilde{\chi}_{6j}$ $(q-1)m(q+1+3m)/2$ $-(q-1)/2$

$\tilde{\chi}_{7j}$ $(q-1)m(q+1-3m)/2$ $(q-1)/2$

$\tilde{\chi}_{8j}$ $(q-1)m(q+1-3m)/2$ $(q-1)/2$
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for $j=1,$ $\cdots,$
$2^{n-3}$ , where $q=3^{2k+1}$ and $m=3^{k}$ for some $k\geqq 1$ (cf. [21, Theorem]).

By Clifford’s theorem, Proposition 1.3 and the above table, we know that if
$\chi_{i}(1)=1$ then $\chi_{i}(z)=1$ . When $n_{i1}=0,$ $\chi_{i}(z)=(n_{i2}+n_{i3})(q-1)/2$ . Thus $n_{i1}\neq 0$ if
$\chi_{i}(z)=\pm 1$ . Hence the number of $\chi_{i}\in Irr(B_{0})$ with $n_{i1}\neq 0$ is at least $l\cdot 2^{n-3}$ . Since
$N_{1}\Lambda^{\tau_{1}}=2^{n- 1}$ , we get $1=3$ . Fix any $\chi_{i}$ . If $\chi_{i}|_{H}=\tilde{x}_{2j}$ for some $j$ with $1\leqq j\leqq 2^{n-3}$ ,
then $n_{i1}^{2}\geqq 1$ since $\chi_{i}(z)=-1$ . If $\chi_{i}|_{H}=\tilde{x}_{2j}+\tilde{x}_{2j^{\iota}}+\tilde{x}_{2j^{\prime}}$ for some $j,$ $j^{\prime},$ $j^{\prime\prime}$ with
$1\leqq j<j^{\prime}<j^{\prime\prime}\leqq 2^{n-3}$ , then $n_{i1}^{2}\geqq 9$ since $\chi_{i}(z)=-3$ . Let $u$ be the number of
$\chi_{i}\in Irr(B_{0})$ with $\chi_{i}|_{H}=\tilde{\chi}_{2j}$ , and let $v$ be the number of $\chi_{i}\in Irr(B_{0})$ with $\chi_{i}|_{H}=$

$\tilde{\chi}_{2j}+\tilde{\gamma_{\vee 2j^{\prime}}}+\tilde{x}_{2j^{\prime}}$ for $j<j^{\prime}<j^{\prime\prime}$ . Since $N_{1}N_{1}=2^{n- 1}$ , and since $1<q^{2}-q+1<3(q^{2}-q+1)$ ,

we have
$2^{n- 1}=\Sigma_{i=1}^{2^{n}}n_{i1}^{2}\geqq k^{\prime}(B_{0})+u+9v=3\cdot 2^{n- 3}+u+9v$ .

Then $2^{n- 3}\geqq u+9v$ . By Proposition 1.4, for every $\tilde{\chi}_{2j}$ there is some $\chi_{i}$ with
$(\chi_{i}|_{II},\tilde{\gamma_{\vee 2j}})\neq 0$ , so that, by Clifford’s theorem and Proposition 1.3, $\chi_{i}|_{H}=\tilde{\chi}_{2!}$ or
$\chi_{i}|_{IJ}=\tilde{x}_{2j}+\tilde{x}_{2j^{g}}+\tilde{x}_{2j}^{g^{2}}$ where $g$ is an element of $G$ with $ G=\langle g, H\rangle$ . By conside-
ring the degrees of $\tilde{\chi}_{ij}$ we get that $\tilde{\chi}_{2!^{g}}$ and $\tilde{\chi}_{2j}^{g^{2}}$ are both in $\{\tilde{\chi}_{2j^{\prime}}|j^{\prime}=1, \cdots, 2^{n-3}\}$ .
Thus $2^{n- 3}\leqq u+3v$ , so that $v=0$ and $u=2^{n-3}$ . This implies that the number of
$\chi_{i}\in Irr(B_{0})$ with $\chi_{i}(z)=-1$ is at least $2^{n- 3}$ , so that the number of $\chi_{i}\in Irr(B_{0})$ with
$\chi_{i}(z)=\pm 1$ is at least $2^{n-1}$ . Then the number of $\chi_{i}\in Irr(B_{0})$ with $n_{i1}\neq 0$ is at
least $2^{n- 1}$ . Since $N_{1}N_{1}=2^{n-1}$ , we may assume

$n_{i1}=\left\{\begin{array}{l}\delta_{i}fori=1,\cdots,2^{n-1}\\0 fori=2^{n-1}+1,\cdots,2^{n}\end{array}\right.$

where $\delta_{i}=\pm 1$ . Thus $\chi_{i}(z)=\pm 1$ for all $i=1,$ $\cdots$ , $2^{n-1}$ . For all $i=1,$ $\cdots,$
$2^{n-1}$ ,

$\chi_{i}(z)=\delta_{i}+(n_{i2}+n_{i3})(q-1)/2$ , so that $n_{i2}+n_{i3}=0$ since $(q-1)/2\geqq 13$ . Consequently,
$N_{1}N_{2}+N_{1}\Lambda^{r_{3}}=\sum_{i=1}^{2^{n}}n_{i1}(n_{i2}+n_{i3})=\sum_{i=1}^{2^{n-1}}\delta_{i}(n_{i2}+n_{i3})=0$ . This is a contradiction since
$N_{1}N_{2}=\Lambda^{\tau_{1}}N_{3}=2^{n-2}$ . This completes the proof.

LEMMA 4.5. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong L_{2}(q)\times SL(2,8)$ for some $q>3$ with $q\equiv 3$ or 5 (mod8). If $e=21$ , then
$B_{0}\cong B_{0}(S)$ .

PROOF. Let $R_{1}$ and $R_{2}$ be Sylow 2-subgroups of $L_{2}(q)$ and $SL(2,8)$ , respec-
tively. We may assume $S=L_{2}(q)\times SL(2,8)$ and $P=R_{1}\times R_{2}$ . There are an
element $s\in L_{2}(q)$ and an involution $x\in R_{1}$ with $R_{1}=\{1, x, x^{s}, x^{s^{2}}\}$ . Similarly, we
can write $R_{2}=\{1, y, y^{t}, \cdots, y^{t^{6}}\}$ for some $t\in SL(2,8)$ and for an involution
$y\in R_{2}$ . Since $e=21,$ $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ and $N_{G}(P)/C_{G}(P)$ is cyclic of order 21.
By [10, Lemma 18.5], $\{1, x, y, xy\}$ is the set of all representatives of G-con-
jugate classes of $P$. Hence, by [10, Theorems 68.4 and 65.4], $k(B_{0})=l(B_{0})+l(b_{x})$
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$+l(b_{y})+l(b_{xy})$ . Since $s\not\in C_{G}(x)$ and $t\in C_{G}(x)$ , we have $e(C_{G}(x))=7$ . Thus $l(b_{x})=7$

from Theorem 2.4(1). Similarly, $l(b_{y})=3$ from Theorem 2.4(1). For integers $i$

and $j,$ $(xy)^{s^{i_{t}j}}=xy$ if and only if $3|i$ and $7|j$ . This implies $N_{M}(P)=C_{M}(P)$ where
$M=C_{G}(xy)$ . Thus, by [10, Theorem 18.7 and Corollary 65.3], $l(b_{xy})=l(B_{0}(M))=1$ .
Since $G$ is nonsolvable, $l(B_{0})\geqq 2$ from [10, Corollary 65.3], so that $k(B_{0})\geqq 13$ .

Now, we prove the lemma by induction on $|G|$ . Assume $G\neq S$ . By [12,

Theorem], $G$ has a normal subgroup $H$ of odd prime index $l$ with $S\subseteqq H$. Let
$b_{0}=B_{0}(H)$ . We know $b_{0}\cong B_{0}(S)$ by induction. From the character tables of
$L_{2}(q)$ and $SL(2,8)$ (cf. [10, Theorems 38.1 and 38.2]), we can write

1 $x$

$\theta_{1}$ 1 1
$\theta_{2}$ $(q+\epsilon)/2$ $-\epsilon$ $\epsilon=\left\{\begin{array}{l}-1 ifq\equiv 3(mod8)\\1 ifq\equiv 5(mod8)\end{array}\right.$

$\theta_{3}$ $(q+\epsilon)/2$ $-\epsilon$

$\theta_{4}$

$q$ $\epsilon$

where $\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\}=Irr(B_{0}(L_{2}(q)))$ and

1 $y$

$\zeta_{1}$ 1 1
$\zeta_{j}$ 7 $-1$ for $j=2,3,4,5$

$\zeta_{j}$ 9 1 for $j=6,7,8$

where $\{\zeta_{1}, \cdots, \zeta_{8}\}=Irr(B_{0}(SL(2,8)))$ . Since $b_{0}\cong B_{0}(S)$ , we may write $Irr(b_{0})=$

$\{\tilde{\chi}_{ij}|i=1, \cdots , 4; j=1, \cdots, 8\}$ with $\tilde{\chi}_{ij}|_{S}=\theta_{i}\zeta_{j}$ for all $i,$ $j$ . Hence the degrees of
all $\tilde{\chi}_{ij}$ are 1, 7, 9, $(q+\epsilon)/2,7(q+\epsilon)/2,9(q+\epsilon)/2,$ $q,$ $7q$ and $9q$ . Next, we want to
show that

if $\tilde{\chi}\tilde{x}^{\prime}\in Irr(b_{0})$ with $\tilde{\chi}(1)=\tilde{\chi}^{\prime}(1)$

$(^{*})$

then $\tilde{\chi}(xy)=\tilde{\chi}^{\prime}(xy)=\pm 1$ .

Case 1. $\epsilon=1$ : Clearly $\{1, 9, 7(q+1)/2,9,9q\}\cap\{7, (q+1)/2,9(q+1)/2,7q\}=\emptyset$ .
Hence, by considering the values $\tilde{\chi}_{ij}(1)$ and $\tilde{\chi}_{ij}(xy)$ , we get $(^{*})$ .

Case 2. $\epsilon=-1$ : Since $\{1, 9, (q-1)/2,9(q-1)/2,7q\}\cap\{7,7(q-1)/2, q, 9q\}=\emptyset$ ,
we obtain $(^{*})$ as in Case 1.

