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Introduction

Let G be a finite group, p a prime number and B a p-block of G with
defect group D. There is an important problem in representation theory of
finite groups that is to give a description of B when the structure of D is
given. Concerning with this problem there are some successful results. E.C.
Dade proved his results when D is cyclic. R. Brauer proved his results
for the case where p=2 and D is dihedral by making use of his powerful
methods ([3], [4], [6)). Using Brauer’s methods J. B. Olsson obtained his
results when p=2 and D is generalized quaternion or quasidihedral. In [3, IV]
R. Brauer investigated B when p=2 and D is elementary abelian of order 4.

In the present paper we study B when p=2 and B is the principal 2-block
of G with an abelian Sylow 2-subgroup P. Let e(G)=|Ng(P): Cs(P)|. Let
Bo(G) be the principal 2-block of G, and let O(G) and O’(G) be the maximal
normal subgroup of G of odd order and the minimal normal subgroup of G of
odd index, respectively. By the results on finite groups with abelian Sylow
2-subgroups ([2], [16], [17], [20], [21]), the structure of O’(G/O(G)) is almost
determined. In general, however, B,(G) is different from By (S) where S=
0’(G/O(G)). The main purpose of this paper is to investigate the relation
between By(G) and By(S). In particular we shall prove that By(G) is isomorphic
to By(S) for the cases where ¢(G)=e(S)=prime, 9 and 21.

In section 1 we shall state several lemmas and propositions which will be
useful for our aim. One of them is Alperin’s theorem on isomorphic principal
blocks [I]. Let S=0'(G/O(G)). In section 2 we shall consider B,(G) for the
case where e(G)=2™—1. In particular, we shall prove that if G is nonsolvable
and if ¢(G) is prime then e(G)=2"—1 for some m=2 and B,(G) is isomorphic
to Bo(S). In sections 3 and 4 we shall investigate B,(G) for the cases when
e(G)=9 and 21, respectively. Indeed, we shall prove that if e¢(G)=e(S)=9 or 21
then B,(G) is isomorphic to By(S). It is noted that when e(G)+#e(S), B«(G) is
not necessarily isomorphic to B(S). In sections 5 and 6 we shall determine
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B(G) when P is elementary abelian of order 8 and 16, respectively.

Throughout this paper we shall use the following notation. When S is a
subset of G, Ng(S) and Cy(S) denote the normalizer and the centralizer of S in
G, respectively. Specially, for each x=G we write Cg(x) for Cg({x}). If
x, y€G, we write x?¥ for y~'xy. When S is a subset of G, <S)> denotes the
subgroup of G generated by S. When x,, -+, x, are elements of G and S is a
subset of G, we also write <{x;, --, x,, S> for the subgroup of G generated by
{x1, =+, x,}\US. The cyclic group of order n is denoted Z, for a positive
integer n. We write G’ and Z(G) for the commutator subgroup of G and the
center of G, respectively. We denote by Aut(G) the group of all automorphisms
of G. Let us denote by O, (G) the maximal normal subgroup of G of order
prime to p, and by OP'(G) the minimal normal subgroup of G of index prime
to p. In particular, for p=2 we write O(G) and O’(G) for O,(G) and O*(G),
respectively. When P is an abelian Sylow 2-subgroup of G, we write ¢(G) (or
shortly e) for |Ng(P): Ce(P)|. When B is a p-block of G, let us denote by Irr(B)
the set of all irreducible complex characters in B, by IBr(B) the set of all
irreducible Brauer characters in B, by k(B) the number of elements of Irr(B), by
k’(B) the number of elements of Irr(B) with degree one, and by /(B) the number
of elements of IBr(B). We write By(G) (or shortly B,) for the principal p-block of
G, and for each x€G we write b, for By(Cs(x)). When ¢, and ¢, are complex
characters of G, let (¢y, ¢2)=1/|G|)Zsee ¢:1(g)P(g™"), that is to say, (¢, ps) is
the inner product of ¢, and ¢,. We write 1; for the trivial complex (or Brauer)
character of G. When H is a normal subgroup of G, ¢|; denotes the restric-
tion of ¢ to H for a character ¢ of G, W|, denotes the restriction of W to H
for a representation W of G, and I4($) denotes the inertial group of ¢ in G for
a character ¢ of H, that is to say, Is(@)={geG|J*=J}, where J* is the
conjugate of {.

1. Preliminaries

In this section we state some lemmas and propositions which will be needed
for our aim. We fix a prime number p and we consider p-modular representa-
tions of a finite group G.

LEMMA 1.1. Let G be a finite group with a Svlow p-subgroup P, and let
K=0,(G), G=G/K and ﬁz(PK)/K. Then we have the following.

(1) Bo(G)=By(G).

(i) No(P)/Cs(P)=Ng(P)/Ca(P).
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ProoF. We get (i) by [10, Theorem 65.2] and [11, V (4.3)]. Since Ng(P)=
(Ng(P)-K)/K from [15, 1 7.7 Hilfssatz (c)] and since C(;(P-)z(CG(P)-K)/K from
[19, Lemma 2.2], we easily get (ii).

We shall freqhently use the next four propositions in order to prove our
main theorems.

PROPOSITION 1.2. (Brauer). Let G=QC4Q) where Q is a p-group, and let
G=G/Q. Then I(By(G))=I(By(G)).

PROOF. See [10, Lemma 64.5 and Theorem 65.2(2)].

PROPOSITION 1.3 (Brauer). Let H be a normal subgroup of G. If W is an
ordinary or modular irreducible representation in By(G), then any irreducible
constituent of Wy lies in Bo(H).

ProOOF. This is the special case of [3, | Lemma 1].

PROPOSITION 1.4 (Brauer). Let H be a normal subgroup of G. Then for any
ZIrr(Bo(H)), there is some X€Irr(By(G)) such that (X| g, )=0.

Proor. This is the special case of [3, II Lemma 1].

PROPOSITION 1.5 (Brauer). Let P be a Sylow p-subgroup of G, and let
P-Co(P)=PXYV. Then F'(B(G)=|G: VG’|.

PrROOF. See [3, IV Proposition (4G)].

Next, we state Alperin’s theorems on isomorphic principal p-blocks which
are very important for our aim.

Let F be an algebraically closed field of characteristic p and FG the group
algebra of G over F. Let H be a normal subgroup of G with p [ |G: H|. We
write Bo(G)=B,(H), if the category of all finitely generated FG-modules in
Bo(G) is isomorphic to the category of all finitely generated FH-modules in
Bo(H) and if the isomorphism is given by the restriction from G to H (cf. [1J).

. PROPOSITION 1.6 (Alperin). Let F be as above, and let P be a Sylow p-sub-
group of G. If H is a normal subgroup of G which satisfies the conditions that
p Y |G: H|, G/H is solvable and G=H-C4s(P), then we get the following.

(i) Bo(G)=B(H).
(i) AoG)=A(H) as F-algebras, where A(G) and A(H) are the block ideals
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of FG and FH corresponding to By(G) and B.(H), respectively.
PROOF. See [1, Theorems 1 and 2].

COROLLARY 1.7 (Alperin). Let H be a normal subgroup of G of prime index
q with q#p. Let By=By(G) and by=DBH). Assume that k(B,)=k(b,) and !(B,)
=I(by), and that IsX)=G for every Z<Irr(b,). Then we have the following.

(i) The correspondence Irr(B,)—Irr(b,) given by X—X|y is a bijection.

(ii) The correspondence IBr(B,)—IBr(b,) given by ¢—¢|u is a bijection.

(iii) Bo=b,.

PrROOF. (i) Since I4X)=G for every X<Irr(b,), the correspondence is sur-
jective by Clifford’s theorem, [8, (53.17) Theorem] and Propositions 1.3 and 1.4.
Since k(B,)=k(b,), we obtain (i).

(ii) By (i), [1, Lemma 1] holds. Thus, by the proof of [1, Lemma 3], the
correspondence is surjective. Hence (ii) holds since {(By)=I(b,).

(iii) Since [1, Lemmas 1 and 3] hold, we get (iii) by the proofs of Alperin’s
theorems [1, Theorems 1 and 2].

In the remainder of this paper we assume p=2 and let G and P be a finite
group and its abelian Sylow 2-subgroup of order 2", respectively. We use the
notation B, and e for B(G) and e(G), respectively.

COROLLARY 1.8 (Alperin). Let H be a normal subgroup of G of odd prime
index. Let B,=B|(G) and by=B,(H). Assume that k(B,)=k(b,) and I(By)=I(b,),
and that H has an involution x such that X(x)==+1 for every X<lIrr(B,) and
Wx)=#(x)==+1 for all X, ¥ €lrr(b,) with ¥(1)=¥'(1). Then B,=b,.

Proor. By Clifford’s theorem and Proposition 1.3, we have X|y<Irr(b,) for
all XelIrr(B,). Thus, by Proposition 1.4, I;(X)=G for all X&Irr(b,). Thus the
corollary is proved by Corollary 1.7 (iii).

LEMMA 19. Let P be an abelian Sylow 2-subgroup of G. Suppose that k(B,)
=|P| and that G has an involution x with I(b,)=1. Then X(x)==1 for all
XEeIrr(B,).

' PROOF. Since I(b,)=1, b, has the unique Cartan invariant |P|. Hence, by
[10, Theorems 63.3(2), 63.2 and 65.4], we get > X(x)*=|P| where the sum runs
through all xelIrr(B,). By [4, II (TA) and (4C)], X(x) is a nonzero integer for
every X<Irr(B,) since | x|=2. Therefore, the assumption k(B,)=|P| implies the
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lemma.

PROPOSITION 1.10 (Bender, Janko, Janko-Thompson, Walter, Ward). If G
has abelian Sylow 2-subgroups, then O'(G/O(G)) is a direct product of an abelian
2-group and simple groups of one of the following types;

(1) the special linear group SL(2, 2") for n=2,

(2) the projective special linear group L(q) for q>3 with ¢=3 or 5 (mod 8),

(3) the Janko’s first simple group [,

(4) the simple group R(q) of Ree type.

PrOOF. For groups of types (1) and (2), see [14, p. 40]. For J, see [16],
and for R(q) see [21]. The proposition is obtained from [2], [16], [17], [20]

and [21].

In the rest of this paper we use the notation SL(2, 2"), Ly (q), J: and R(q)
as in [Proposition 1.10| (cf. [13, p. 415]). We also use the notation GL(m, 2) for
the general linear group (cf. [14, p. 400).