We get from Clifford’s theorem, Proposition 1.3, $(^{*})$ and the above character
tables of $L_{2}(q)$ and $SL(2,8)$ that $\chi(xy)=\pm 1$ or $\pm l$ for every $\chi\in Irr(B_{0})$ . Let
$k=k(B_{0})$ , and let $m$ be the number of $\chi\in Irr(B_{0})$ with $\chi(xy)=\pm 1$ . Hence we
can write $Irr(B_{0})=\{x_{1}=1_{G}, \chi_{2}\ldots , \chi_{m}\chi_{m+1}\ldots \chi_{k}\}$ such that
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$\chi_{i}(xy)=\left\{\begin{array}{l}\pm 1 fori=1,\cdots,m\\\pm l fori=m+1,\cdots,k.\end{array}\right.$

Since $l(b_{xy})=1$ , as in the proof of Lemma 1.9,

$(^{**})$ $32=\sum_{i=1}^{k}\chi_{i}(xy)^{2}=m+(k-m)l^{2}$ .
Firstly, suppose $k=m$ . Then $\chi_{i}(xy)=\pm 1$ for all $\chi_{i}\in Irr(B_{0})$ . Since $k=m=32$

and since $b_{0}\cong B_{0}(S)$ , we have $k(B_{0})=k(b_{0})=32$ . Hence $l(B_{0})=21$ , so that $l(B_{0})=$

$l(b_{0})$ since $b_{0}\cong B_{0}(S)$ . Thus, by $(^{*})$ and Corollary 1.8, $B_{0}\cong b_{0}$ . Thus, we may
assume $k>m$ . Since $k\geqq 13$ , by $(^{**}),$ $l=3$ . So that $k-m=1$ or 2. Let $C_{G}(P)=$

$P\times V$. Since $k>m$ and $b_{0}\cong B_{0}(S)$ , we know $B_{0}\not\cong b_{0}$ . Hence $G\neq VH$ from Pro-
position 1.6. This shows $C_{H}(P)=P\times V$. Thus, by Proposition 1.5, $|H:VH^{\prime}|=$

$k^{\prime}(b_{0})=1$ since $b_{0}\cong B_{0}(S)$ . Then $H=VH^{\prime}$ . Since $G/H$ is cyclic, $VG^{\prime}=VH^{\prime}=H$.
Hence $k^{\prime}(B_{0})=|G:VG^{\prime}|=l=3$ by Proposition 1.5. So that we may assume that
$\chi_{1}(1)=x_{2}(1)=x_{3}(1)=1$ and $\chi_{i}(1)>1$ for all $i=4,$ $\cdots,$

$k$ .
Case A. $k-m=1$ : By $(^{**})$ , we get $m=23$ and $k=24$ . Then $\chi_{i}(xy)=\pm 1$

for $i=1,$ $\cdots,$
$23$ and $\chi_{24}(xy)=\pm 3$ . Since $b_{0}\cong B_{0}(S)$ , by Clifford’s theorem and

Proposition 1.3, $\chi_{i}|_{H}=1_{H}$ for $i=1,2,3,$ $\chi_{i}|_{H}\neq 1_{H}$ and $\chi_{i}|_{H}\in Irr(b_{0})$ for $i=4,$ $\cdots,$
$23$ ,

$\chi_{24}|_{H}=\tilde{x}_{l_{1}}+\tilde{x}_{t_{2}}+\tilde{x}_{i_{3}}$ where $\tilde{\chi}_{i_{1}}$ $\tilde{\chi}_{t_{2}}$ and $\tilde{\chi}_{i_{3}}$ are distinct G-conjugate elements in
$Irr(b_{0})$ . On the other hand, it follows from Proposition 1.4 that for every
$\tilde{\chi}\in Irr(b_{0})$ there is some $x_{i}\in Irr(B_{0})$ with $(\chi_{i}|_{H},\tilde{\chi})\neq 0$ . These show $k(b_{0})\leqq 1+20+3$

$=24$ . But $k(b_{0})=32$ since $b_{0}\cong B_{0}(S)$ . Then we have a contradiction.
Case B. $k-m=2$ : We have from $(^{**})$ that $\chi_{i}(xy)=\pm 1$ for $i=1,$ $\cdots$ , 14,

$\chi_{15}(xy)=\pm 3$ and $\chi_{16}(xy)=\pm 3$ . Hence as in Case A we get $k(b_{0})\leqq 1+11+6=18$ .
This is a contradiction as in Case A. This completes the proof.

LEMMA 4.6. Let $S$ be a normal subgroup of $G$ of odd index such that
$S\cong L_{2}(q)\times SL(2,8)\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}))$ for some $q>3$ with $q\equiv 3$ or 5 (mod

8). If $e=21$ , then $k(B_{0})=2^{n}$ and $l(B_{0})=21$ .

PROOF. If $n=5$ , we can prove the lemma by Lemma 4.5 (cf. Lemma 1.12
and Theorem 2.4). If $n>5$ , we can verify the lemma by induction on $n$ as in
the proof of Lemma 4.2.

LEMMA 4.7. Assume as in Lemma 4.6. Then $B_{0}\cong B_{0}(S)$ .

PROOF. We may assume $S=L_{2}(q)\times SL(2,8)\times Q$ with $Q\cong P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}$

$\times Z_{2})$ . We use induction on $|G|$ as before. Assume $G\neq S$ . Hence $G$ has a
normal subgroup $H$ of odd prime index with $S\subseteqq H$ from [12, Theorem]. Let
$b_{0}=B_{0}(H)$ . By induction, $b_{0}\cong B_{0}(S)$ . Let $x$ and $y$ be involutions in $L_{2}(q)$ and
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$SL(2,8)$ , respectively. As in the proof of Lemma 4.2, $l(b_{xy})=1$ . By Lemma 4.6,
$k(B_{0})=2^{n}$ . Thus, $\chi(xy)=\pm 1$ for all $\chi\in Irr(B_{0})$ from Lemma 1.9. By Lemma 4.6,
$k(B_{0})=k(b_{0})$ and $l(B_{0})=l(b_{0})$ . Since $b_{0}\cong B_{0}(S)$ , as in the proof of Lemma 4.5, we
get that if $\tilde{\chi}\tilde{\chi}^{\prime}\in Irr(b_{0})$ with $\tilde{\chi}(1)=\tilde{\chi}^{\prime}(1)$ then $\tilde{\chi}(xy)=\tilde{\chi}^{J}(xy)=\pm 1$ . These imply
$B_{0}\cong b_{0}$ from Corollary 1.8. This completes the proof.

Next, we state the following main result of this section. That is proved
by making use of Lemmas 4.2-4.7.

THEOREM 4.8. Let $P$ be an abelian Sylow 2-subgroup of $G$ , and let $S=$

$O^{\prime}(G/O(G))$ . If $e=e(S)=21$ , then we have the following.
(1) $k(B_{0})=|P|$ and

$l(B_{0})=\left\{\begin{array}{l}5 ifN_{G}(P)/C_{G}(P)isnoncyclic\\21 ifN_{G}(P)/C_{G}(P)iscyclic.\end{array}\right.$

(2) One of the following holds:
(i) $B_{0}\cong B_{0}(J_{1}\times(P/(Z_{2}\times Z_{2}\times Z_{2})))$ ,

(ii) $B_{0}\cong B_{0}(R(q)\times(P/(Z_{2}\times Z_{2}\times Z_{2})))$ ,

(iii) $B_{0}\cong B_{0}(L_{2}(q)\times SL(2,8)\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}\times Z_{2})))$ for some $q>3$ with
$q\equiv 3$ or 5 $(mod 8)$ .

PROOF. By Lemma 1.1, we may assume $0(G)=1$ . By Proposition 1.10 and
Lemma 1.12, one of the following holds:

(i) $S\cong J_{1}\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ ,
(ii) $S\cong R(q)\times(P/(Z_{2}\times Z_{2}\times Z_{2}))$ ,

(iii) $S\cong L_{2}(q)\times SL(2,8)\times(P/(Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}\times Z_{2}))$ for some $q>3$ with $q\equiv 3$

or 5 (mod8). Then we can prove the theorem by Lemmas 4.2-4.7.

5. The case when $P$ is elementary abelian of order 8

In this section we consider the case when $G$ has elementary abelian Sylow

2-subgroups of order 8. In particular, we shall determine $B_{0}$ in the case when
$G$ is nonsolvable, $e=21$ and $e(S)\neq 21$ where $S=O^{\prime}(G/O(G))$ . Throughout this
section we assume that $G$ has an elementary abelian Sylow 2-subgroup $P$ of
order 8 and we use the notation $e$ and $B_{0}$ as before.

By Lemma 1.14 and Remark 1 of \S 1, it is sufficient to consider the cases
when $e=3,7$ and 21.

PROPOSITION 5.1. (i) If $e=3$ , then $k(B_{0})=8$ and $l(B_{0})=3$ .
(ii) If $e=7$ , then $k(B_{0})=8$ and $l(B_{0})=7$ .
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(iii) If $e=21$ , then $k(B_{0})=8$ and $l(B_{0})=5$ .

PROOF. (i) We can write $ N_{G}(P)=\langle s, C_{G}(P)\rangle$ for some $s\in N_{G}(P)$ . There
is an involution $x\in P$ with $x^{s}\neq x$ . Hence $l(b_{x})=1$ as in the proof of Lemma 2.1.
Then $k(B_{0})=8$ from Lemma 1.15(1). On the other hand, $l(B_{0})=3$ by Theorem
2.4(1).

(ii) We can verify (ii) as in (i).

(iii) We have already proved (iii) in Lemma 4.1.

PROPOSITION 5.2. There is a basic set $W$ of $B_{0}$ such that $W$ contains the
trivial Brauer character and the decomposition matrix of $B_{0}$ with respect to $W$

has the form
$1_{G}$ 1 $0$ $0$ 1 10000

$\delta_{2}0$ $0$ $\delta_{2}$ $0$ $\delta_{2}0$ $0$ $0$

$0$ $\delta_{3}0$ $\delta_{3}$

$0$
$0$ $0$ $\delta_{3}0$ $0$

$0$ $\delta_{4}0$ $0$ $0$ $0$ $\delta_{4}0$

$0$ $0$ $\delta_{5}$

$0$
$0$ $0$ $0$ $0$ $\delta_{5}$

$0$ $0$ $\delta_{6}$ $\delta_{6}0$ $0$ $\delta_{6}\delta_{6}$

$\delta_{7}\delta_{7}\delta_{7}$ $\delta_{7}$ $0$ $\delta_{7}0$ $\delta_{7}\delta_{7}$

$\delta_{8}\delta_{8}\delta_{8}$ , $\delta_{8}\delta_{8}\delta_{8}$ . $\delta_{8}$ , $0$ $0$ $\delta_{8}\delta_{8}\delta_{8}$

$e=3$ $e=7$ $e=21$

where $\delta_{i}=\pm 1$ .

PROOF. Case 1. $e=3$ : Clear from Proposition 5.1(i) and the proof of
Lemma 4.1.

Case 2. $e=7$ : By Proposition 5.1(ii), $k(B_{0})=8$ . Let $\{\chi_{1}\ldots \chi_{8}\}=Irr(B_{0})$ . By
the proof of Proposition 5.1(ii), $G$ has an involution $x$ with $l(b_{x})=1$ . By Lemma
1.9, we get $\chi_{i}(x)=\pm 1$ for all $i$ . On the other hand, $\sum_{i=1}^{8}\chi_{i}(x)x_{i}=0$ on 2’-elements
of $G$ from [10, Theorem 63.3(1)]. Thus, the assertion is proved.

Case. 3 $e=21$ : Let $z$ be an involution in $G$ . By the proof of Lemma 4.1,
the generalized decomposition matrix of $B_{0}$ relative to $z$ with respect to some
basic set of $b_{z}$ has the same form as in Case 1. Hence, by [10, Theorem 63.3(1)],

we can verify the proposition.

LEMMA 5.3. Assume $e=21,$ $O(G)=1,$ $O^{\prime}(G)=SL(2,8)$ and $G$ has a normal
subgroup $H$ of odd prime index with $e(H)=7$ . Then for any involution $z$ in $G$

we get
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$\chi_{i}(1)=\left\{\begin{array}{l}1 fori=1,2,3\\7 fori=4,5,6\\21 fori=7\\27 fori=8,\end{array}\right.$ $\chi_{i}(z)=\left\{\begin{array}{l}1 fori=1,2,3\\-1 fori=4,5,6\\-3 fori=7\\3 fori=8\end{array}\right.\vee$

where $\{x_{1}=1_{G}, \chi_{2}, \cdots, \chi_{8}\}=Irr(B_{0})$ .

PROOF. Let $S=O^{\prime}(G)=SL(2,8)$ . By Lemmas 1.12 and 1.14, we can write
$N_{S}(P)=\langle s, C_{S}(P)\rangle,$ $ N_{H}(P)=\langle s, C_{H}(P)\rangle$ and $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ for some $s\in N_{S}(P)$

and $t\in N_{G}(P)$ such that $s$ and $t$ have orders 7 and 3 modulo $C_{G}(P)$ , respectively.
Clearly, $ G/H=\langle tH\rangle$ . Let $b_{0}=B_{0}(H)$ , and let $C_{G}(P)=P\times V$. By Proposition 5.2,
$B_{0}\not\cong b_{0}$ . Hence $VH=H$ from Proposition 1.6. Then $C_{G}(P)=C_{H}(P)$ and $|G:H|=3$ .
We may assume $z\in P$ . Let $M=C_{G}(z)$ . By the proof of Lemma 2.1, $C_{S}(z)$ is a
2-nilpotent normal subgroup of $M$, so that $M$ is solvable. By the proof of
Lemma 4.1, $e(M)=3$ . Thus, by Lemma 1.1, $B_{0}(M)\cong B_{0}(P\cdot Z_{3})$ where $P\cdot Z_{3}$ is the
semi-direct product of its normal subgroup $P$ by $Z_{3}$ and it is not the direct
product $P\times Z_{3}$ . Thus, as in the proof of Lemma 4.1 we know the generalized
decomposition numbers of $B_{0}$ relative to $z$ . So we can write

$(^{*})$ $\chi_{i}(z)=\left\{\begin{array}{l}\pm 1 fori=1,\cdots,6\\\pm 3 fori=7,8\end{array}\right.$

for suitable indexing of $\chi_{2}\ldots$ $\chi_{8}$ . By Lemma 2.1, $b_{0}\cong B_{0}(S)$ . Hence, by [10,

Theorem 38.2],

$(^{**})$ $\tilde{\chi}_{i}(1)=\left\{\begin{array}{l}1 fori=1\\7 fori=2,\cdots,5\\9 fori=6,7,8\end{array}\right.$ $\tilde{\chi}_{i}(z)=\left\{\begin{array}{l}1 fori=1\\-1 fori=2,\cdots,5\\1 fori=6,7,8\end{array}\right.$

where $\{\tilde{\chi}_{1}\ldots , \tilde{\chi}_{8}\}=Irr(b_{0})$ . Since $|G:VH|=|G:H|=3$ , we get 3 $||G:VG^{\prime}|$ . By

Proposition 1.5, $k^{\prime}(B_{0})=|G:VG^{\prime}|$ . By $(^{**}),$ $k^{\prime}(b_{0})=1$ , so that $|G:VG^{\prime}|=3$ from
Frobenius reciprocity. So we may assume that $\chi_{1}|_{H}=x_{2}|_{H}=x_{3}|_{H}=\tilde{x}_{1}$ from $(^{*})$ ,
$(^{**})$ and Proposition 1.3. Similarly, we may also assume that $\chi_{7}|_{H}=\tilde{x}_{3}+\tilde{x}_{4}+\tilde{x}_{5}$

and $\chi_{8}|_{H}=\tilde{x}_{6}+\tilde{x}_{7}+\tilde{x}_{8}$ . Then we get $\chi_{4}|_{H}=x_{5}|_{H}=x_{6}|_{H}=\tilde{x}_{2}$ . This completes the
proof.

The next theorem is the main result of this section.

THEOREM 5.4. Let $\overline{G}=G/O(G)$ and $S=O^{\prime}(\overline{G})$ . If $G$ is nonsolvable, $e=21$ and
$e(S)\neq 21$ , then we have the following.

(i) $S\cong SL(2,8)$ .
(ii) For any subnormal subgroup $\overline{L}$ of $\overline{G}$ of odd index with $e(\overline{L})=21$ ,
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$B_{0}\cong B_{0}(\overline{L})$ .

PROOF. We may assume $0(G)=1$ by Lemma 1.1, so that $S=O^{\prime}(G)$ .
(i) Noncyclic groups of order 21 have no normal subgroups of order 3.

Thus, by Lemma 1.14, $e(S)=7$ . Then $S\cong SL(2,8)$ from Proposition 1.10 and
Lemma 1.12.

(ii) Firstly, we want to show that

$(^{*})$ $\left\{\begin{array}{l}ifLisanorma1subgroupofGsuchthat|G\cdot.L|isanoddprimeand\\e(L)=21andifHisanorma1subgroupofLsuchthat|L\cdot.H|isan\\oddprimeande(H)=7,thenB_{0}\cong B_{0}(L).\end{array}\right.$

Let $b_{11}=B_{0}(L)$ , and let $z$ be an involution in $G$ . By Lemma 5.3, we get

$(^{**})$ $\tilde{\chi}_{i}(1)=\left\{\begin{array}{l}1 fori=1,2,3\\7 fori=4,5,6\\21 fori=7\\27 fori=8,\end{array}\right.$ $\tilde{\chi}_{i}(z)=\left\{\begin{array}{l}1\\-1\\-3\\3\end{array}\right.$ $forforforfori=1i=4i=8i=7\prime 25’,$

$36$

where $\{\tilde{\chi_{1}-} \tilde{\chi}_{8}\}=Irr(b_{0})$ . As in the proof of Lemma 5.3, using the generalized
decomposition numbers of $B_{0}$ relative to $z$ ,

$(^{***})$ $\chi_{i}(z)=\left\{\begin{array}{l}\pm 1 fori=1,\cdots,6\\\pm 3 fori=7,8\end{array}\right.$

where $\{\chi_{1}, \cdots , \chi_{8}\}=Irr(B_{0})$ . Since $|G:L|$ is an odd prime, $I_{G}(\tilde{\chi}_{7})=I_{G}(\tilde{\chi}_{8})=G$ from
$(^{**})$ . Thus, by Proposition 1.4, Clifford’s theorem, $(^{**})$ and $(^{***})$ , we may assume
that $\chi_{7}|_{L}=\tilde{x}_{7}$ and $\chi_{8}|_{L}=\tilde{x}_{8}$ . By Clifford’s theorem, Proposition 1.3, $(^{***})$ and $(^{**})$ ,

we have $\chi_{i}|_{L}\in Irr(b_{0})$ for $i=1,$ $\cdots,$
$6$ . Thus, by Proposition 1.4, we may assume

that $\chi_{i}|_{L}=\tilde{x}_{i}$ for $i=1,$ $\cdots$ , 6. These show $I_{G}(\tilde{\chi}_{j})=G$ for all $\tilde{\chi}_{j}\in Irr(b_{0})$ . By Pro-
position 5.1(3), $k(B_{0})=k(b_{0})$ and $l(B_{0})=l(b_{0})$ . Thus, $B_{0}\cong b_{0}$ from Corollary 1.7.
Then, $(^{*})$ is proved. Since $G/S$ is solvable by [12, Theorem], by repeating the
above way, we can prove (ii).

REMARK 1. If $G$ is solvable, we easily know $B_{0}$ since we may assume
$O(G)=1$ from Lemma 1.1. Assume $G$ is nonsolvable. If $e=3$ or 7, we know $B_{0}$

from Theorem 2.4. If $e=21$ , we know $B_{0}$ from Theorems 4.8 and 5.4.

REMARK 2. By Remark 1 of \S 2, there is a finite group $G$ with elementary
abelian Sylow 2-subgroups of order 8 such that $e(G)=21$ and $e(S)=7$ where
$S=O^{\prime}(G/O(G))$ .
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6. The case when $P$ is elementary abelian of order 16

In this section we deal with the case when $G$ has elementary abelian Sylow

2-subgroups of order 16. Specially, we are interested in the case where $e$ is
not prime. When $e$ is 9 or 21, the similar phenomenon to Theorem 5.4 occurs.
Throughout this section we assume that $G$ has an elementary abelian Sylow

2-subgroup $P$ of order 16 and we use the notation $e$ and $B_{0}$ as usual.
By Lemma 1.13 and Remark 1 of \S 1, it is enough to consider the cases

when $e=3,5,7,9,15$ and 21.

PROPOSITION 6.1. If $G$ is solvable and $e=3$ , then one of the following holds.
(i) $B_{0}\cong B_{0}(M)$ where $M$ is a semi-direct product of its normal subgroup $P$

by $\langle t\rangle$ such that $ P=\langle x, y, z, w\rangle$ is elementary abelian of order 16, $\langle t\rangle$ is cyclic

of order 3, $x^{i}=y,$ $y^{t}=xy,$ $z^{l}=w$ and $w^{l}=zw$ . In this case $k(B_{0})=8$ .
(ii) $B_{0}\cong B_{0}(L)$ where $L$ is a semi-direct product of its normal subgroup $P$ by

$\langle t\rangle$ such that $ P=\langle x, y, z, w\rangle$ is elementary abelian of order 16, $\langle t\rangle$ is cyclic of
order 3, $x^{t}=x,$ $y^{t}=y,$ $z^{l}=w$ and $w^{t}=zw$ . In this case $k(B_{0})=16$ .

PROOF. By Lemma 1.1, we may assume $O(G)=1$ . Hence $G$ is a semi-
direct product of its normal subgroup $P$ by $Z_{3}$ and $G$ is not the direct product
$P\times Z_{3}$ . Let $ G=P\langle t\rangle$ where $\langle t\rangle$ is cyclic of order 3, and let $ P=\langle x, y, z, w\rangle$ .
We may assume that

(i) $x^{l}=y,$ $y^{t}=xy,$ $z^{t}=w,$ $w^{t}=zw$

or
(ii) $x^{t}=x,$ $y^{t}=y,$ $z^{t}=w,$ $w^{t}=zw$ .

Then we can easily prove the assertion.

PROPOSITION 6.2. Let $D$ be the decomposition matrix of $B_{0}$ . If $e=3$ , then
we have the following.

(i) When $G$ is solvable, $D$ has the form
100 100
010 100
001 100
111 100
111 010
111 010
111 010
1 1 1, or $0$ 1 $0$

$k(B_{0})=8$ $0$ $0$ 1
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$0$ $0$ 1
$0$ $0$ 1
$0$ $0$ 1

1 1 1

1 1 1

1 1 1

1 1 1.
$k(B_{0})=16$

(ii) When $G$ is nonsolvable, we obtain $D$ from Theorem 2.4(2) and Lemma
1.16(ii).

PROOF. The assertion is proved by Proposition 6.1.

PROPOSITION 6.3. If $e=5$ , then $G$ is solvable, $B_{0}\cong B_{0}(P\cdot Z_{5})$ where $P\cdot Z_{5}$ is
the semi-direct product of its normal subgroup $P$ by $Z_{5}$ and it is not the direct
product $P\times Z_{5}$ , and the decomposition matrix of $B_{0}$ has the fornl

1 $0$ $0$ $0$ $0$

$0$ 1 $0$ $0$ $0$

$0$ $0$ 1 $0$ $0$

$0$ $0$ $0$ 1 $0$

$0$ $0$ $0$ $0$ 1
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1.

PROOF. By Proposition 1.10 and Lemma 1.12, $G$ is solvable since we may

assume $O(G)=1$ by Lemma 1.1. Hence $G$ is the semi-direct product of $P$ by
$Z_{5}$ , and it is not the direct product $P\times Z_{5}$ . The decomposition matrix of $B_{0}$ is
easily obtained.