The next lemma shows that Brauer’s conjecture on heights of irreducible
complex characters in p-blocks with abelian defect groups is affirmative for the
principal 2-blocks of finite groups with abelian Sylow 2-subgroups.

LEMMA 1.11. If G has abelian Sylow 2-subgroups, then all irreducible complex
characters in Bo(G) have height zero.

PrOOF. We may assume O(G)=1 by Lemma 1.1. Let H be a normal sub-
group of G of odd index. If X&Irr(B«(G)), then there is some Z<Irr(B,(H))
with X(1)=m#(1) for a positive integer m from Clifford’s theorem and Proposi-
tion 1.3. By [8, (53.17) Theorem], m divides |G: H|. This shows that if x(1)
is odd then X(1) is also odd. Thus, we may assume O’(G)=G. Then, by Pro-
position 1.10, we can write G=QX(II S;) where @ is an abelian 2-group and
each S; is a simple group of one of the following types; |

(i) SL, 2" for n=2,

(ii) Lyq) for ¢>3 with ¢=3 or 5 (mod 8),

(i) Ju

(iv) R(g).

When S; is of type (i) or (ii), every X&Irr(By(S;)) has odd degree from [10,
Theorems 38.2 and 38.1]. When S; is of type (iii) or (iv), every Xe&lrr(By(S))
has odd degree from [16, Lemma 5.1] and [21, Chap. I, respectively. These
show that every X&Irr(Bo(G)) has odd degree. This completes the proof.
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The next three lemmas are useful in order to obtain e=e(G).

LEMMA 1.12. Let P be a Sylow 2-subgroup of G.

(1) If G=SL(2, 2" for n=2, then P is elementary abelian of order 2" and
Ng(P)/Cs(P) is cyclic of order 2"—1.

(ii) If G=Lyq) for ¢>3 with ¢g=3 or 5 (mod8), then P 1is noncyclic of
order 4 and Ng(P)/Cg(P) is cyclic of order 3.

(iii) If G=J, or R(q), then P 1is elementary abelian of order 8 and
Ng(P)/Cg(P) ts noncyclic of order 21. :

ProoFr. (i) By [14, Theorems 2.8.1 and 2.8.3], P is elementary abelian of
order 2". Let ¢=2", and let F, be the finite field of ¢ elements. We may

assume that P:{(}lr (1))|fqu} (cf. the proof of [14, Theorem 2.8.3]). Clearly,
Ce(P)=P. Let u be a generator of the multiplicative group F,— {0}, and let

S:(g 3-1) in G. Then, Ny(P)=<(P, s) and s has order ¢g—1. Hence we get

that Ng(P)/P is cyclic of order g—1.

(ii) P is noncyclic of order 4 from [14, Lemma 15.1.1]. Hence Aut(P) is
isomorphic to the symmetric group of degree 3. Since G is not Z-nilpotent, we
get (ii).

(iii) If G=J,, we obtain (iii) from [16, VI p. 160]. Assume G=R(q). By
[21, p. 63], P is elementary abelian of order 8 and |Ng(P): Ce(P)|=21. Then
we know that Ng(P)/Ce(P) is noncyclic since Aut(P)=GL(3, 2).GL4, 2)=A,
from [15, II 2.5 Satz] where A, is the alternating group of degree 8.

LEMMA 1.13. (i) GL{, 2)=As, the alternating group of degree 8.

(ii) If H is a subgroup of As of odd order, then |H|=1, 3,5,7,9, 15 or 21.

(ili) As has subgroups of orders 1, 3,5,7,9, 15 and 21, and the subgroups of
order 9 and the subgroups of order 21 are noncyclic.

ProoF. (i) We have already showed (i) in the proof of Lemma 1.12(iii).

(ii) Since |Ag]=2¢-32.5-7, |H|=1,3,5,7,9, 15, 21, 35, 45, 63, 105 or 315.
Since the groups of order 35 are cyclic, |H|+35. By elementary calculations,
Ag has no subgroups of order 45, so that |H|=#45. Similarly, |H|+63. If |H|
=105, then H has an element of order 35. Evidently, this is a contradiction.
Hence |H|+105. If |H|=315, then H has an element of order 35, and this is a
contradiction. So that |H|+315.

(iii) By Sylow’s theorem, A, has subgroups of orders 3, 5, 7 and 9. Since
A, has no elements of order 9, Sylew 3-subgroups of A; are noncyclic of order
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9. If G=SL(2, 2%, then P is elementary abelian of order 16 and Ng(P)/Cs(P) is
cyclic of order 15 from Lemma 1.12(1). Thus, by (i), As has subgroups of order
15. Let H=<(124)(536), (1234567)>. Then H is a noncyclic subgroup of A, of
order 21. Since A; has no elements of order 21, all subgroups of A; of order
21 are noncyclic.

LEMMA 1.14. (i) If H is a subgroup of GL(3, 2) of odd order, then |H|=
1,3, 7 or 21.

(i) GL(3, 2) has subgroups of orders 1, 3, 7 and 21, and the subgroups of
order 21 are noncyclic.

Proor. (i) By [10, Lemma 35.2(1)], |GL(3, 2)|=2%-3-7. So that we easily
get (i).

(ii) By the proof of (i) and Sylow’s theorem, GL(3, 2) has subgroups of
orders 3 and 7. By Lemma 1.12(iii), GL(3, 2) has noncyclic subgroups of order
21. Since GL(3, 2)&GL(4, 2), all subgroups of GL(3,2) of order 21 are non-
cyclic from Lemma 1.13(1) and (iii).

The next two lemmas are useful in order to determine B, when Sylow
2-subgroups of G are elementary abelian of order 8 or 16.

LEMMA 1.15. Let P be an abelian Sylow 2-subgroup of G, and let By=B(G).
Assume that G has an involution x with I(by)=1.

(1) If |P|=8, then k(B,)=S8.

(2) If |P|=16, then k(B,)=8 or 16.

PROOF. Let {X;, =+, Xpzp} =Irr(B,). Since l(bz)=1, by [10, Theorems 63.2
and 65.47], for each X; let d% be the generalized decomposition number of B,
relative to x. By Lemma 1.11 and [4, II (7A) and (4C)], every df is an odd
integer. Since b, has the unique Cartan invariant |P|, by [10, Theorem 63.3],
S EBo(dr)?=|P|. These imply (1) and (2).

LEMMA 1.16. Let G=Lyq) for ¢>3 with ¢q=3 or 5 (mod8), and let B,=
By(G). Then we have the following.

(i) U(B,)=3 and the degrees of all irreducible Brauer characters in B, are
1, (¢—1)/2 and (¢g—1)/2.

(i) The decomposition matrix of B, is as follows:
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1 00 100

010 110

0 01 1 01

111 1 1 1.
3<¢=3 (mod 8) 3<¢=5 (mod 8)

PROOF. Since G is not 2-nilpotent, [(B,)>1 from [10, Corollary 65.3]. Thus
k(Bo,)=4 and I(B,)=3 by [3, IV Proposition (7D)].

Case 1. 3<q=3 (mod8): Let Irr(By)=1{X;, ---, X}. By [10, Theorem 33.1],
we may assume X; =14, X(1)=%(1)=(g—1)/2 and X,(1)=¢. By [14, Theorem 2.8.2],
G has a Frobenius subgroup E of order g(¢g—1)/2. We know the character
tables of E and L,(g) from [10, Theorems 138 and 38.1]. Thus, by [8, §84
Exercise 2], X;|¢, and Xlg, are both irreducible Brauer characters of G, where
X:le, is the restriction of X; to the set G, of all 2’-elements of G. Since X,#X,
on G,, and since X,=X,+X,+X; on G,, we know (i) and the decomposition matrix
of B,. Case 2. 3<q=5 (mod8): As in Case 1 we can prove the lemma.

REMARK 1. If G has an abelian Sylow 2-subgroup P and if e(G)=1, then
B,(G)= B,(P) since G is 2-nilpotent by [10, Theorem 18.7].

2. The case e=2"—1

In this section we consider the case when e=2"—1 for m=2. We use the
notation G, P, n, ¢ and B, as before, that is to say, P is an abelian Sylow
2-subgroup of G with order 2" (n=2), e=e(G) and B,=DBy(G). To begin with
we state the next three lemmas which will be needed for the main result of

this section.

LEMMA 21. Let S be a normal subgroup of G of odd index such that
S=SL(2, 2™) for some n=3. Assume e=2"—1. Then B,= BS).

PrROOF. We may assume S=SL(2, 2"). There are an element {=Ng(P) and
an involution x<= P such that Ng(P)=<t, Cs(P)> and P={l, x, x%, ---, xt2"~%} (cf.
the proof of Lemma 1.12(i)). Since e=2"—1, Ng(P)=<t, Cs(P)>. Clearly y'+y
for all yeP—{1}, so that Ny(P)=Cy(P) where M=Cs(x). Hence M is 2-nil-
potent from [10, Theorem 18.7]. Thus, by [10, Corollary 65.3], (b;)=I(B(M))
=1. Now, we prove the lemma by induction on |G|. Suppose G+#S. Since
|G/S| is odd, by [12, Theorem], G has a normal subgroup H of odd prime
index [ with SSH. Let b,=B,H). By induction, b,=B,(S). Hence, by the
character table of SL(2, 2™) [10, Theorem 38.27], we get
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1 X
1y 1 1
é, 27—1 —1  for i=1, -, 2771
X 27 +1 1 for j=1, ---, 2" 1—1

where {1y, 0;, ¥;li=1, -+, 2**; j=1, .-+, 2" '—1} =Irr(b,). Let Co(P)=PxV. If
G=VH, then G=C4P)-H, so that B,=b, from Proposition 1.6. Hence we may
assume G#VH. Then H=VH, so that Cy(P)=PXxYV. Thus, by Proposition 1.5,

E'(b)=|H: VH’|. Since b,=B(S), k’(by)=1. Thus, H=VH’. This implies
H=VG’ since G/H is cyclic. Hence k’(B,)=I[ from Proposition 1.5. By Clifford’s
theorem and Proposition 1.3, for each X<Irr(B,) one of the following five cases
occurs :

(@) X|p=lg,
(b) X|xg=8; for some i,
(c) le:5i1+ +67il for ;< --- <1i;, and all 51’); are G-conjugate,
(@ x|z=¥; for some j,
. (&) X|lg=%;,+ -+ +7;, for j,< - j,, and all X;, are G-conjugate.