PROPOSITION 6.4. If $e=7$, then there is a basic set $W$ of $B_{0}$ such that $W$

contains the trivial Brauer character and the decomposition matrix of $B_{0}$ with
respect to $W$ has the form
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$1_{G}$

$1_{G}$ 1
$\delta_{2}$

$0$

$\delta_{3}$

$\delta_{4}$ .
$0$ . $\delta_{13}$

$\delta_{14}$

$\delta_{15}\delta_{16}$ . . . $\delta_{15}$

$\delta_{16}\delta_{16}$ . $\delta_{16}$

where $\delta_{i}=\pm 1$ .

PROOF. As in the proof of Lemma 4.1 we can prove the assertion by Pro-
position 5.2.

PROPOSITION 6.5. Suppose $k(B_{0})=16$ .
(1) If $G$ has an involution $x$ with $b_{x}\cong B_{0}(P\cdot Z_{3})$ where $P\cdot Z_{3}$ is a semi-

direct product of $P$ by $Z_{3}$ and it is not the direct product $P\times Z_{3}$ , then the gene-
ralized decomposition matrix $D^{x}$ of $B_{0}$ relative to $x$ has the form $(^{*})$ .

(2) If $G$ has an involution $x$ with $b_{x}\cong B_{0}(Z_{2}\times Z_{2}\times L_{2}(q))$ for some $q>3$ with
$q\equiv 3$ or 5 (mod8), then the generalized decomposition matrix $D^{x}$ of $B_{0}$ relative
to $x$ is as follows:

(i) When $3<q\equiv 3(mod 8),$ $D^{x}$ has the form $(^{*})$ .
(ii) When $3<q\equiv 5$ (mod8), $D^{x}$ has the form $(^{**})$ .

$1_{M}$ $1_{M}$

$1_{G}$ 1 $0$ $0$ $1_{G}$ 1 $0$ $0$

$\delta_{2}$ $0$ $0$ $\delta_{2}$ $0$ $0$

$\delta_{3}$ $0$ $0$ $\delta_{3}$ $0$ $0$

$\delta_{4}$ $0$ $0$ $\delta_{4}$ $0$ $0$

$0$ $\delta_{5}$ $0$ $\delta_{5}$ $\delta_{5}$ $0$

$0$ $\delta_{6}$ $0$ $\delta_{6}$ $\delta_{6}$ $0$

$0$ $\delta_{7}$ $0$ $\delta_{7}$ $\delta_{7}$ $0$

$0$ $\delta_{8}$ $0$ $\delta_{8}$ $\delta_{8}$ $0$

$0$ $0$ $\delta_{9}$ $\delta_{9}$ $0$ $\delta_{9}$

$0$ $0$ $\delta_{10}$ $\delta_{10}0$ $\delta_{10}$

$0$ $0$ $\delta_{11}$ $\delta_{11}0$ $\delta_{11}$

$0$ $0$ $\delta_{12}$ $\delta_{12}0$ $\delta_{12}$

$\delta_{13}\delta_{13}\delta_{13}$ $\delta_{13}\delta_{13}\delta_{13}$

$\delta_{14}\delta_{14}\delta_{14}$ $\delta_{14}\delta_{14}\delta_{14}$
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$\delta_{15}\delta_{15}\delta_{15}$ $\delta_{15}\delta_{15}\delta_{15}$

$\delta_{16}\delta_{16}\delta_{16}$ $\delta_{16}\delta_{16}\delta_{16}$

$(^{*})$ $(^{**})$

where $\delta_{i}=\pm 1$ and $M=C_{G}(x)$ .

PROOF. (1) By Proposition 6.2(i), we know the Cartan matrix of $b_{x}$ . Hence
the assertion is proved as in the pmof of Lemma 4.1.

(2) We obtain the Cartan matrix of $b_{x}$ from Lemma 1.16(ii). Thus we can
verify (2) as in the proof of (1).

LEMMA 6.6. Assume $e=9,$ $O(G)=1,$ $O^{\prime}(G)=Z_{2}\times Z_{2}\times L_{2}(q)$ for some $q>3$ with
$q\equiv 3$ or 5 (mod8), and $G$ has a normal subgroup $H$ of odd prime index with
$e(H)=3$ . Let $b_{0}=B_{0}(H)$ , and let $x$ and $z$ be involutions in $Z(O^{\prime}(G))$ and $L_{2}(q)$ ,

respectively. Then we have the following.
(i) $x_{i}|_{H}=x_{i+1}|_{H}=x_{i+2}|_{H}=\tilde{x}_{i}$ for $i=1,5,9,13$

$x_{j}|_{H}=\tilde{x}_{j- 2}+\tilde{x}_{j- 1}+\tilde{x}_{j}$ for $j=4,8,12,16$

and the values $\tilde{\chi}_{i}(1),\tilde{\chi}_{i}(x),\tilde{\chi}_{i}(z)$ and $\tilde{\chi}_{i}(xz)$ are as follows:
1 $x$ $z$ $xz$

$\tilde{\chi}_{1}$ $\tilde{\chi}_{2}$ 1 1 1 1

$\tilde{\chi}_{5}\tilde{\chi}^{3}’\tilde{\chi}_{6}\tilde{\chi}^{4}$ $(q+\epsilon)/21$ $(q+\epsilon)/2-1$ $-\epsilon 1$ $-1-\epsilon$

$\tilde{\chi}_{7}$ $\tilde{\chi}_{8}$ $(q+\epsilon)/2$ $-(q+\epsilon)/2$ $-\epsilon$ $\epsilon$

$\tilde{\chi}_{9}$ $\tilde{\chi}_{10}$ $(q+\epsilon)/2$ $(q+\epsilon)/2$ $-\epsilon$ $-\epsilon$

$\tilde{\chi}_{11}\tilde{\chi}_{12}$ $(q+\epsilon)/2$ $-(q+\epsilon)/2$ $-\epsilon$ $\epsilon$

$\tilde{\chi}_{13}\tilde{\chi}_{14}$

$q$ $q$ $\epsilon$ $\epsilon$

$\tilde{\chi}_{16}\tilde{\chi}_{16}$

$q$ $-q$ $\epsilon$ $-\epsilon$

where $\{x_{1}=1_{G}, \chi_{2}\ldots \chi_{16}\}=Irr(B_{0}),$ $\{\tilde{\chi}_{1}=1_{H},\tilde{\chi}_{2}, ,\tilde{\chi}_{16}\}=Irr(b_{0})$ and $\epsilon=-1$ if $q\equiv 3$

(mod8); $\epsilon=1$ if $q\equiv 5$ (mod8).

(ii) $\phi_{i}|_{H}=\phi_{i+1}|_{H}=\phi_{i+2}|_{H}=\phi_{(i+2)/3}$ for $i=1,4,7$

$\phi_{J/3}^{G}=\phi_{j-2}+\phi_{j-1}+\phi_{j}$ for $j=3,6,9$

where $t\phi_{1}=1_{G},$ $\phi_{2},$ $\cdots,$
$\phi_{9}$ } $=IBr(B_{0})$ and $\{\phi_{1}=1_{H}, \phi_{2}, \phi_{3}\}=IBr(b_{0})$ .

PROOF. Let $S=O^{\prime}(G)=\langle x, y\rangle\times L_{2}(q)$ and $ P=\langle x, y, z, w\rangle$ where $\langle z, w\rangle$ is a
2-Sylow subgroup of $L_{2}(q)$ . We can write $ N_{S}(P)=\langle s, C_{S}(P)\rangle$ for some $s\in N_{S}(P)$ .
We may assume $z^{s}=w$ and $w^{s}=zw$ . We can also write $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ for
some $t\in N_{G}(P)$ where $s$ and $t$ have order 3 modulo $C_{G}(P)$ since $e=9$ (cf. Lemma
1.13). We may assume $x^{t}=y,$ $y^{t}=xy,$ $z^{t}=z$ and $w^{t}=w$ . As in the proof of
Lemma 5.3, we get $G/H=\langle tH\rangle,$ $C_{G}(P)=C_{H}(P)$ and $|G:H|=3$ . By [10, Lemma
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18.5], $\{1, x, z, xz\}$ is the set of all representatives of G-conjugate classes of $P$.
As before, $l(b_{x})=l(b_{z})=3$ and $l(b_{xz})=1$ . By Lemma 3.1, $k(B_{0})=16$ . Since $S$ is
normal in $C_{G}(x)$ and $e(C_{G}(x))=3$ , it follows from Lemma 2.3 that $b_{x}\cong B_{0}(Z_{2}\times Z_{2}$

$\times L_{2}(q))$ . Thus, by Lemmas 1.16(i) and 6.5(2), we may assume

$(^{*})$
$\chi_{i}(x)=\left\{\begin{array}{l}\pm 1 fori=1,\cdots,4\\\pm(q+\epsilon)/2 fori=5,\cdots,12\\\pm q fori=13,\cdots,16.\end{array}\right.$

Since $e(H)=3$ , by Lemma 2.3, $b_{0}\cong B_{0}(S)$ . Let $C_{G}(P)=P\times V$. By [10, Theorem
18.4], $P\cap G^{\prime}=P$, so that $|G:VG^{\prime}|$ is odd. Since $b_{0}\cong B_{0}(S)$ and since $C_{H}(P)=$

$P\times V$, by Proposition 1.5, $|H:VH^{\prime}|=4$ . Thus, $|G:VG^{\prime}|=3$ , so that $k^{\prime}(B_{\theta})=3$

from Proposition 1.5. Since $b_{0}\cong B_{0}(S)$ , by [10, Theorem 38.1], we know the
values of $\tilde{\chi}_{i}|_{S}$ for all $i$ . Then we get the table in (i). Using this we may
assume that

$I_{G}(\tilde{\chi}_{i})=G$ for $i=1,5,9,13$

$(^{**})$ $I_{G}(\tilde{\chi}_{j-2})=I_{G}(\tilde{\chi}_{j-1})=I_{G}(\tilde{\chi}_{j})=H$

for $j=4,8,12,16$ .
$\tilde{x}_{j-2}^{t}=\tilde{x}_{j- 1},\tilde{x}_{j-1}^{t}=\overline{x}_{j}$

By $(^{*})$ and $(^{**})$ , we may assume that $\chi_{1}|_{H}=x_{2}|_{H}=x_{3}|_{H}=\tilde{x}_{1}$ . Since $\tilde{\chi}_{2}(x)+\tilde{\chi}_{3}(x)$

$+\tilde{\chi}_{4}(x)=-1$ , by Proposition 1.4, $(^{*})$ and $(^{**})$ , we get $\chi_{4}|_{H}=\tilde{x}_{2}+\tilde{x}_{3}+\tilde{x}_{4}$ . Similarly,
we may assume that $x_{j}|_{H}=\tilde{x}_{j-2}+\tilde{x}_{j-1}+\tilde{x}_{j}$ for $j=8,12,16$ . We may also assume
that $\chi_{i}|_{H}=\chi_{i+1}|_{H}=\chi_{i+2}|_{H}=\tilde{x}_{i}$ for $i=5,9,13$ using Frobenius reciprocity $(^{*})$ and
$(^{**})$ . This completes the proof of (i). Since $b_{0}\cong B_{0}(S)$ , by Lemma 1.16(i), $\tilde{\phi}_{2}(1)$

$=\phi_{3}(1)=(q-1)/2$ . Thus $I_{G}(\tilde{\phi}_{j})=G$ for $j=1,2,3$ since $|G:H|=3$ . For all
$\phi_{i}\in IBr(B_{0})$ we have $\phi_{i}|_{H}\in IBr(b_{0})$ by Clifford’s theorem since $|G:H|=3$ . Thus,
by [15, $V16.6$ Satz], we get (ii) for suitable indexing of $\phi_{2},$ $\cdots$ , $\phi_{9}$ . This com-
pletes the proof of the lemma.