Since k’(by)=1, for each X&Irr(B,) X(1)=1 if and only if X|z=1x. Let r, s, u
and v be the numbers of X&Irr(B,) of types (b), (¢c), (d) and (e), respectively.
Since I(b.)=1, as in the proof of Lemma 1.9, 3 X(x)*=2" where the sum runs
through all X€Irr(B,). This shows [+7r+sl?>+u+vi?=2" On the other hand,
by Proposition 1.4, for every Z<Irr(b,) there is some X&Irr(B,) with (X| g, 1)#0.
So that k(b))<1+7r-+sl+u-+vl. Since k(b,)=2", we have a contradiction. This
completes the proof.

REMARK 1. We can not remove the assumption e¢=2"—1 in Lemma 2.1.
Indeed, let S=SL(2, 8) and P:{ } (1))| fe Fs} where Fj is the finite field of 8
elements. Let u be a generator of the multiplicative group F;—{0}. There is

an automorphism h of F, with h(u)=wu® For each (a b)eS let (a b "

c d c
(h(a> h(b)
h(c) h(d)
the restriction of &7 to P. Hence there is a semi-direct product G of its normal
- subgroup S by <h). Then O/(G)=S=SL(2, 8) and e(G)=21+#23—1. By [10,
Theorem 38.2], I(B,(S))=7. But we shall afterwards show that /[(B,(G))=5, and
this shows By(G)%E By(S).

). Then we can consider h=Aut(S) and Ah|r=Aut(P) where hl|p is

LEMMA 2.2. Let S be a normal subgroup of G of odd index such that
S= Ly(q)X(P/(Z,X Z,)) for some q>3 with ¢g=3 or 5 (mod8), or S=SL(2, 2™)
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X(P/(ZyX -+ X Zy) for some m=3. Assume e=e(S). Then k(B,)=2" and I(B,)=-e.
m

PROOF. Let L=L,q) for m=2, and let L=SL(2, 2™) for m=3. Let R be
a Sylow 2-subgroup of L. We can write S=LXQ and P=RXQ. We use
induction on n. If n=m=2, then the lemma is proved by [3, IV Proposition
(7D)]. If n=m=3, by Lemma 2.1, B,= B,(S), so that k(B,)=2" and I(B,)=2"—1
=2™—1 (cf. [10, Theorem 38.2]). Next, suppose n>m. There are an element
teN, (R) and an involution xR such that N (R)=<t, C,(R)) and R={l, x, x°,
- xt2™-2 . Since e=e(S), Ng(P)=<(t, Ce(P)>. Let Q={1=y,, ¥s, =**, Yon-m}. Then,
by [10, Lemma 18.5], the G-conjugate classes of P are as follows:

{1}
{yz} for 1.::2, e on-m
{xy:, x*ys, oo, 22" 2y} for i=1, -+, 2",

Then, by [10, Theorems 68.4 and 65.4],
E(Bo)=I(Bo)+ X223 "I(by )+ " (bzy,) -

Fix any i with 2<i<2" ™ and let M=Cq(y:). Since y;€Z(S), let S=S/{y:).
Similarly, let M=M/<{y;>, P=P/<{y;> and Q=Q/<{v;>. Since S=Lx{J, we get
e(S)=e(L)=2m—1. Since SCM, the canonical homomorphism Ng(P)/Cs(P)—
Nz(P)/Cu(P) is monomorphic. This shows (2m—1)|e(M). On the other hand,
by [15, I 7.7 Hilfssatz (c)], we get Na(P)=(Ny(P)-{v:>)/<y:>. This implies that
the canonical homomorphism NM(P)/CM(P)—’Nﬁ(ﬁ)/Cﬂ(ﬁ) is epimorphic. Hence
e(M)|e(M). Since SSMZG and e=e(S)=2™—1, we have e(M)=e(S)=2"—1 by
considering the canonical monomorphisms as above. Thus e(M)=2™"—1. Hence
we get I(By(M))=2™—1 by induction. Thus I(by )=IU(B(M))=2™—1 from Pro-
position 1.2. We may assume O(G)=1 by Lemma 1.1. Since @ +1, there is an
involution y;€Q. By Z*-theorem [10, Theorem 67.1], y;=Z(G). Hence I(B,)
-——l(byj):2"‘—1. Next, we consider /(b,,,) for each =1, ---, 2"™. For an integer
k it is seen that (xy;)**=xy; if and only if (2™—1)| k. Hence Ny(P)=Cy(P)
where U=C¢(xy;). Then U is 2-nilpotent from [10, Theorem 18.7], so that
I(bzy)=U(By(U))=1 by [10, Corollary 65.3]. These imply k(B,)=2".

LEMMA 2.3. Assume as in Lemma 2.2. Then B,= B(S).

PrRooF. We use the same notation as in the proof of Lemma 2.2. We
prove the lemma by induction on |G|. Suppose G#S. By [12, Theorem], G
has a normal subgroup H of odd prime index with SEH. Let b,=B(H). By
induction, by= B((S). It follows from Lemma 2.2 that k(B,)=k(b,)=2" and that
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I(Bo)=1(b,)=2™—1. By the proof of Lemma 2.2, there is an involution x=G
with l(b,)=1. Hence X(x)==+1 for all X&Irr(B,) from Lemma 1.9. Thus, by
Corollary 1.8, it is sufficient to show that

* if %, ¥’ lrr(b,) with ¥(1)=%"(1),
then X(x)=¥'(x)==+1.

Let {f,, -+, 0:n-n} be the set of all irreducible complex characters of Q.
Case 1. m=2: By the character table of L,(q) (cf. [10, Theorem 38.1]), we
can write
1 x

& 1 1

Ce (g+¢)/2 —e s={
&s (g+e)/2  —e

- q €,

where {{,, -, L} =Irr(By(Ly(g))). Since by=B,(S) and since S=L,(q)XQ, we
may write Irr(b)={%;;|i=1, ---, 4; j=1, ---, 2% such that ;;|s=0, for all
7, 7. Then

—1 if ¢g=3 (mod8)
1 if ¢g=5 (mod 8)

1 for 1=1
T D=1 (g+¢)/2 for i=2, 3
q for i=4
and
1 for i1=1
X (x)={—e for i=2, 3
(¢ for 1=4.

These imply (¥).
Case 2. m=3: By the character table of SL(2, 2™) (cf. [10, Theorem 38.27]),
we know

1 x
1 1 1
j, 2"—1  —1  for i=l, ..., 2m-1
X 2m41 1 for j=1, ---, 2™ 1—1

where {1, G;, Z;|i=1, ---, 2™1; j=1, -, 21— 1} =Irr(B,(SL(2, 2™)). Using this
we can show (*) as in Case 1. This completes the proof.

Now, the above lemmas imply the next main result of this section.
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THEOREM 2.4. Let P be an abelian Sylow 2-subgroup of G. Assume that e
is prime. Then we have the following.
(1) UBo)=e. And if G is nonsolvable. then k(B,)=|P].
(2) When G is nonsolvable, one of the following holds:
(i) e=3, and Be=Bo(Lq)X(P/(Z;XZy))) for some ¢>3 with qg=3 or 5
(mod 8),
(i) e=2m—1 for some m=3, and B,= By(SL(2, 2™)X(P/(Z;X -+ X Zy))).
m
PROOF. We can assume O(G)=1 by Lemma 1.1. Let S=0’(G). Firstly
assume that S is solvable. Then S=P, so that C4(P)=P. Hence G is a semi-
direct product of its normal subgroup P by Z.. This shows I[(B,)=e. So it is
enough to consider the case where G is nonsolvable. Since e is prime, e=e(S).
By Proposition 1.10 and Lemma 1.12, one of the following two cases occurs:
(i) e(S)=3, and S= L,(q)X(P/(Z,XZ,)) for some ¢>3 with ¢=3 or 5 (mod 8),
(ii) e(S)=2m—1 for some m=3, and S=SL(2, 2™)X(P/(ZyX -+ X Z,)).
m
Hence we obtain (1) and (2) from Lemmas 2.2 and 2.3, respectively.

REMARK 2. For the case where G is solvable, the latter half of Theorem
2.4(1) does not hold in general. Indeed, let P be an elementary abelian group of
order 16 with P=<(x, v, z, w). Let t=Aut(P) such that x‘=y, y'=xy, z'=w
and w'=zw. There is a semi-direct product G of its normal subgroup P by
(t>. Then G is solvable and e=|G: P|=3. Since u'#u for all ue P— {1}, we
shall show that k(B,)=8+16 (cf. Proposition 6.1). As another example, let P be
the same as above, and let ¢t € Aut(P) with |¢|=5. If G is a semi-direct product
of P by <t> and G is not the direct product PXxZ;, then we shall show that
k(B,)=8+16 (cf. Proposition 6.3).

3. The case e=9

In this section we consider the case when e=e(S)=9, where S=0'(G/0(G)).
We use the notation G, P, n, e and B, as in §2.

LEMMA 3.1. Let P be an elementary abelian Sylow 2-subgroup of G of order
16. If e=9, then k(B,)=16 and I(Bo,)=9.

PrROOF. By Lemma 1.13, Aut(P) has noncyclic Sylow 3-subgroups of order
9. Hence we may assume that Ng(P)=<(s, t, Ca(P)> for some s, tENg(P), P=
{x, ¥, z, w), x*=x, V'=y, Z’=w, w'=zw, x'=y, y'=xy, 2=z and w'=w. By
[10, Lemma 185 and Theorems 68.4 and 65.4],
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k(Bo)=U(Bo)+Ubz)+Ub)+Ubs.) .

Since e(Ce(x2))=1, l(b,,)=1 from [10, Theorem 18.7 and Corollary 65.3]. Since
e(Co(x))=e(Cy(2))=3, it follows from Theorem 2.4 that I(b)=I1(b,)=3. By [10,
Corollary 65.3], I(B,)=2 since e=9. Hence, by Lemma 1.15(2), k(B,)=16, so
that I(B,)=09.

LEMMA 32. Let S be a normal subgroup of G of odd index such that
S=Ly(q)X Lolq")X(P/(Zy X Z,X Z,X Z,)) for some q, ¢’>3 with ¢=3 or 5 (mod 8)
and ¢'=3 or 5 (mod8). If e=9, then k(B,)=2" and I(B,)=9.

PROOF. We may assume S=L,(q)X L,(¢’)XQ where Q=P/(Z, X Zy X Zy X Z,).
We use induction on n. If n=4, Sylow 2-subgroups of G are elementary abelian
of order 16, so that the lemma is proved by Lemma 3.1. Suppose n>4. Let
R, and R, be Sylow 2-subgroups of L,(g) and Ly(g"), respectively. We may
assume P=R,XR,XQ. We can write R,=1{1, x, x°, x**} for some s& L.(¢) and
for an involution xeR,. Similarly, R,={1, y, y¢, y**} for some te Ly(q’) and
for an involution yeR, Since e=e(S)=9, we know that Ng(P)=<s, t, Ca(P)>
and that Ng(P)/Cg(P) is elementary abelian of order 9. Let Q={l=z, z,, .
Zen-st. By [10, Lemma 18.5], {z;, xz;, yz;, xyz;li=1, ---, 24} is the set of all
representatives of G-conjugate classes of P. Thus, by [10, Theorems 684 and
65.4],

R(Bo)=I(Bo)+3325*1(b,,)

I Uboe )+ Wby ) by )} -

As in the proof of Lemma 2.2, by induction, we get I(b,)=9 for all 1=2, -.-, 2774,
By Lemma 1.1, we may assume O(G)=1. Since Q#1, as in the proof of Lemma
2.2, by making use of Z*-theorem [10, Theorem 67.1], we have [(B,)=9. Since
s& Cq(xz;) and since t Cy(xz;), we obtain e(Cyz(xz;))=3. Hence I(bz.,)=3 for all
1=1, .-+, 2*7* from Theorem 2.4(1). Similarly, by Theorem 2.4(1), [(by,;)=3 for
all i=1, ---, 2% Fix any ¢ with 1=<:<2"* For integers j and %, it is seen
that (xyzi)*“k:xyzi if and only if 3|7 and 3|k Hence as in the proof of
Lemma 2.2, [(b;,,,)=1 for all i=1, ---, 2" % Thus k(B,)=2". This finishes the
proof.

LEMMA 3.3. Assume as in Lemma 3.2. Then B,= B(S).

PROOF. We use the same notation as in the proof of Lemma 3.2. We
prove the lemma by induction on |G|. Assume G#S. By [12, Theorem], G
has a normal subgroup H of odd prime index with SSH. Let b,=B,H). By
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induction, b,= B«(S). By the proof of Lemma 3.2, there is an involution xy&eG
with I(b;,)=1. It follows from Lemmas 3.2 and 19 that X(xy)==+1 for all
Xelrr(B,). By Lemma 3.2, k(B,)==Fk(b,) and I(B,)=Ib,). Thus, by Corollary 1.8,
it is enough to prove that

* if X, ¥’ lIrr(b,) with X(1)=%"(1),
then I(xy)=X'(xy)==1.

As in the proof of Lemma 2.3 we know the character tables of L.(g) and L,(¢").
Thus we can write
1 x

N1 1 1
VE (gte)/2 —e 6={
73 (g+e)/2 —e
74 q €

—1 if ¢=3 (mod8)
1 if ¢=5 (mod8)

where {771; N2 N3 Na} =Irr(By(L,(g))), and

1 y
& 1 1
- (¢’+e)/2 —e e’={
Cs (¢+e)/2 —¢
@ q’ e’
where {&i, &, &5, Lo =Irr(Bo(L2(q"))). Let {6, --- O:n-4} be the set of all irreducible
complex characters of Q. Since b= B(S), we may write Irr(bo)= {X;;,|i=1, -, 4;
j=1, -+, 4; k=1, ---, 2*%} such that ¥;;,|s=%:;0, for all i, j, k.
Case 1. e=—1 and ¢’=1: In order to show (*) it is enough to prove that
{1, (¢—1)/2, ¢’, (¢—1)q’/2, q(¢’+1)/2} N {(¢’+1)/2, q, (q—1)¢’'+1)/4,qq'} =& since
Xii(D)=2,)C;1) and X;;,(xy)=nx)C;(y) for all i, j, k. We can prove it.
Case 2. e=e’=—1: We know that {1, (¢—1)/2, (¢'—1)/2, (¢—1)(q¢’—1)/4, qq’}
N1q, ¢, (q—1)q’/2, q(¢’—1)/2} =@. This implies (*) as in Case 1.
Case 3. e=¢’=1: Since {l,q, ¢, (¢+1)q’+1)/4, ¢’y N {(g+1)/2, (¢’"+1)/2,

(g+1)q’/2, ql¢’+1)/2} =&, we can show (*). This completes the proof of the
lemma.

—1 if ¢’=3 (mod 8)
1 if ¢’=5 (mod8)

The above lemmas imply the next main result of this section.

THEOREM 3.4. Let P be an abelian Sylow 2-subgroup of G. Assume e=e(S)
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=9, where S=0'(G/O(G)). Then we have the following.

(1) k(By)=|P| and I(B,)=9.

(2) Bo=Bo(LAq)X LqYX(P/(ZyXZyXZ,XZ,))) for some q, q¢'>3 with ¢=3
or 5 (mod 8) and ¢’=3 or 5 (mod 8).

RrooOF. We may assume O(G)=1 by Lemma 1.1. Since e(S)=9, by Propo-
sition 1.10 and Lemma 1.12, we get that S= L,(q)X Lx(q")X(P/(ZyX ZyX Zy X Zy))
for some ¢, ¢’>3 with ¢=3 or 5 (mod8) and ¢’=3 or 5 (mod8). Hence we
obtain (1) and (2) from Lemmas 3.2 and 3.3, respectively.

4. The case e=21

In this section we deal with the case when e=e(S)=21, where S=0'(G/0(G)).
As in §1, let J; and R(q) be the Janko’s first simple group and the simple

groups of Ree type, respectively (cf. [16], and [1I3]). We use the notation
G, P, n, e and B, as before.

LEMMA 4.1. Let P be an elementary abelian Sylow 2-subgroup of G of
order 8. If e=21, then k(B,)=8 and I(B,)=b5.

PrOOF. By Lemma 1.14, Ng(P)/Cs(P) is noncyclic of order 21. Hence we
can write that Ng(P)=(s, t, Co(P)>, P=A{1, x, x°, x*}, 2, xz, x°z, x’z} ={1, z, 2*,
-+, 2%} for some s, tEN4(P) and involutions x, z& P with z°=z. Then, by [10,
Theorems 68.4 and 65.4], k(B,)=IB,)+Il(b,). Since e(Cs(z))=3, I(b,)=3 from
Theorem 2.4(1). The calculation of the generalized decomposition matrix of B,

relative to z is due to J.B. Olsson [18, Theorems 3.15, 3.16 and 3.17]. Let
' M=Cq(z), M=M/{z> and b,=B,({). By [10, Theorem 66.3], there is a basic
set W of b, such that W contains the trivial Brauer character and the Cartan
matrix of b, with respect to W has the form

211
1 21
11 2.
Then, by [10, Lemma 66.1], there is a basic set W of b, such that W contains

the trivial Brauer character and the Cartan matrix C, of b, with respect to W
has the form

*)

DN DN
N =N
BN N
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We use the following notation here. For an integer »=0 and a p-block B, let
Eg(p”) denote the multiplicity of p” as an elementary divisor of the Cartan
matrix of B. If Q is a p-subgroup of a finite group A and if B is a p-block
of A, let ng(Q) denote the multiplicity of Q as a lower defect group of B (cf.
[5]. In [5], ns(Q) is denoted by mP(Q)). By [8, (89.8) Theorem], Ej(8)=1.
Since all involutions in G are conjugate, by [5, (7G)], [18, Proposition 1.27] and
[10, Theorem 654], we get E5(2)=n,,({z>). Since every lower defect group of
a 2-block of G contains all 2-subgroups U of G with USZ(G), by [5, (7G)],
Ey (2)=mn,,{2>). By (*), Ep(2)=2. Thus Egz(2)=2, so that [(B,)=3. This shows
k(By)=6. Let {X;li=1, ---, k(By)}=Irr(B,). Since [(b,)=3, let N:(n“’)}ﬂ‘sﬁw(’)

be the matrix of the generalized decomposition numbers of B, relative to z
with respect to W. Since |z|=2, every n;, is an integer. By [4, II (7TA) and
(4CY], (n41, nys, ni)#(0, 0, 0) for every X;. For X, Xjlet ;=2 150, 58N ialhapnjp,
where C;'=(u,p8)1z4.p5s- By Lemma 1.11 and [4, II (7A) and (5G)], all a;; are
odd integers. Hence n;;+n;,+n;; is odd for every X;. Let N, be the a-th
column of N for each @, and let N,Ng=>%$"n;n;s for all a, f. By [10,
Theorem 63.3(2)], ‘NN=C, where ‘N is the transposed matrix of N. So N,Ng
=4 if a=p, and N Ng=2 if a# . Clearly, 12=tr(C,)=33; ,n:,> where tr(C,) is
the trace of C,. Then the next three possibilities arise for the nonzero entries
of N:

(i) 2 entries are +2, and 4 entries are +1.

(ii) 1 entry is +2, and 8 entries are 1.

(iii) 12 entries are +1.
By elementary calculations as in [18, Theorems 3.15, 3.16 and 3.17] we can write

0, 0 0
0, 0 0
0 0,0
N=0 ¢, 0
0 0 o
0 0 o9
07 07 0q
0g 0g Og

where 6,=+1. This shows k(B,)=8, so that [(B,)=5. This completes the proof.
LEMMA 4.2. Let S be a normal subgroup of G of odd index such that

S= ]\ X(P/(ZyX ZyX Zy)) or S=R(qQ)X(P/(ZyX Zy;X Zy)). If e=21, then k(B,)=2" and
I(B,)=5.
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PrROOF. We may assume S=RX( where R=/, or R(q) and Q=P/(Z,X Z,
X Z,). Let T be a Sylow 2-subgroup of R with TXQ=P. By Lemma 1.12(iii),
Nx(T)/Cg(T) is noncyclic of order 21. Hence we can write Ny(T)=<s, t, Cx(T)>
and T=1{1, x, x%, x%, z, xz, x°z, x°2}={1, x, x%, -, x*°} for some s, t&Nx(T)
and for involutions x, z€T with z*=z. Since e=21, Ng(P)={(s, t, Cas(P)>. We
prove the lemma by induction on n. If n=3, the lemma is proved from Lemma
4.1 because P=T and P is elementary abelian of order 8 from Lemma 1.12(iii).
Suppose n>3. Let Q={l=y, ¥s, -, Yon-s}. By [10, Lemma 18.5], {v;, zv;]
1=1, ---, 2% is the set of all representatives of G-conjugate classes of P.
Then, by [10, Theorems 68.4 and 65.4],

R(Bo)=UBo)+ X5 *l(by )+ XU b,y,) -

As in the proof of Lemma 2.2, by induction we get i(b,,)=5 for all i=2, ---, 2"7%,
We can assume O(G)=1 by Lemma 1.1. Since Q=+1, it follows from Z*-theorem
that [(B,)=5. Since s=Cq(zy,) and te&Cgyzy;), we have e(Cg(zy;))=3. Hence
I(b,y,)=3 for all i=1, ---, 2"~* from Theorem 2.4(1). Thus k(B,)=2".