PROPOSITION 6.7. Assume as in Lemma 6.6. Then the decomposition matrix
$D$ of $B_{0}$ is as follows.
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(i) $3<q\equiv 3(mod 8)$ :
1 $0$ $0$

$0$ 1 $0$

$0$ $0$

$0$ $0$ 1
1 1 1

1 $0$ $0$

$0$ $00$ $01$ $01$ $0$

1 1 1$D=$
1 $0$ $0$

$0$ $0$
$0$ 1 $0$

$0$ $0$ 1
1 1 1

100100100
010010010
001001001
111111111.

(ii) $3<q\equiv 5(mod 8)$ :
1 $0$ $0$

$0$ 1 $0$

$0$ $0$

$0$ $0$ 1
1 1 1
100100
$00$ $01$ $01$ $00$ $01$ $01$ $0$

111111$D=$

100 100
010 010

$0$

001 001
111 111
100 100
$0$ 1 $0$ $(^{*})$ $0$ 1 $0$

001 001
111111111,

where $(^{*})$ is one of the following types

100 100 010 010 001 001
010 001100 001100 010
001, 010, 001, 100, 010, 100.
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PROOF. We use the same notation as in Lemma 6.6. Let $\tilde{D}$ be the decom-
position matrix of $b_{0}$ , and let $D=(d_{j\lambda})_{j,\lambda}$ . Let $\chi_{j}|_{H}=\sum_{i}l_{ij}\tilde{\chi}_{i}$ for each $j$, and
$L=(l_{ij})_{i,j}$ . Similarly, let $\phi_{\kappa}^{G}=\sum_{\lambda}\beta_{\kappa\lambda}\phi_{\lambda}$ for each $\kappa$ , and $B=(\beta_{\kappa\lambda})_{\kappa.\lambda}$ . By [7, \S 26],

(1) $DB=LD$ .
(i) Since $b_{0}\cong B_{0}(S)$ , by (1) and Lemmas 1.16(ii) and 6.6,

1 $0$ $0$

$0$ 1 $0$

$0$ $0$

$0$ $0$ 1
1 1 1

1 $0$ $0$

$0$ $00$ $01$ $01$ $0$

(2) $D=$ 1 1 1
1 $0$ $0$

$0$ 1 $0$

$0$ $0$

$0$ $0$ 1
1 1 1

? ? 7

111111111
and

(3) $d_{13,\lambda}+d_{14.\lambda}+d_{15,\lambda}=1$ for all $\lambda=1,$
$\cdots,$

$9$ .
By Lemma 6.6,

1
1
1

$-1$

1
1
1

(4) $D^{xz}=(d_{i1}^{xz})_{i}=$ $-1$

1
1
1

$-1$

$-1$

$-1$

$-1$

1
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where $D^{xz}$ is the generalized decomposition matrix of $B_{0}$ relative to $xz$. Clearly,
$S$ is normal in $C_{G}(x)$ . By the proof of Lemma 3.1, $e(C_{G}(x))=3$ . Since $q\equiv 3(mod_{\leftrightarrow}$

8), by Lemmas 2.3 and 6.5(2),
$\phi_{1}^{x}$ $\phi_{2}^{x}$ $\phi_{\theta}^{x}$

$1_{G}=x_{\nu_{1}}$ 1 $0$ $0$

$\chi_{\nu_{2}}$
$\delta_{2}$ $0$ $0$

$\chi_{\nu_{\theta}}$
$\delta_{3}$ $0$ $0$

$\chi_{\nu_{4}}$
$\delta_{4}$ $0$ $0$

$\chi_{\nu_{5}}$
$0$ $\delta_{5}$ $0$

$\chi_{\nu_{6}}$
$0$ $\delta_{6}$ $0$

$\chi_{\nu_{7}}$
$0$ $\delta_{7}$ $0$

(5) $(d_{\nu=.\alpha}^{x})_{i.\alpha}=$ $\chi_{\nu_{8}}$
$0$ $\delta_{8}$ $0$

$\chi_{\nu_{9}}$
$0$ $0$ $\delta_{\mathfrak{g}}$

$\chi_{\nu_{10}}$
$0$ $0$ $\delta_{10}$

$\chi_{\nu_{11}}$
$0$ $0$ $\delta_{11}$

$\chi_{\nu_{12}}$
$0$ $0$ $\delta_{12}$

$\chi_{\nu_{13}}$
$\delta_{13}$ $\delta_{13}$ $\delta_{13}$

$\chi_{\nu_{14}}$
$\delta_{14}$ $\delta_{14}$ $\delta_{14}$

$\chi_{\nu_{15}}$
$\delta_{16}$ $\delta_{15}$ $\delta_{16}$

$\chi_{\nu_{16}}$
$\delta_{16}$ $\delta_{16}$ $\delta_{16}$

where $d_{ta}^{x}$ are the generalized decomposition numbers of $B_{0}$ relative to $x,$ $\delta_{i}=\pm 1$ ,

$x_{\nu_{1}}=x_{1}=1_{G},$ $\{\chi_{\nu_{2}}, \cdots \chi_{\nu_{16}}\}=\{\chi_{2}, \cdot. , \chi_{16}\}$ , $\{\phi_{1}^{x}=1_{K}, \phi_{2}^{x}, \phi_{3}^{x}\}=IBr(b_{x})$ and $M=C_{G}(x)$ .

Let $c=\left(\begin{array}{ll}1 & 0\\1 & 1\end{array}\right)-$ in $L_{2}(q)$ . Then, by [10, Theorem 38.1] and Lemma 1.16, we may

assume that

(6) $\phi_{2}^{x}(c)=(-1+\sqrt{}-q)/2-$ and $\phi_{3}^{x}(c)=(-1-\sqrt{}-\overline{q})/2$ .
By Lemma 6.6 and (5), $\{\chi_{\nu_{1}}\ldots, \chi_{\nu_{4}}\}=\{\chi_{1}\ldots \chi_{4}\}$ and $\{\chi_{\nu_{13}}\ldots \chi_{\nu_{16}}\}=\{\chi_{13}\ldots \chi_{16}\}$ .
We may assume that $x_{5}\in\{\chi_{\nu_{5}}, \cdots , \chi_{\nu_{8}}\}$ . By Lemma 6.6, $\chi_{5}|_{H}=x_{6}|_{H}=x_{7}|_{H}$ . Thus,

by (5) and (6), we get that $\chi_{6}$ and $\chi_{7}$ are both in $\{\chi_{\nu_{5}}, \cdots, \chi_{\nu_{8}}\}$ . Similarly, none
of $\{\chi_{9}, \chi_{10}, \chi_{11}\}$ are in $\{\chi_{\nu_{6}}, \cdots, \chi_{\nu_{8}}\}$ . Hence, by (2), (5) and (6), we know {$\chi_{\nu_{5}}\ldots$

$\chi_{\nu_{8}}\}=\{\chi_{5}\ldots \chi_{8}\}$ . Thus, $\{\chi_{\nu_{9}}\ldots, \chi_{\nu_{12}}\}=\{\chi_{9}\ldots, \chi_{12}\}$ . Hence we may assume
that $x_{\nu}=x_{i}i$ for all $i=1,$ $\cdots$ , 16. Therefore, by Lemma 6.6,

$\phi_{1}^{x}$ $\phi_{2}^{x}$ $\phi_{3}^{x}$

1 $0$ $0$

1 $0$ $0$

1 $0$ $0$

$-1$ $0$ $0$
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$0$ 1 $0$

$0$ 1 $0$

$0$ 1 $0$

(7) $(d_{i\alpha}^{x})_{i.\alpha}=$ $0$ $-1$ $0$

$0$ $0$ 1
$0$ $0$ 1
$0$ $0$ 1
$0$ $0$ $-1$

1 1 1
1 1 1
1 1 1

$-1$ $-1$ $-1$ .
Next, we want to know the generalized decomposition numbers $d_{ia}^{z}$ of $B_{0}$ relative

to $z$ . Let $L=C_{G}(z)$ . As for $x,$ $e(L)=3$ and $l(B_{0}(L))=3$ . Since $ N_{L}(P)=\langle t, C_{L}(P)\rangle$

and $z^{t}=z$, we get from Proposition 6.1 and Theorem 2.4(1) that $k(B_{0}(L))=k(b_{z})$

$=16$ . By Theorem 2.4(2) and Lemmas 6.6 and 6.5, $L$ is solvable, so that
$b_{z}\cong B_{0}(P\cdot Z_{3})$ from Proposition 6.1 where $P\cdot Z_{3}$ is a semi-direct product of its

normal subgroup $P$ by $Z_{3}$ and it is not the direct product $P\times Z_{3}$ . Thus, by

Lemma 6.5,
$\phi_{1}^{z}$ $\phi_{2}^{z}$ $\phi_{3}^{z}$

$1_{G}=x_{\nu_{1}}$ 1 $0$ $0$

$\chi_{\nu_{2}}$
$0$ $\delta_{2}$ $0$

$\chi_{\nu_{3}}$
$0$ $0$ $\delta_{3}$

$\chi_{\nu_{4}}$
$\delta_{4}$ $\delta_{4}$ $\delta_{4}$

$\chi_{\nu_{5}}$
$\delta_{5}$ $0$ $0$

$\chi_{\nu_{6}}$
$0$ $\delta_{6}$ $0$

$\chi_{\nu_{7}}$
$0$ $0$ $\delta_{7}$

(8) $(d_{\nu.\alpha}^{z_{i}})_{i.\alpha}=$ $\chi_{\nu_{8}}$
$\delta_{8}$ $\delta_{8}$ $\delta_{8}$

$\chi_{\nu_{9}}$
$\delta_{9}$ $0$ $0$

$\chi_{\nu_{10}}$
$0$ $\delta_{10}$ $0$

$\chi_{\nu_{11}}$
$0$ $0$ $\delta_{11}$

$\chi_{\nu_{12}}$
$\delta_{12}$ $\delta_{12}$ $\delta_{12}$

$\chi_{\nu_{13}}$
$\delta_{13}$ $0$ $0$

$\chi_{\nu_{14}}$
$0$ $\delta_{14}$ $0$

$\chi_{\nu_{15}}$
$0$ $0$ $\delta_{16}$

$\chi_{\nu_{16}}$
$\delta_{16}$ $\delta_{16}$ $\delta_{16}$
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where $\delta_{i}=\pm 1,$ $x_{\nu_{1}}=x_{1}=1_{G}$ , $\{\chi_{\nu_{2}}, \cdots \chi_{\nu_{16}}\}=\{\chi_{2}\ldots, \chi_{16}\}$ and $\{\phi l^{\prime}, \phi_{2}^{z}, \phi_{3}^{z}\}=IBr(b_{z})$ .
Clearly, $\phi_{1}^{z}(1)=\phi_{2}^{\epsilon}(1)=\phi_{3}^{f}(1)=1$ . Hence, by Lemma 6.6 and (8),

$\{\chi_{\nu_{4}}, \chi_{\nu_{8}}, \chi_{\nu_{12}}, \chi_{\nu_{16}}\}=\{\chi_{4}, \chi_{8}, \chi_{12}, \chi_{16}\}$

(9)
$\{\delta_{4}, \delta_{8}, \delta_{12}, \delta_{16}\}=\{1,1,1, -1\}$ .