LEMMA 4.3. Let S be a normal subgroup of G of odd index such that
S= 1 X(P/(ZyX ZyX Zy)). If e=21, then B,= B(S).

PROOF. We can assume S=/,XQ where Q=P/(Z,XZ,XZ,). We use induc-
tion on |G|. Assume G#S. By [12, Theorem], G has a normal subgroup H of
odd prime index [ with SSH. Let by=B,(H). By induction, b,=B,(S). Let s,
t, x, z and y; be the same as in the proof of Lemma 4.2. Since z is an involu-
tion in /i, by [16, Theorem], C; (2)=A;Xx<z)> where A; is the alternating group
of degree 5. Hence Cs(2)=A;X<z>)XQ. Let M=Cgz). Clearly Cgs(z2)=2A;X
(P/(ZyX Z,)) and Cs(z) is a normal subgroup of M of odd index. By the proof
of Lemma 4.2, ¢(M)=3. Hence, by Lemma 2.3, we get that b,=B(M)= B,(A;X
(P/ZyX Z,))) since A;=L,5). By Lemma 1.16(ii), the Cartan matrix of B,(A4;)
has the form |

| NCHI O NG

2
2
1

N = N

Thus, by [10, Lemma 66.1], the Cartan matrix C, of b, has the form

1

1 2n Zn—l 2n—1
271—1 2n—1 277.-2
Zn—-l 2n—2 2n—1 .
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By Lemma 4.2, k(B,)=2". Let {Xi, -+, Xsn}=Irr(B,). We can write IBr(b,)=
{pi=1y, ¢%, ¢33 with @5(1)=¢3(1)=2 from Lemma 1.16(i). For each X; and ¢;,
let n;,=d?, be the generalized decomposition number of B, relative to z. Since
|z| =2, every ni, is an integer. Let Nz("ia)lgiasg;" No=(nia)1sis2» for each a,
and NaNﬂ=2%21nianip for each a«, B. It follows from [10, Theorems 63.3(2),
63.2 and 65.4] that N,N,=2", N,N,=NN;=2""*, N;N;=N,;Ny=2""! and N,N;=2""2
For each %;, X, let a;=1<a. 5552 " Nialkagn;g, Where C;'=(Uasp)ise.pss. Then

a;;i=3n:2+4(nit+nis®)—4(niniet+n4inis)
=n;*=n; (mod 2)

for all ;. By Lemma 1.11, every X; has height zero. Hence, by [4, Il (7A) and
(5G)1, every a;; is odd, so that n;, is odd for all :=1, :--, 2*. Since N,N,=2",
ng==+1 for all i=1, ---, 2*. Let 0;=n;; and u;=n;,0; for each i. Since N,N,=
N,N,=2""1 32" 4;=>2" u,% Thus, u;=1 or 0 for all i=1, ---, 2*. Hence exa-
ctly 2*°! u,;’s are 1 and the other u;’s are 0 since N,N,=2""'. Then we may
assume
{ o; for i=1, ---, 2™*
M=
0 for 1=2""1+1, .-+, 2™

Similarly, exactly 2*! (n;,0;)’s are 1 and the other (n;0;)’s are 0. Since NN,
=2""?, we may assume
0; for i=1, ---, 2% and for i=2""'41, ..., 3.2""2
n“:{ 0 for i=2""*-1, -+, 2*~% and for i=3.282+1, -, 27,

Since X(2)=n;;+2(n;s+n;) for each i, we get

+5 for i=1, .., 2™"2

Xi(z2)={ +3 for ¢=2""%*41, ..., 3:2""2
+1 for 1=3-2""%+1, .-+, 2".

Let C4(P)=PxV. When G=VH, G=Cs(P)-H, so that B,=b, from Proposition
1.6. Thus, we may assume G+ VH. Hence Cy(P)=PXYV. Since b,= B,(S), it
follows from Proposition 1.5 that |H: VH'|=Fk’(b,)=2""%. By [10, Theorem 18.4],
PNG'={l, x, xt, -, x**}. Then the order of Sylow 2-subgroups of G’ is 8.
This implies 2*-?| |G:VG’| and 2" %} |G:VG’|. Thus, by Proposition 1.5,
kE'(Bo)=|G : VG’|=I1-2""* where [=|G: H|. Since b,=B,(S), by Clifford’s theo-
rem, Proposition 1.3 and the character table of J, [16, p. 148], we get that
X:(z)=1 for every X;€Irr(B,) with degree one. These show that the number of
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X;<lrr(B,) with X;(z)=1 is at least [-2""%. However, X;(z)==+1 only for i=
3:2"°241, .-+, 2", This is a contradiction since [-2""*>2""2 This completes the
proof.

LEMMA 44. Let S be a normal subgroup of G of odd index such that
S=R(Q)X(P/(Z,X ZyX Zy)). If e=21, then By= B(S). ‘

PROOF. Let R=R(q). We may assume S=RXQ where Q=P/(Z,XZ,XZ,).
We prove the lemma by induction on |G|. Assume G+#S. By [12, Theorem],
G has a normal subgroup H of odd prime index [ with SSH. Let by=DB,(H).
By induction, b,= By(S). Let s, ¢, x, z and y; be the same as in the proof of
Lemma 4.2. Since z is an involution in R, Cx(z2)=L,(q)X<z> from [21, p. 62 III].
(It is noted that we use the notation R(q) as in the sense of [13]). Hence
Cs(2)=Ly(q)X<{z> X Q. Let M=Cg(z). Then Cs(z) is a normal subgroup of M of
odd index and Cg(z)= L,(q)X(P/(Z,X Z,)). By the proof of Lemma 4.2, e(M)=3.
Then, by Lemma 2.3, b,=B(M)= B(Ly(q)X(P/(Z,XZ,))). By [21, Theorem (1)],
3<¢=3 (mod8), so that as in the proof of Lemma 4.3 the Cartan matrix C, of
b, has the form

2n—1 2n—2 2n—2
2n—2 27!—1 2n—2
2n-2 2n-2 Qn-l

By Lemma 4.2, k(B,)=2". Let {X, -+, Xon}=Irr(B,). We can write 1Br(b,)=
{pi=1y, @3 @3} with ¢¥1)=¢51)=(¢—1)/2 from Lemma 1.16(i). Let n:s, N, Ng
and N,Ng be the same as in the proof of Lemma 4.3. Every n;, is an integer.
As in the proof of Lemma 4.3 we get N,N,=2""" for all a=1, 2, 3, and N,N;
=2""% if a#B. Let Ce(P)=PXV. As in the proof of Lemma 4.3 we may
assume G=# VH. Since b,=By(S), k'(by)=2""3% So that k'(By)=|G:VG’'|=l[-2""3
as in the proof of Lemma 4.3, where [=|G : H|. Since b,=B\(S), by [21, p. 74
and pp. 87-88], we can write {i;;|i=1, -+, 8; j=1, -, 2" *} =Irr(b,) and

1 z
. 1 1
. q*—q+1 —1
zaj q° q
Xy q(¢*—q+1) —q
s (g—1)m(g+1+3m)/2 —(g—1)/2
X (g—1)m(g+1+3m)/2 —(g—1)/2
Xrs (g—1)m(g+1—3m)/2 (g—1)/2

2y (g—Dm(g+1—3m)/2 (g—1)/2
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for j=1, ---, 2%, where ¢=3%**"*! and m=3* for some k=1 (cf. [21, Theorem]).
By Clifford’s theorem, Proposition 1.3 and the above table, we know that if
X:(1)=1 then X;(z2)=1. When n;;=0, Xi(2)=(n;s+n)g—1)/2. Thus n;#0 if
X;(z)==+1. Hence the number of X;=Irr(B,) with n;;#0 is at least [-2"7%. Since
NN,=2""1, we get [=3. Fix any X;. If X;|yz=%,; for some j with 1=<;<27-3,
then n;?=1 since X(2)=—1. If Xi|g=Xj+X:; +%;j for some j, j’, j” with
1=5<)'<j”7=2"3, then n;*=9 since ¥;(z)=—3. Let u be the number of
X;€lrr(B,) with X;|z=2X,;, and let v be the number of X;Irr(B,) with X;| =
Xoj+%yj+Xyy for j<j'<j”. Since N,N,=2""', and since 1<q¢®*—q+1<3(¢*—q-+1),
we have
2" 1 =3 nn* 2 k' (B)+u+9v=3-2""*+u-+9v.

Then 2"°=u+9v. By Proposition 1.4, for every X,; there is some X; with
(Xilm, %:;)#0, so that, by Clifford’s theorem and Proposition 1.3, X;| a=Xy; or
Xil p=%,;+7%,;4+7%,,4> where g is an element of G with G=(g, H). By conside-
ring the degrees of %,;, we get that X, and ¥,;#* are both in {¥,; |j’'=1, ---, 273},
Thus 2" *<u+3v, so that v=0 and ¥=2""%This implies that the number of
L;elrr(B,) with 2;(z)=-1 is at least 2"~%, so that the number of X;=Irr(B,) with
Xi(z)==+1 is at least 2"!. Then the number of X;=Irr(B,) with n;;#0 is at
least 2*°'. Since N,N,=2""!, we may assume

0; for i=1, ---, 27!
nix:{ .
0 for i=2""141, ..., 2"

where 6,=+1. Thus Xy(z)=+1 for all (=1, ---, 2. For all i=1, .-, 2™},
Xi(2)=0;+(n;s+n:5)(g—1)/2, so that n;,+n;;=0 since (¢—1)/2=13. Consequently,
NN, N N,=32 ni(niat+ni)=23270:(ns2+n:5)=0. This is a contradiction since
N,N,=N,N,=2""%  This completes the proof.

LEMMA 45. Let S be a normal subgroup of G of odd index such that
S=Ly,(q)XSL2, 8) for some q>3 with q=3 or 5 (mod 8). If e=21, then
Bo= By(S).

ProOOF. Let R, and R, be Sylow 2-subgroups of L.,(q) and SL(2, 8), respec-
tively. We may assume S=L,(q)XSL(2,8) and P=R,XR,. There are an
element s L,(¢) and an involution xR, with R,={1, x, x°, xsz}. Similarly, we
can write R,={l, y, ¥, ---, y**} for some t=SL(2,8) and for an involution
yE R, Since e=21, Ng(P)=X(s, t, Ca(P)> and Ng(P)/Cs(P) is cyclic of order 21.
By [10, Lemma 18.5], {1, x, v, xy} is the set of all representatives of G-con-
jugate classes of P. Hence, by [10, Theorems 68.4 and 65.4], k(B,)=I(B,)+I(bz)
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+1U(by,)+(bsgy). Since s&Cgq(x) and t=Cq(x), we have e(Cy(x))=7. Thus I(b,)=7
from Theorem 2.4(1). Similarly, l(b,)=3 from Theorem 2.4(1). For integers 1
and j, (xy)***“=xy if and only if 3|7 and 7|;. This implies Ny(P)=Cy(P) where
M=Cg(xy). Thus, by [10, Theorem 18.7 and Corollary 65.3], I(b,,)=I(B«(M))=1.
Since G is nonsolvable, I[(B,)=2 from [10, Corollary 65.3], so that k(B,)=13.

Now, we prove the lemma by induction on |G|. Assume G#S. By [12,
Theorem], G has a normal subgroup H of odd prime index [ with SE&H. Let
by=B.H). We know b,=B,(S) by induction. From the character tables of
Ly(q) and SL(2, 8) (cf. [10, Theorems 38.1 and 38.2]), we can write

1 x
0, 1 1
0. (qg+e)/2  —e¢ sz{
0,  (¢g+e)/2  —e
0, q ¢

—1 if ¢=3 (mod 8)
1 if ¢=5 (mod 8)

where {0,, 0., 0,, 6.} =Irr(B,(L:(g))) and

1 y
& 1 1
&G 7 —1 for j=2,3,4,5
&5 9 1 for j=6,7, 8
where {Gy, -+, G} =Irr(Bo(SL(2, 8))). Since bo=By(S), we may write Irr(b,)=
{Ti;li=1, -, 4; j=1, -+, 8} with Z;;|s=6,(; for all i, j. Hence the degrees of

all Z;; are 1, 7, 9, (g+¢)/2, 7(g+€)/2, Hg-+¢)/2, g, 7q and 99. Next, we want to
show that

* if Z, ¥’ Irr(by) with #(1)=%'(1)
then X(xy)=¥(xy)==+1.

Case 1. e=1: Clearly {1, 9, 7(¢+1)/2, 9, 9¢} N {7, (¢-+1)/2, Hg+1)/2, g} = .
Hence, by considering the values %;;(1) and Z;;(xy), we get (¥).

Case 2. e=—1: Since {1, 9, (¢—1)/2, Hg—1)/2, Tg} N {7, 7(¢—1)/2, q, g} =2,
we obtain (*) as in Case 1.

We get from Clifford’s theorem, Proposition 1.3, (*) and the above character
tables of L,(¢) and SL(2,8) that X(xy)==+1 or +! for every X&Irr(B,). Let
k=Fk(B,), and let m be the number of X<Irr(B,) with X(xy)==+1. Hence we
can write Irr(By)={X,=1¢, X3, -, Xm, Xm+1, =~ , Xz} such that
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+1 for =1, ---, m

rie=|

+[ for i=m+1, -+, k.
Since I(b,,)=1, as in the proof of Lemma 1.9,
(**) 2= L X(xy)'=m—+(k—m)l*.

Firstly, suppose k=m. Then X (xy)=41 for all X;€Irr(B,). Since k=m=32
and since b,= B(S), we have k(B,)=k(b,)=32. Hence I(B,)=21, so that [(B,)=
I(by) since by=B,(S). Thus, by (*) and Corollary 1.8, B,=b,. Thus, we may
assume k>m. Since k=13, by (**), [=3. So that k—m=1 or 2. Let C4xP)=
PxV. Since k>m and b,=B(S), we know B,*b,. Hence G+ VH from Pro-
position 1.6. This shows Cy(P)=PXxV. Thus, by Proposition 15, |H:VH'|=
k'(bs)=1 since b,=B\(S). Then H=VH’. Since G/H is cyclic, VG'=VH’'=H.
Hence k’(B,)=|G:VG’|=I=3 by Proposition 1.5. So that we may assume that
X,(1)=X,(1)=%4(1)=1 and X;(1)>1 for all =4, ---, k.

Case A. k—m=1: By (**), we get m=23 and k=24. Then X;(xy)==+1
for i=1, ---, 23 and X,(xy)==+3. Since b,=By(S), by Clifford’s theorem and
Proposition 1.3, X;| z=1x for i=1, 2, 3, X;|y#1y and X;|z EIrr(b,) for i=4, ---, 23,
Xeo| p=X;,+%;,+%;, where X, ¥;, and ;, are distinct G-conjugate elements in
Irr(b,). On the other hand, it follows from Proposition 1.4 that for every
Xelrr(b,) there is some X;€Irr(B,) with (Uil x, £)#0. These show k(bo)<1--20-+3
=24. But k(b,)=32 since b,= B,(S). Then we have a contradiction.

Case B. k—m=2: We have from (**) that X(xy)==+1 for i=1, ---, 14,
Xis(xy)==x3 and X,((xy)==+3. Hence as in Case A we get k(b,)<1+11--6=18.
This is a contradiction as in Case A. This completes the proof.

LEMMA 4.6. Let S be a normal subgroup of G of odd index such that
S=Ly(@)XSLQ2, 8 X(P/(Z,XZyX Zy X Z, X Z,)) for some q>3 with q=3 or 5 (mod
8). If e=21, then k(B,)=2" and [(B,)=21.

ProoOF. If n=>5, we can prove the lemma by Lemma 4.5 (cf. Lemma 1.12
and Theorem 24). If n>5, we can verify the lemma by induction on »n as in
the proof of Lemma 4.2.

LEMMA 4.7. Assume as in Lemma 4.6. Then B,= B,(S).

PROOF. We may assume S=L,(q)XSLQ2, 8)XQ with Q=P/(Z,XZ,XZyX Z,
XZ,). We use induction on |G| as before. Assume G#S. Hence G has a
normal subgroup H of odd prime index with SSH from [12, Theorem]. Let
by=B,(H). By induction, b,=B,(S). Let x and y be involutions in L,(q) and
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SL(2, 8), respectively. As in the proof of Lemma 4.2, I(b,,)=1. By Lemma 4.6,
k(By)=2". Thus, X(xy)==+1 for all X€Irr(B,) from Lemma 1.9. By Lemma 4.6,
E(By)=Fk(b,) and I(B,)=I(b,). Since b,= By(S), as in the proof of Lemma 4.5, we
get that if &, ¥ <lIrr(b,) with Z(1)=¥'(1) then ¥(xy)=%'(xy)==1. These imply
Boy=b, from Corollary 1.8. This completes the proof.

Next, we state the following main result of this section. That is proved
by making use of Lemmas 4.2-4.7.

THEOREM 4.8. Let P be an abelian Sylow 2-subgroup of G, and let S=
O (G/O(@). If e=e(S)=21, then we have the following.

(1) k(By)=I|P| and
5 if Ng(P)/Cg(P) is noncyclic

21 if Ng(P)/Ce(P) is cyclic.

(2) One of the following holds:

(1) Bo=B(J1X(P/(Z;X Z,X Z,))),

(ii) Bo=B(R(q)X(P/(Z:XZ,X Z,))),

(iii) Bo=Bo(L(q)XSL(2, 8)X(P/(Z;X ZyX Zy X Z3 X Zy))) for some q>3 with
q=3 or 5 (mod 8).

l(Bo):{

ProorF. By Lemma 1.1, we may assume O(G)=1. By Proposition 1.10 and
Lemma 1.12, one of the following holds:

(1) S=/iX(P/(Z,XZ;XZ,)),

(ii) S=R(Q)X(P/(Z,X Z,X Z,)),

(1) S= L (@Q)XSLQ2, 8)X(P/(ZyXZyX ZyX ZyX Zy)) for some ¢>3 with ¢=3
or 5 (mod8). Then we can prove the theorem by Lemmas 4.2-4.7.

5. The case when P is elementary abelian of order 8

In this section we consider the case when G has elementary abelian Sylow
2-subgroups of order 8. In particular, we shall determine B, in the case when
G is nonsolvable, ¢=21 and e(S)#21 where S=0'(G/0O(G)). Throughout this
section we assume that G has an elementary abelian Sylow 2-subgroup P of
order 8 and we use the notation ¢ and B, as before.

By Lemma 1.14 and Remark 1 of §1, it is sufficient to consider the cases
when ¢=3, 7 and 21.

PROPOSITION 5.1. (i) If e=3, then k(B,)=8 and I(B,)=3.
(ii) If e=7, then k(B,)=8 and I(B,)=T.
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(iii) If e=21, then k(B,)=8 and I(B,)=>5.

PrROOF. (i) We can write Ng(P)=(s, Ce(P)> for some s€NgzP). There
is an involution x P with x*#x. Hence l(b,)=1 as in the proof of Lemma 2.1.
Then k(B,)=8 from Lemma 1.15(1). On the other hand, /(B,)=3 by Theorem
2.4(1).

(ii) We can verify (ii) as in (i).

(iii) We have already proved (iii) in Lemma 4.1.

PROPOSITION 5.2. There is a basic set W of B, such that W contains the
trivial Brauer character and the decomposition matrix of B, with respect to W
has the form

Il 1 00 1 10000
3 0 0 3, 03,00 0
0 8 0 & 00 8 0 0
0 8 0 000 40
0 0 & 0 000 0 &
0 0 4 ds 0 0 ds 06
3: 8: &y & 0 8,0 & o
Bs 8 Oy, 05 O g+ -+ - - - d, 0 0 85 3 0s
e=3 =7 e=21

where 0;==+1.