By Lemma 6.6, $\chi_{i}(z)=x_{i+1}(z)=x_{i+2}(z)=1$ for $i=1,5,9$ . So it follows from (4), (7),

(8) and [10, Theorem 63.3] that $\delta_{4}=\delta_{8}=\delta_{12}=1$ and $\delta_{16}=-1$ . Thus, again by (4),

(7), (8) and [10, Theorem 63.3],
$\phi_{1}^{z}$ $\phi_{2}^{f}$ $\phi_{3}^{z}$

1 $0$ $0$

$0$ 1 $0$

$0$ $0$ 1
1 1 1
1 $0$ $0$

$0$ 1 $0$

$0$ $0$ 1
(10) $(d_{i\alpha}^{l})_{i.\alpha}=$ 1 1 1

1 $0$ $0$

$0$ 1 $0$

$0$ $0$ 1
1 1 1

$-1$ $0$ $0$

$0$ $-1$ $0$

$0$ $0$ $-1$

$-1$ $-1$ $-1$

for suitable indexing. By (2), (3), (10) and [10, Theorem 63.3],

$\chi_{13}$ 1 $0$ $0$ 1 $0$ $0$ 1 $0$ $0$

$D=\chi_{14}$ $0$ 1 $0$ $0$ 1 $0$ $0$ 1 $0$

$\chi_{16}$ $0$ $0$ 1 $0$ $0$ 1 $0$ $0$ 1
$\chi_{16}$ 1 1 1 1 1 1 1 1 1.

This completes the proof of (i).

(ii) Since $b_{0}\cong B_{0}(S)$ , as in the proof of (i) we get
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1 $0$ $0$

$0$ 1 $0$

$0$ $0$

$0$ $0$ 1
1 1 1

?
$0$

(11) $D=1$ 1 1 1 1 1

? ?
$0$

111 111
$p$ ? $\prime t$

111111111
and

$d_{5\lambda}+d_{6\lambda}+d_{7\lambda}=1$ for $\lambda=1,$ $\cdots,$
$6$

(12) $d_{9\lambda}+d_{10,\lambda}+d_{11,\lambda}=1$ for $\lambda=1,2$,3,7,8,9

$d_{13.\lambda}+d_{14,\lambda}+d_{15.\lambda}=1$ for $\lambda=1,$
$\cdots,$

$9$ .

As in the proof of (i), we have
$\phi_{1}^{x}$ $\phi_{2}^{x}$ $\phi_{3}^{x}$

$\phi_{1}^{f}$ $\phi_{2}^{z}$ $\phi_{3}^{z}$

1 1 $0$ $0$ 1 $0$ $0$

1 1 $0$ $0$ $0$ 1 $0$

1 1 $0$ $0$ $0$ $0$ 1
$-1$ $-1$ $0$ $0$ 1 1 1
$-1$ 1 1 $0$ $-1$ $0$ $0$

$-1$ 1 1 $0$ $0$ $-1$ $0$

$-1$ 1 1 $0$ $0$ $0$ $-1$

(13) $(d_{i}^{x_{i}z})_{i}=$ 1 $(d_{ia}^{x})_{i,a}=-1$ $-1$ $0$ $(d_{ia}^{z})_{i,\alpha}=-1$ $-1$ $-1$

$-1$ 1 $0$ 1 $-1$ $0$ $0$

$-1$ 1 $0$ 1 $0$ $-1$ $0$

$-1$ 1 $0$ 1 $0$ $0$ $-1$

1 $-1$ $0$ $-1$ $-1$ $-1$ $-1$

1 111 1 $0$ $0$

1 111 $0$ 1 $0$

1 111 $0$ $0$ 1
$-1$ , $-1$ $-1$ $-1$ , 1 1 1

where $d_{i1}^{x\iota},$ $d_{i\alpha}^{x},$ $d_{i\alpha}^{f},$ $\phi_{a}^{x}$ and $\phi_{\alpha}^{l}$ are the same as in (i). By Lemmas 6.6 and 1.16,

we know the degrees of all $\chi_{i}$ and $\phi_{\alpha}$ . Thus, by (11), (12), (13) and [10, Theo-
rem 63.3], we may assume



58 Shigeo KOSHITANI

$\chi_{5}$ 1 $0$ $0$ 1 $0$ $0$

(14) $D=\chi_{6}$ $0$ 1 $0$ $0$ 1 $0$

$0$

$\chi_{7}$ $0$ $0$ 1 $0$ $0$ 1
$\chi_{8}$ 1 1 1 1 1 1

Similarly, we may assume

$\chi_{9}$ 1 $0$ $0$

(15) $D=\chi_{10}$ ? $0$ 1 $0$

$0$

$\chi_{11}$ $0$ $0$ 1
$\chi_{12}$ $1$ 1 1 1 1 1.

So, by (11), (12), (13), (14), (15) and [10, Theorem 63.3],

$\chi_{13}$ 100100
(16) $D=\chi_{14}$ ? $0$ 1 $0$ $0$ 1 $0$

$\chi_{15}$ 001001
$\chi_{16}$ $1$ 1 1 1 1 1 1 1 1.

Thus, considering the degrees of $\chi_{i}$ and $\phi_{a}$ , by (11) $-(16)$ we get the following
six cases:

$\chi_{9}$ 1 $0$ $0$ 1 $0$ $0$ $0$ 1 $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0$ 1
$\chi_{10}$ $0$ 1 $0$ 001100 100 001 010
$\chi_{11}$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0$ 1 $0$ 1 $0$ 1 $0$ $0$ 1 $0$ $0$

$\chi_{12}$ 111111111111111111
$\chi_{13}$ 1 $0$ $0$ 1 $0$ $0$ $0$ 1 $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0$ 1
$\chi_{14}$ $0$ 1 $0$ 001100 100 001 010
$\chi_{15}$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0$ 1 $0$ 1 $0$ 1 $0$ $0$ 1 $0$ $0$

$\chi_{16}$ 1 1 1, 1 1 1, 1 1 1, 1 1 1, 1 1 1, 1 1 1.
$\phi_{1}\phi_{2}\phi_{3}$ $\phi_{1}\phi_{2}\phi_{3}$ $\phi_{1}\phi_{2}\phi_{8}$ $\phi_{1}\phi_{2}\phi_{3}$ $\phi_{1}\phi_{2}\phi_{3}$ $\phi_{1}\phi_{2}\phi_{3}$

Thus, for suitable indexing of $\chi_{i}$ and $\phi_{a}$ , we obtain (ii).

The following theorem is one of the main results of this section.

THEOREM 6.8. Let $\overline{G}=G/O(G)$ and $S=O^{\prime}(\overline{G})$ . If $G$ is nonsolvable, $e=9$ and
$e(S)\neq 9$ , then we have the following.

(i) $S\cong Z_{2}\times Z_{2}\times L_{2}(q)$ for some $q>3$ with $q\equiv 3$ or 5 (mod8).
(ii) For any subnormal subgroup $\overline{L}$ of $\overline{G}$ of odd index with $e(\overline{L})=9$ ,

$B_{0}\cong B_{0}(\overline{L})$ .
PROOF. We may assume $0(G)=1$ by Lemma 1.1, so that $S=O^{\prime}(G)$ .
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(i) Since $G$ is nonsolvable, $e(S)=3$ . Thus, we get (i) from Proposition 1.10
and Lemma 1.12.

(ii) Firstly, we want to prove that

$(^{*})$ $\left\{\begin{array}{l}ifLisanorma1subgroupofGsuchthat|G\cdot.L|isanoddprimeand\\e(L)=9andifHisanormalsubgroupofLsuchthat|L\cdot.H|isanodd\\primeande(H)=3,thenB_{0}\cong B_{0}(L).\end{array}\right.$

Let $b_{0}=B_{0}(L)$ . By Lemma 3.1, $k(B_{0})=k(b_{0})=16$ and $l(B_{0})=l(b_{0})=9$. We may
write $O^{\prime}(G)=S=\langle x, y\rangle\times L_{2}(q)$ and $ P=\langle x, y, z, w\rangle$ where $\langle z, w\rangle$ is a Sylow 2-
subgroup of $L_{2}(q)$ . By the proof of Lemma 6.6, we may assume $x^{s}=x,$ $y^{s}=y$,
$z^{s}=w,$ $w^{s}=zw,$ $x^{t}=y,$ $y^{l}=xy,$ $z^{t}=z$ and $w^{\iota}=w$ where $s,$ $ t\in N_{L}(P)=\langle s, t, C_{L}(P)\rangle$ .
So $ N_{G}(P)=\langle s, t, C_{G}(P)\rangle$ . By the proof of Lemma 3.1, $l(b_{xz})=1$ . Thus, by Lemma
1.9, $\chi_{i}(xz)=\pm 1$ for all $\chi_{i}\in 1rr(B_{0})$ . By Lemma 6.6, we know the values $\tilde{\chi}_{j}(1)$ and
$\tilde{\chi}_{j}(xz)$ for all $\tilde{\chi}_{j}\in Irr(b_{0})$ . Using this, if $\tilde{\chi},\tilde{\chi}^{\prime}\in Irr(b_{0})$ and $\tilde{\chi}(1)=\tilde{\chi}^{\prime}(1)$ , then $\tilde{\chi}(xz)=$

$\tilde{\chi}^{\prime}(xz)=\pm 1$ . Hence it follows from Corollary 1.8 that $B_{0}\cong b_{0}$ . Thus we get $(^{*})$ .
On the other hand, $G/S$ is solvable from [12, Theorem]. Hence we can verify
(ii) by repeating the above way. This completes the proof.

PROPOSITION 6.9. Let $D$ be the decomposition matrix of $B_{0}$ , and let $S=$

$C^{l}(G/O(G))$ . If $e=9$ , then we have following.
(i) When $G$ is solvable,

1 $0$ $0$

$0$ 1 $0$
$0$ $0$

$0$ $0$ 1
1 $0$ $0$

$0$
$0$ 1 $0$

$0$

$0$ $0$ 1
1 $0$ $0$

$D=$ $0$ $0$
$0$ 1 $0$

$0$ $0$ 1
111000000
000111000
000000111
100100100
010010010
001001001
111111111.

(ii) When $G$ is nonsolvabfe and $e(S)=9$, we know $D$ from Theorem 3.4(2)
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and Lemma 1.16(ii).

(iii) When $G$ is nonsolvable and $e(S)=3$, we know $D$ from Theo$rem6.8$ and
Proposition 6.7.

REMARK 1. There is a finite group $G$ with an elementary abelian Sylow

2-subgroup $P$ of order 16 such that $e(G)=9$ and $O^{\prime}(G/O(G))\cong Z_{2}\times Z_{2}\times L_{2}(q)$ for
$q>3$ with $q\equiv 3$ or 5 (mod8). Let $\langle z, w\rangle$ be a Sylow 2-subgroup of $L_{2}(q)$ , and
let $S=\langle x, y\rangle\times L_{2}(q)$ and $ P=\langle x, y, z, w\rangle$ where $\langle x, y\rangle$ is elementary abelian of
order 4. There is an automorphism $r$ of $\langle x, y\rangle$ with $x^{r}=y$ and $y^{r}=xy$ . We can
consider that $r\in Aut(S)$ if its we consider that $r$ is trivial on $L_{2}(q)$ . So there is
a semi-direct product $G$ of its normal subgroup $S$ by $\langle r\rangle$ . Then, $e(G)=9$ and $0^{\prime}(G)=$

$S=Z_{2}\times Z_{2}\times L_{2}(q)$ .

The next theorem is one of the main results of this section.

THEOREM 6.10. If $G$ is nonsolvable and $e=15$ , then $B_{0}\cong B_{0}(SL(2,16))$ .