PROOF. Case 1. e¢=3: Clear from Proposition 5.1(i) and the proof of
Lemma 4.1.

Case 2. e=7: By Proposition 5.1(ii), k(B,)=8. Let {X;, ---, Xs} =Irr(B,). By
the proof of Proposition 5.1(ii), G has an involution x with I(b,)=1. By Lemma
1.9, we get X;(x)==+1 for all :. On the other hand, 3%_.X;(x)X;=0 on 2’-elements
of G from [10, Theorem 63.3(1)]. Thus, the assertion is proved.

Case. 3 e=21: Let z be an involution in G. By the proof of Lemma 4.1,
the generalized decomposition matrix of B, relative to z with respect to some
basic set of b, has the same form as in Case 1. Hence, by [10, Theorem 63.3(1)],
we can verify the proposition.

LEMMA 5.3. Assume e=21, O(G)=1, 0(G)=SL(2,8) and G has a normal
subgroup H of odd prime index with e(H)=7. Then for any involution z in G
we get
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1 fori1=1,2,3 1 fori=1,2,3

| 7 fori=4,5,6 _|—1 for i=4,5,6
D=\ 01 For i=7 K=\ g ror i=7
27 for 1=8, 3 for 1=8

where {X;=lg, Xa, -+, X} =Irr(B,).

PrROOF. Let S=0/(G)=SL(2, 8). By Lemmas 1.12 and 1.14, we can write
N(P)={s, Cs(P)>, Ny(P)={s, Cx(P)> and Ng(P)=(s, t, Cx(P)) for some s= Ng(P)
and t€Ng&(P) such that s and ¢t have orders 7 and 3 modulo Cz(P), respectively.
Clearly, G/H=<(tH). Let by=DB,(H), and let C4z(P)=PX V. By Proposition 5.2,
B,xb,. Hence VH=H from Proposition 1.6. Then Cz(P)=Cx(P) and |G : H|=3.
We may assume z€P. Let M=C4(z). By the proof of Lemma 2.1, Cs(z) is a
2-nilpotent normal subgroup of M, so that M is solvable. By the proof of
Lemma 4.1, e(M)=3. Thus, by Lemma 1.1, By(M)= By(P-Z,) where P-Z, is the
semi-direct product of its normal subgroup P by Z; and it is not the direct
product PXZ, Thus, as in the proof of Lemma 4.1 we know the generalized

decomposition numbers of B, relative to z. So we can write
+1 for =1, ---, 6
() 1i(2)= _
+3 for i=7,8

for suitable indexing of X,, ---, Xs. By Lemma 2.1, b= By(S). Hence, by [10,
Theorem 38.27],

1 for i=1 1 for =1
(**) Z;(1)={ 7 for i=2, ---,5 Z1,(z2)={—1 for 1=2, ---,5
9 for 1=6,7,8 1 for :=6,7,8

where {X,, ---, %} =Irr(b,). Since |G:VH|=|G:H|=3, we get 3| |G:VG’|. By
Proposition 1.5, 2/(By)=|G : VG’|. By (*%), k'(b)=Ll, so that |G:VG’|=3 from
Frobenius reciprocity. So we may assume that X;|g=2X.|z=X;| z=%, from (¥),
(**) and Proposition 1.3. Similarly, we may also assume that X,|z=%,-+¥,+%;
and Xg| p=%+%,+%. Then we get X, x=X;|pz=Xs|z=7%. This completes the
proof.

The next theorem is the main result of this section.

THEOREM 54. Let G=G/O(G) and S=0'(G). If G is nonsolvable, e=21 and
e(S)#21, then we have the following.

(i) S=SL(2, 8).

(i) For any subnormal subgroup L of G of odd index with e(L)=21,
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By=B(L).

Proor. We may assume O(G)=1 by Lemma 1.1, so that S=0’(G).

(i) Noncyclic groups of order 21 have no normal subgroups of order 3.
Thus, by Lemma 1.14, ¢(S)=7. Then S=SL(2,8) from Proposition 1.10 and
Lemma 1.12.

(ii) Firstly, we want to show that

[ if L is a normal subgroup of G such that |G:L| is an odd prime and
™) 1+ e(L)=21 and if H is a normal subgroup of L such that |L:H]| is an
l odd prime and e(H)=7, then B,=B,(L).

Let b,=B,(L), and let z be an involution in G. By Lemma 5.3, we get

1 for i=1,2,3 1 for i=1,2,3
i for i=4,56 ., . |—1 for i=4,5,6
ok ) — ) . — y Yy
) =191 for i=7 WA= 3 for i=7
27 for 1=8, 3 for i=8

where {%, ---, ¥} =Irr(b,). As in the proof of Lemma 5.3, using the generalized
decomposition numbers of B, relative to z,

+1 for =1, ---, 6

(**%) Xi(2)={
+3 for i=7, 8

where {X;, -+, Xs} =Irr(B,). Since |G : L] is an odd prime, I5(X,)=1;s)=G from
(**). Thus, by Proposition 1.4, Clifford’s theorem, (**) and (***), we may assume
that X,| =%, and Xg|,=%,. By Clifford’s theorem, Proposition 1.3, (***) and (**),
we have X;|.&Irr(b,) for i1=1, ---, 6. Thus, by Proposition 1.4, we may assume
that X;|,=%; for i=1, ---, 6. These show I4X;)=G for all ¥;€Irr(b,). By Pro-
position 5.1(3), k(B,)=k(b,) and I(B,)=I(b,). Thus, B,=b, from Corollary 1.7.
Then, (*) is proved. Since G/S is solvable by [12, Theorem], by repeating the
above way, we can prove (ii).

REMARK 1. If G is solvable, we easily know B, since we may assume
O(G)=1 from Lemma 1.1. Assume G is nonsolvable. If ¢=3 or 7, we know B,
from Theorem 2.4. If ¢=21, we know B, from Theorems 4.8 and 54.

REMARK 2. By Remark 1 of §2, there is a finite group G with elementary
abelian Sylow 2-subgroups of order 8 such that e(G)=21 and e(S)=7 where
S=0'(G/O0(G)).
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6. The case when P is elementary abelian of order 16

In this section we deal with the case when G has elementary abelian Sylow
2-subgroups of order 16. Specially, we are interested in the case where ¢ is
not prime. When e is 9 or 21, the similar phenomenon to Theorem 5.4 occurs.
Throughout this section we assume that G has an elementary abelian Sylow
2-subgroup P of order 16 and we use the notation e¢ and B, as usual.

By Lemma 1.13 and Remark 1 of §1, it is enough to consider the cases
when ¢=3, 5, 7, 9, 15 and 21.

PROPOSITION 6.1. If G is solvable and e=3, then one of the following holds.

(i) Bo=By(M) where M is a semi-direct product of its normal subgroup P
by <t> such that P={x, y, z, w) is elementary abelian of order 16, {t)> is cyclic
of order 3, x'=y, y'=xy, z'=w and w'=zw. In this case k(B,)=8.

(ii) Bo=By(L) where L is a semi-direct product of its normal subgroup P by
(> such that P=<x, y, z, wy is elementary abelian of order 16, {t) is cyclic of
order 3, xt=x, y'=y, z'=w and w'=zw. In this case k(B,)=16.

PrROOF. By Lemma 1.1, we may assume O(G)=1. Hence G is a semi-
direct product of its normal subgroup P by Z; and G is not the direct product
PxZ, Let G=P{t> where <{t)> is cyclic of order 3, and let P=<x, ¥, z, w).
We may assume that

(1) x*=y, y'=xy, z'=w, w'=zw
or

(i) xt=x, y'=y, 2'=w, wi=zw.

Then we can easily prove the assertion.

PROPOSITION 6.2. Let D be the decomposition matrix of Bo. If e=3, then

we have the following.
(i) When G is solvable, D has the form

1 00 1 00
0 10 1 00
0 01 1 00
111 1 00
1 11 010
111 010
1 11 010
1 1 1, or 0 10
k(B,)=8 0 01
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0
0
0
1
1
1
1

T N = = =)
e e T = S R S

k(By)=16
(ii) When G 1is nonsolvable, we obtain D from Theorem 2.4(2) and Lemma
1.16(ii).

PrOOF. The assertion is proved by Proposition 6.1.

PROPOSITION 6.3. If e=5, then G 1is solvable, By=By(P-Zs) where P-Z; is
the semi-direct product of its normal subgroup P by Zs and it is not the direct
product PXZs, and the decomposition matrix of B, has the form

0

== O O O O -
— = = O O O = O
— = = O O RO O
— = O = O O O
= e = O O O

PRrROOF. By Proposition 1.10 and Lemma 1.12, G is solvable since we may
assume O(G)=1 by Lemma 1.1. Hence G is the semi-direct product of P by
Zs, and it is not the direct product PXZ;. The decomposition matrix of B, is
easily obtained.

PROPOSITION 6.4. If e=7, then there is a basic set W of B, such that W
contains the trivial Brauer character and the decomposition matrix of B, with
respect to W has the form
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1o
1 1
5, 0
3
4. .
0 - s,

014
515 515 e 515
516 516 v 516
where 0;==1.

PROOF. As in the proof of Lemma 4.1 we can prove the assertion by Pro-

position 5.2.

PROPOSITION 6.5. Suppose k(B,)=16.

(1) If G has an involution x with b,=BP-Z;) where P-Z; is a semi-
direct product of P by Z; and it is not the direct product PXZ,, then the gene-
ralized decomposition mairix D® of B, relative to x has the form (¥).

(2) If G has an involution x with b,=B(Z,XZ,X L(q)) for some ¢>3 with
gq=3 or 5 (mod 8), then the generalized decomposition matrix D* of B, relative
to x is as follows:

(1) When 3<qg=3 (mod 8), D* has the form (*).

(ii) When 3<q=5 (mod 8), D* has the form (**).

1y 1y

1 1 0 O le 1 0 O
o, 0 O 6. 0 O
o, 0 O 6 0 O
o, 0 0 o, 0 O
0 d5 0 0s 0s 0
0 ds 0 0¢ 0¢ O
0 9, O 0, 0; O
0 ds O 0g ds O
0 0 o9y d, 0 4,
0 0 0y 00 0 dio
O O 511 511 O 511
0 0 Op 012 0 0
013 013 Oig 013 013 013

514 614 514 514 614 514
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615 515 515 515 515 515
516 516 518 516 516 516
* **)

where 0;=+1 and M=Cy(x).