PROOF. By Lemma 1.1, we may assume $0(G)=1$ . Let $S=O^{\prime}(G)$ . Since $G$

is nonsolvable, it follows from Proposition 1.10 and Lemma 1.12 that $e(S)\neq 1$ and
$e(S)\neq 5$ . So that $e(S)=3$ or 15. Firstly, suppose $e(S)=3$ . By Proposition 1.10
and Lemma 1.12, $S\cong Z_{2}\times Z_{2}\times L_{2}(q)$ for some $q>3$ with $q\equiv 3$ or 5 (mod8). Thus,

there is an involution $x\in P\cap Z(S)$ . We can write $ N_{S}(P)=\langle s, C_{S}(P)\rangle$ for some
$s\in N_{s}(P)$ . Thus, $x^{s}=x$. Since $e=15$ , we can write $ N_{G}(P)=\langle t, C_{G}(P)\rangle$ for some
$t\in N_{G}(P)$ . Since $N_{S}(P)/C_{S}(P)$ can be considered as a subgroup of $N_{G}(P)/C_{G}(P)$

through the canonical monomorphism, we get that $s\equiv t^{5i}(mod C_{G}(P))$ for some
integer $i$ with $i\not\equiv O$ (mod3). Thus, $x=x^{\iota^{6i}}$ . This is a contradiction. Hence
$e(S)=15$ , so that $S\cong SL(2,16)$ from Proposition 1.10 and Lemma 1.12.

We prove $B_{0}\cong B_{0}(S)$ by induction on $|G|$ . Let $G\neq S$. Since $G/S$ is solvable
by [12, Theorem], $G$ has a normal subgroup $H$ of odd prime index with $S\subseteqq H$.
Let $b_{0}=B_{0}(H)$ , and let $z$ be an involution in $P$. Since $b_{0}\cong B_{0}(S)$ by induction, we
get $k(b_{0})=16$ and

$(^{*})$ $\tilde{\chi}_{i}(1)=\left\{\begin{array}{l}1 fori=1\\15 fori=2,\cdots,9\\17 fori=10,\cdots,16,\end{array}\right.$ $\tilde{\chi}_{i}(z)=\left\{\begin{array}{l}1 fori=1\\-1 fori=2,\cdots,9\\1 fori=10,\cdots,16\end{array}\right.$

using [10, Theorem 38.2], where $\{\tilde{\chi}_{1} , \tilde{x}_{16}\}=Irr(b_{0})$ . Since all involutions in
$P$ are G-conjugate, $P\cap G^{\prime}=P$ by [10, Theorem 18.4]. Thus, $k^{\prime}(B_{0})$ is odd from
Proposition 1.5. Now, we want to claim that $k(B_{0})=16$ . If $k^{\prime}(B_{0})=1$ , we get

from Propositions 1.5 and 1.6 that $k(B_{0})=16$ . Suppose $k(B_{0})\neq 16$ . Since $e=15$ ,
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$l(b_{z})=1$ . Thus, by Lemma 1.15(2), $k(B_{0})=8$ . So that $k^{\prime}(B_{0})=3,5$ or 7. Let
$\{\chi_{1}\ldots \chi_{8}\}=Irr(B_{0})$ .

Case 1. $k^{\prime}(B_{0})=7$ : We may assume $\chi_{1}(1)=\cdots=x_{7}(1)=1$ and $\chi_{8}(1)>1$ . By

Clifford’s theorem, Proposition 1.3 and $(^{*})$ , we have $\chi_{1}|_{H}=\cdots=x_{7}|_{H}=\tilde{\chi}_{1}$ . Thus,
by Proposition 1.4, $(\chi_{8}|_{H},\tilde{\chi}_{j})\neq 0$ for $j=2,$ $\cdots,$

$16$ . Then we have a contradiction
from Clifford’s theorem and $(^{*})$ by considering the degrees of $\tilde{\chi}_{j}$ .

Case 2. $k^{\prime}(B_{0})=5$ : We may assume $\chi_{i}(1)=1$ for $i=1,$ $\cdots,$
$5$ and $\chi_{j}(1)>1$ for

$j=6,7,8$ . As in Case 1 we know $\chi_{1}|_{H}=\cdots=x_{5}|_{H}=\tilde{x}_{1}$ . Since $k(B_{0})\neq k(b_{0})$ ,
$B_{0}\not\cong b_{0}$ . So that we get from Proposition 1.6 that $G\neq VH$ where $V$ is a sub-
group of $G$ with $C_{G}(P)=P\times V$. Since $k^{\prime}(B_{0})=5$ , $|G:H|=5$ by Proposition 1.5.
So, by Clifford’s theorem and Proposition 1.4,

$x_{6}|_{H}=\tilde{x}_{2}+\cdots+\tilde{x}_{6}$ , $x_{7}|_{H}=\tilde{x}_{7}+\cdots+\tilde{x}_{11}$ ,

$x_{s}|_{H}=\tilde{x}_{12}+\cdots+\tilde{x}_{16}$

for suitable indexing of $\tilde{\chi}_{2}$ $\tilde{\chi}_{16}$ . Hence we have a contradiction from Clifford’s
theorem and $(^{*})$ by considering the degrees of $\tilde{\chi}_{j}$

Case 3. $k^{\prime}(B_{0})=3$ : Let $\chi_{i}(1)=1$ for $i=1,2,3$ and $\chi_{j}(1)>1$ for $j=4,$ $\cdots,$
$8$ .

As in Case 2, $|G:H|=3$ . Then, by Proposition 1.4, for suitable indexing of
$\tilde{\chi}_{2}$ , , $\tilde{\chi}_{16}$ , we get

$x_{4}|_{H}=\tilde{x}_{2}+\tilde{x}_{3}+\tilde{x}_{4}$ , $x_{5}|_{H}=\tilde{x}_{5}+\tilde{x}_{6}+\tilde{x}_{7}$ , $x_{6}|_{H}=\tilde{x}_{S}+\tilde{x}_{9}+\tilde{x}_{10}$

$x_{7}|_{H}=\tilde{x}_{11}+\tilde{x}_{12}+\tilde{x}_{13}$ , $x_{S}|_{H}=\tilde{x}_{14}+\tilde{x}_{15}+\tilde{x}_{16}$

Then we have a contradiction as in Case 2.
Thus, $k(B_{0})=16$ . Let $\{\chi_{1}\ldots , \chi_{16}\}=Irr(B_{0})$ . Since $l(b_{z})=1,$ $\chi_{i}(z)=\pm 1$ for $i=$

$1,$
$\cdots,$

$16$ from Lemma 1.9. Thus, we know from Clifford’s theorem, Proposition
1.3 and $(^{*})$ that $\chi_{i}|_{H}\in Irr(b_{0})$ for all $i=1,$ $\cdots$ , 16. Hence, by Proposition 1.4, we
may assume that $\chi_{i}|_{H}=\tilde{x}_{i}$ for all $i=1,$ $\cdots$ , 16. This shows $k^{\prime}(B_{0})=1$ . So that
$B_{0}\cong b_{0}$ from Propositions 1.5 and 1.6. This completes the proof of the theorem.

PROPOSITION 6.11. If $e=15$ , then there is a basic set $W$ of $B_{0}$ such that $W$

contains the trivial Brauer character and the decomposition matrix of $B_{0}$ with
respect to $W$ has the form

$1_{G}$ 1
$\delta_{2}$

$0$

$0$

$\delta_{15}$

$\delta_{16}\delta_{16}$ . $\delta_{16}$
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where $\delta_{i}=\pm 1$ .

PROOF. The proof is similar to that of Proposition 5.2 (cf. the case when

$e=7$ in Proposition 5.2).

LEMMA 6.12. If $e=21$ , then there is an involution $z\in P$ and there are two

elements $s,$ $t\in N_{G}(P)$ such that $N_{G}(P)=\langle s, t, C_{G}(P)\rangle,$ $z^{*}=z$ and $z^{\iota}=z$.

PROOF. Firstly, we want to prove that

$(^{*})$
$\left\{\begin{array}{l}thereisaninvolutionu\in Pandtherearetwoe1ementss,l\in N_{G}(P)such\\thatN_{G}(P)=\langle s,t,C_{G}(P)\rangle,sandthaveorders3and7modu1oC_{G}(P)\\respectively,andu^{s}=u.\end{array}\right.$

We may assume $0(G)=1$ by the proof of Lemma 1.1. Since $S=O^{\prime}(G)$ is normal

in $G,$ $e(S)=1,7$ or 21. When $e(S)=7$ or 21, we get $(^{*})$ from Proposition 1.10 and

Lemma 1.12. Assume $e(S)=1$ . Then $P$ is normal in $G$ and $|G:P|=21$ . We can
write $ G=\langle s, t, P\rangle$ for $s,$

$t\in G$ such that $s$ and $t$ have orders 3 and 7 modulo $P$,

respectively. Clearly, there is an involution $y\in P$ with $y^{t}=y$ . Suppose $x^{s}\neq x$

for all involutions $x\in P$. Then, $e(C_{G}(y))=7$ . By Proposition 5.2 and [10, Lemma

66.1], the Cartan matrix of $b_{y}$ has 2 as an elementary divisor of multiplicity 6.

Thus, by $[5, (7G)],$ [ $18$ , Proposition 1.2] and [10, Theorem 65.4], we get $l(B_{0})\geqq 7$

since all involutions in $G$ are conjugate. On the other hand, $l(B_{0})=5$ since $G/P$

is noncyclic of order 21 (cf. Lemma 1.13). This is a contradiction. Hence we
obtain $(^{*})$ .

Next, we prove the lemma. There is an involution $z\in P$ with $z^{\iota}=z$. By $(^{*})$ ,

there are other two involutions $v,$ $w\in P$ such that $v^{s}=v,$ $w^{s}=w$ and $u,$ $\nu,$ $w$ are
all distinct. It suffices to show $z\in\{u, v, w\}$ . Suppose $z\not\in\{u, v, w\}$ . Since $z^{s}\neq z$,

we know that $\{1, u, v, w, z, uz, vz, wz\}$ is the set of all representatives of $\langle s\rangle-$

conjugate classes of $P$. Since $u\neq z$, we get $u^{t}\neq u$ . Thus, $\{1, u, uz, z\}$ is the set

of all representatives of $\langle t\rangle$ -conjugate classes of $P$. Hence, by elementary calcu-

lation, we get that $v\in\{uz, u^{t}z, \cdots, u^{t^{6}}z\}$ . Hence no two elements in $\{u, v, z\}$

are conjugate in $G$ . These show that all G-conjugate classes of $P$ are {1}, $\{z\}$

$\{u, u^{t}, \cdots, u^{t^{6}}\}$ and $\{uz, u^{t}z, \cdots, u^{t^{6}}z\}$ . Thus, $z^{s}=z$. This is a contradiction.
This completes the proof.

LEMMA 6.13. If $e=21$ , then $k(B_{0})=16$ and $l(B_{0})=5$ .

PROOF. Let $s,$
$t$ and $z$ be the same as in Lemma 6.12. Hence $s$ and $t$ have

orders 3 and 7 modulo $C_{G}(P)$ , respectively. There is an involution $x\in P$ with
$x^{s}=x$ and $x^{t}\neq x$. Thus, $\{1, x, xz, z\}$ is the set of all representatives of conjugate
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classes of $G$ of 2-elements by [10, Lemma 18.5]. We may assume $O(G)=1$ by

Lemma 1.1. By $Z^{*}$-theorem [10, Theorem 67.1], $z\in Z(G)$ . These imply from [10,

Theorems 68.4 and 65.4] that $k(B_{0})=2l(B_{0})+l(b_{x})+l(b_{xz})$ . Since $e(C_{G}(x))=3,$ $l(b_{x})$

$=3$ by Theorem 2.4(1). Similarly, $l(b_{xz})=3$ . Since $z\in Z(G)$ , as in the proof of
Lemma 2.2 we get from Lemma 4.1 and Proposition 1.2 that $l(B_{0})=5$ , so that
$k(B_{0})=16$ .

LEMMA 6.14. Assume $e=21,$ $O(G)=1,$ $O^{\prime}(G)=Z_{2}\times SL(2,8)$ and $G$ has a normal
subgroup $H$ of odd prime index with $e(H)=7$ . Then for any involution $z$ in
$SL(2,8)$ , we have

$\chi_{1}(1)=\cdots=x_{6}(1)=1$ , $\chi_{7}(1)=\cdots=x_{12}(1)=7$ ,

$\chi_{13}(1)=x_{14}(1)=21$ , $x_{15}(1)=x_{16}(1)=27$,

$\chi_{1}(z)=\cdots=x_{6}(z)=1$ , $\chi_{7}(z)=\cdots=x_{12}(z)=-1$ ,

$x_{13}(z)=x_{14}(z)=-3$ , $x_{15}(z)=x_{16}(z)=3$

where $\{x_{1}=1_{G}, \chi_{2}\ldots, \chi_{16}\}=Irr(B_{0})$ .

PROOF. Let $b_{0}=B_{0}(H),$ $S=O^{\prime}(G)=\langle w\rangle\times SL(2,8)$ and $ P=\langle w, x, y, z\rangle$ where
$\langle x, y, z\rangle$ is a Sylow 2-subgroup of $SL(2,8)$ . As in the proof of Lemma 5.3, $G/H$

$=\langle rH\rangle$ for some $r\in N_{G}(P),$ $C_{G}(P)=C_{H}(P)$ and $|G:H|=3$ . We can write $N_{S}(P)$

$=\langle t, C_{S}(P)\rangle$ for some $t\in N_{S}(P)$ . Since $ P\cap Z(S)=\langle w\rangle$ , it follows from Lemma 6.12
and $Z^{*}$-theorem [10, Theorem 67.1] that $w\in Z(G)$ . Then, by the proof of Lemma
6.13, we may assume that $z^{t}\neq z,$ $z^{r}=z$ and $l(b_{z})=3$ . By the proof of Lemma 2.2,
$l(B_{0}(C_{S}(z)))=1$ . So that $C_{S}(z)$ is 2-nilpotent from [10, Corollary 65.3]. Hence
$C_{G}(z)$ is solvable. Since $e(C_{G}(z))=3$ , by Proposition 6.1, $b_{z}\cong B_{0}(P\cdot Z_{3})$ where $P\cdot Z_{a}$

is a semi-direct product of its normal subgroup $P$ by $Z_{3}$ and it is not the direct
product $P\times Z_{3}$ . Then, by Lemma 6.5, we know the generalized decomposition

numbers of $B_{0}$ relative to $z$. This implies

$(^{*})$ $\chi_{i}(z)=\left\{\begin{array}{l}\pm 1 fori=l,\cdots,12\\\pm 3 fori=13,\cdots,16\end{array}\right.$

for suitable indexing of $\chi_{2}\ldots$ $\chi_{16}$ . By Lemma 2.3, $b_{0}\cong B_{0}(S)$ . So, by [10, Theo-
rem 38.2],

$\tilde{\chi}_{1}(1)=\tilde{\chi}_{2}(1)=1$ , $\tilde{\chi}_{3}(1)=\ldots\tilde{\chi}_{10}(1)=7$,

$\tilde{\chi}_{11}(1)=\cdots=\tilde{\chi}_{16}(1)=9$ ,
$(^{**})$

$\tilde{\chi}_{1}(z)=\tilde{\chi}_{2}(z)=1$ , $\tilde{\chi}_{3}(z)=\cdots=\tilde{\chi}_{10}(z)=-1$ ,

$\tilde{\chi}_{11}(z)=\cdots=\tilde{\chi}_{16}(z)=1$
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where $\{\tilde{\chi}_{1}=1_{H},\tilde{\chi}_{2}\ldots \tilde{\chi}_{16}\}=Irr(b_{0})$ . We can write $C_{G}(P)=P\times V$. By Theorem
2.4 and Lemma 6.13, we get $l(B_{0})\neq l(b_{0})=l(B_{0}(S))$ . Hence $B_{0}\not\cong b_{0}$ , so that $VH\neq G$

by Proposition 1.6. Thus, $|G:VH|=|G:H|=3$ . Hence, by Proposition 1.5, $k^{\prime}(B_{0})$

is divisible by 3. Since $|G:H|=3$, it follows from Frobenius reciprocity, Pro-
position 1.3 and $(^{**})$ that $k^{\prime}(B_{0})\leqq 6$ . By observing the conjugate classes of $G$ of
2-elements, we know $P\cap G^{\prime}\neq P$ from [10, Theorem 18.4]. Hence $|G:VG^{\prime}|$ is
divisible by 2. Thus, $k^{\prime}(B_{0})=|G:VG^{\prime}|=6$ from Proposition 1.5. Then, by $(^{*})$

and $(^{**})$ , we may assume that

$x_{1}|_{H}=x_{2}|_{H}=x_{3}|_{H}=\tilde{x}_{1}$ , $x_{4}|_{H}=x_{5}|_{H}=x_{6}|_{H}=\tilde{x}_{2}$ .
Similarly, we may assume that

$x_{13}|_{H}=\tilde{x}_{6}+\tilde{x}_{6}+\overline{x}_{7}$ , $x_{14}|_{H}=\tilde{x}_{S}+\tilde{x}_{9}+\tilde{x}_{10}$ ,

$x_{15}|_{H}=\tilde{x}_{11}+\tilde{x}_{12}+\tilde{x}_{13}$ , $x_{16}|_{H}=\tilde{x}_{14}+\tilde{x}_{15}+\tilde{x}_{16}$ .
Hence we may assume that

$x_{7}|_{H}=x_{S}|_{H}=x_{9}|_{H}=\tilde{x}_{3}$ , $x_{10}|_{H}=x_{11}|_{H}=x_{12}|_{H}=\tilde{x}_{4}$ .

Therefore the lemma is proved by $(^{**})$ .

Now, we state the next theorem which is one of the main results of this
section.

THEOREM 6.15. Let $\overline{G}=G/O(G)$ and $S=O^{\prime}(\overline{G})$ . If $G$ is nonsolvable, $e=21$

and $e(S)\neq 21$ , then we have the following.
(i) $S\cong Z_{2}\times SL(2,8)$ .
(ii) For any subnormal subgroup $\overline{L}$ of $\overline{G}$ of odd index with $e(\overline{L})=21$ ,

$B_{0}\cong B_{0}(\overline{L})$ .

PROOF. We can assume $O(G)=1$ by Lemma 1.1. Hence $S=O^{\prime}(G)$ .
(i) By Lemma 1.13, $e(S)=7$ . Hence, by Proposition 1.10 and Lemma 1.12,

$S\cong Z_{2}\times SL(2,8)$ .
(ii) Firstly, we want to show that

$(^{*})$ $\dagger_{oddprimeande(H)=7,thenB\cong B(L)^{hat|G:L|isanodd.\cdot prime}}^{ifLisanorma1subgroupofG_{0}such}e(L)=21,andifHisanorma1subg_{0}rou^{t}pofLsuchthat|LH|is$

$andan$

Let $b_{0}=B_{0}(L)$ . By Lemma 6.13, $k(B_{0})=k(b_{0})=16$ and $l(B_{0})=l(b_{0})=5$ . Let $S=O^{\prime}(G)$

$=\langle w\rangle\times SL(2,8)$ and $ P=\langle w, x, y, z\rangle$ where $\langle x, y, z\rangle$ is a Sylow 2-subgroup of
$SL(2,8)$ . As in the proof of Lemma 6.14,
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$(^{**})$ $\chi_{i}(z)=\left\{\begin{array}{l}\pm 1 fori=1,\cdots,12\\\pm 3 fori=13,\cdots,16\end{array}\right.$

where $\{\chi_{1}\ldots , \chi_{16}\}=Irr(B_{0})$ . Let $\{\tilde{\chi}_{1} , \tilde{x}_{16}\}=Irr(b_{0})$ . By Lemma 6.14, we may
assume that

$\tilde{\chi}_{1}(1)=\cdots=\tilde{\chi}_{6}(1)=1$ , $\tilde{\chi}_{7}(1)=\cdots=\tilde{\chi}_{12}(1)=7$ ,

$\tilde{\chi}_{13}(1)=\tilde{\chi}_{14}(1)=21$ , $\tilde{\chi}_{15}(1)=\tilde{\chi}_{16}(1)=27$ ,
$(^{***})$

$\tilde{\chi}_{1}(z)=\cdots=\tilde{\chi}_{r}(z)=1$ , $\tilde{\chi}_{7}(z)=\cdots=\tilde{\chi}_{12}(z)=-1$ ,

$\tilde{\chi}_{13}(z)=\tilde{\chi}_{14}(z)=-3$ , $\tilde{\chi}_{16}(z)=\tilde{\chi}_{16}(z)=3$ .

Thus, as in the proof of Theorem 5.4, by $(^{**}),$ $(^{***})$ , Clifford’s theorem and Pro-
position 1.4, we may assume that $\chi_{i}|_{L}=\tilde{x}_{i}$ for all $i=1,$ $\cdots,$

$16$ . Hence we get
$B_{0}\cong b_{0}$ by Corollary 1.7. This proves $(^{*})$ . Since $G/S$ is solvable by [12, Theo-
rem], we can verify (ii).

REMARK 2. There is a finite group $G$ with elementary abelian Sylow 2-sub-
groups of order 16 such that $e(G)=21$ and $O^{\prime}(G/O(G))\cong Z_{2}\times SL(2,8)$ . We know
it as in Remark 1 of \S 2.

PROPOSITION 6.16. If $e=21$ , then there is a basic set $W$ of $B_{0}$ such that $W$

contains the trivial Brauer character and the decomposition matrix of $B_{0}$ with
respect to $W$ has the form

$1_{G}$ 1 $0$ $0$ $0$ $0$

$\delta_{2}$ $0$ $0$ $0$ $0$

$0$ $\delta_{3}$ $0$ $0$ $0$

$0$ $\delta_{4}$ $0$ $0$ $0$

$0$ $0$ $\delta_{5}$ $0$ $0$

$0$ $0$ $\delta_{6}$ $0$ $0$

$0$ $0$ $0$ $\delta_{7}$ $0$

$0$ $0$ $0$ $\delta_{8}$ $0$

$0$ $0$ $0$ $0$ $\delta_{9}$

$0$ $0$ $0$ $0$ $\delta_{10}$

$\delta_{11}$ $0$ $0$ $\delta_{11}$ $\delta_{11}$

$\delta_{12}$ $0$ $0$ $\delta_{12}$ $\delta_{12}$

$0$ $\delta_{13}$ $0$ $\delta_{13}$ $\delta_{13}$

$0$ $\delta_{14}$ $0$ $\delta_{14}$ $\delta_{14}$

$0$ $0$ $\delta_{15}$ $\delta_{15}$ $\delta_{15}$

$0$ $0$ $\delta_{16}$ $\delta_{16}$ $\delta_{16}$
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where $\delta_{i}=\pm 1$ .

PROOF. We can verify the proposition as in Proposition 5.2.
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