ProoF. (1) By Proposition 6.2(i), we know the Cartan matrix of b,. Hence
the assertion is proved as in the proof of Lemma 4.1.

(2) We obtain the Cartan matrix of b, from Lemma 1.16(ii). Thus we can
verify (2) as in the proof of (1). ‘

LEMMA 6.6. Assumz e=9, O(G)=1, O'(G)=Z,XZ,X Lyq) for some ¢>3 with
g=3 or 5 (mod 8), and G has a normal subgroup H of odd prime index with
e(H)=3. Let b,=B,(H), and let x and z be involutions in Z(O'(G)) and L(q),
respectively. Then we have the following.

(i) xi]H:xi-HlII:XH-le:ii for i=1,5,9, 13

X a=Xjo s+, +X; for j=4, 8, 12, 16
and the values ¥;(1), ¥,(x), ¥(2) and %(x2) are as follows:

1 X z Xz
1, 1, 1 1 1 1
X, X, 1 —1 1 —1
Xs, %o (g+e)/2  (g+e)/2 —e¢ —e
X, X (g+e)/2 —(g+e)/2 —e¢ €
X, % (¢g+e)/2  (g+e)/2 —¢ —e
Y, X (gH+e)/2 —(g+e)/2  —e €
Xysy X1a q q € &
X1s, L16 q —q € —e

where {Xy;=1¢, X3, -+, X16} =Irr(By), {({:=1p, Xy, -+, X1} =Irr(by) and e=—1 if q=3
(mod 8); e=1 if ¢g=5 (mod 8).
(ii) ¢ilH=¢i+1|H:¢i+2ln-_—"§$(i+2)/a for i=1,4,7
$%s=¢s-2+@;-1+; for j=3,6,9
where {¢,=1g, ¢s, -, ¢} =IBr(B,) and {$,=1x, ¢s, Gs} =IBr(by).

PROOF. Let S=0'(G)=<x, y> X Ly(q) and P=<x, y, z, w) where <{z, w) is a
2-Sylow subgroup of L,(q). We can write Ng(P)=<s, Cs(P))> for some s& Ng(P).
We may assume z’=w and w®=zw. We can also write Ng(P)={s, t, Ce(P)> for
some t Ngz(P) where s and ¢ have order 3 modulo Cgz(P) since e=9 (cf. Lemma
1.13). We may assume x'=y, y'=xy, z'=z and w'=w. As in the proof of
Lemma 5.3, we get G/H=<tH), Ce(P)=Cyx(P) and |G:H|=3. By [10, Lemma
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18.5], {1, x, z, xz} is the set of all representatives of G-conjugate classes of P.
As before, l(bz)=I(b,)=3 and I(b,,)=1. By Lemma 3.1, k(B,)=16. Since S is
normal in Cg(x) and e(Cg(x))=3, it follows from Lemma 2.3 that b =By(Z,XZ,
X Ly(q)). Thus, by Lemmas 1.16(i) and 6.5(2), we may assume

il for 2:1, TN 4
*) Xi(x)={ *+(q+¢)/2 for i=5, .-, 12
+q for =13, ---, 16.

Since e(H)=3, by Lemma 2.3, b,=By(S). Let C4(P)=PXxV. By [10, Theorem
18.4], PNG’'=P, so that |G:VG’| is odd. Since by==By(S) and since Cgz(P)=
PXYV, by Proposition 1.5, |H:VH’|=4. Thus, |G:VG’|=3, so that k'(By)=3
from Proposition 1.5. Since b,=B,(S), by [10, Theorem 38.1], we know the
values of Z;|s for all i. Then we get the table in (i). Using this we may
assume that

IsI)=G for i=1,5,9, 13
** I6(X;-)=1c;-)=1c(1)=H

- . . - } for j=4, 8, 12, 16.
X§_2=Xj_1, Xff_l:x]'

By (*) and (**), we may assume that X,|z=2X,| x=Xs| n=7%. Since Zo(x)+To(x)
+%(x)=—1, by Proposition 1.4, (*) and (**), we get X,|p=Fy+T,+7,. Similarly,
we may assume that X;| =X, ,+%,_,+¥; for j=8, 12, 16. We may also assume
that Xi| g=Xi+1l p=Xis2l w=%; for i=5, 9, 13 using Frobenius reciprocity (*) and
(**). This completes the proof of (i). Since bo=By(S), by Lemma 1.16(i), 9'52(1)
=@41)=(¢—1)/2. Thus I(3,)=G for j=1,2,3 since |G:H|=3. For all
$:<1Br(B,) we have ¢;]|z<IBr(b,) by Clifford’s theorem since |G:H|=3. Thus,
by [15, V 16.6 Satz], we get (ii) for suitable indexing of @2, -+, ¢o. This com-
pletes the proof of the lemma.

PROPOSITION 6.7. Assume as in Lemma 6.6. Then the decomposition matrix
D of B, is as follows.
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3 (mod8):

(i) 3<q

O O vt o

O - O

—n O O

S O ~H

S - O

- o O

O O -~ O

S —H O —~ O

- O O

10010

010010

0010010O0T1

11111111T1.

5 (mod 8) :

(i) 3<gq

O O - -

S —=H O

- O O

(=]

(=]

—

01 0010

0 01 001

111111

S O~

O - O

oS O~

S - O

— O O

—

—

—i

@) 1

1

0
111111111,

where (*) is one of the following types
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PrROOF. We use the same notation as in Lemma 6.6. Let [ be the decom-
position matrix of b,, and let D=(d;;); z. Let X;|z=2Xl;;X; for each j, and
L=(l;;);,;. Similarly, let ng:zusmm for each &, and B=(f;1)..2. By [7, §26],

) DB=LD.
(i) Since b,=B,(S), by (1) and Lemmas 1.16(ii) and 6.6,

1 00
010
001 0 0
111
100
010
0 001 0
(2) D= 11 1
100
010
0 0 0 0 1
111
? ? ?
111111111
and
(3) dig. 1+dus 2+dis 2=1 for all 2=1, ---, 9.
By Lemma 6.6,
1
1
1
—1
1
1
1
4) D**=(dif);i= -1
1
1
1
—1
—1
—1
—1
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where D?** is the generalized decomposition matrix of B, relative to xz. Clearly,
S is normal in Cg4(x). By the proof of Lemma 3.1, e(Cg(x))=3. Since ¢=3 (mod _
8), by Lemmas 2.3 and 6.5(2),

| g g5 #
le=t, 1 0 0
L, 6 0 0
%oy 8 0 0
Lo 6 0 0
L, 0 & 0
L, 0 & O
L, 0 & 0
) (df.a)ia= Xy 0 ds O
Ly 0 0 &
Yy O 0 by
L, 0 0 &,
Ly, O 0 &
xv13 015 O O3
x»14 014 Oy Oy
qu 015 01z 05
wi 016 Oge 516

where dZ, are the generalized decomposition numbers of B, relative to x, d;==+1,
Xullezle {xvzy Tty xl‘le} :{xm T Xls}r {¢:lc:1‘ll, ) ¢J.T} ‘:IBr(br) and M:CG(x).

Let cz(i (1)) in L,(g). Then, by [10, Theorem 38.1] and Lemma 1.16, we may
assume that
(6) $3(c)=(—1+~—¢)/2 and @i(c)=(—1—v —q)/2.

By Lemma 6.6 and (5), {X,;, ---, X} =1{Xs, -+, X} and {X, 5, -+, X} ={Xus, =, Ao}
We may assume that X;€ {X,,, ---, X,5}. By Lemma 6.6, X5| z=Xs| z=X:| . Thus,
by (5) and (6), we get that X, and X, are both in {X,;, ---, X,;}. Similarly, none
of {Xs, X10, X;1} are in {X,, -+, X,i}. Hence, by (2), (5) and (6), we know {X,;, ---,
Xt =X, -+, Xt Thus, {Xy, =+, Lpb ={Xs, -+, Xio}. Hence we may assume
that X,,=X; for all i=1, ---, 16. Therefore, by Lemma 6.6,

¢ ¢f o7
1 0 0
1 0 0
1 0 0
-1 0 0
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0 1 0
0 1 0
0 1 0
(7 (df)ia= 0 —1 0
0 0 1
0 0 1
0 0 1
0 0 -1
1 1 1
1 1 1

1 1
-1 -1 -1.

Next, we want to know the generalized decomposition numbers di. of B, relative
to z. Let L=Cg(z). As for x, e(L)=3 and I(B«(L))=3. Since N (P)=(t, C.(Py
and z'=z, we get from Proposition 6.1 and Theorem 2.4(1) that k(B.(L))=Fk(b,)
=16. By Theorem 2.4(2) and Lemmas 6.6 and 6.5, L is solvable, so that
b,=By(P-Z,) from Proposition 6.1 where P-Z; is a semi-direct product of its
normal subgroup P by Z, and it is not the direct product PxZ,. Thus, by

Lemma 6.5,
S R
le=xt,, 1 0 0
L, 0 & 0
%, 0 0 &
X, 04 04 04
L, 0 0 0
L, 0 & 0
L, 0 0 &
) (dii.a)i.a: X,,s 0s s Os
L, 6 0 0
L, O 6w O
L, O 0 du
X,,m 012 01z On2
%, 0w 0 O
Ly, O du O
%y, O 0 du
X 016 O1c O

e
[y
@
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where 5i=i1) xv1=X1=1G) {xvzy Ty x”ls}= {x2) Tty xls} and {¢§) ;y ¢§} =IBr(b2)-
Clearly, ¢i{(1)=¢3(1)=¢51)=1. Hence, by Lemma 6.6 and (8),

{xvv xvsx xvlzy Xvw} = {X4, xs, xlzy XIG}

{04, 05, 012, 016} =1{1, 1, 1, —1}.

By Lemma 6.6, X;,(2)=2X;+1(2)=X;4:(z)=1 for i=1,5,9. So it follows from (4), (7),
(8) and [10, Theorem 63.3] that d,=d,=0,,=1 and d,,=—1. Thus, again by (4),
(7), (8) and [10, Theorem 63.3],

©)

é P P

1 0 0

0 1 0

0 0 1

1 1 1

1 0 0

0 1 0

0 0 1

(10) (di)ia= 1 1 1

1 0 0

0 1 0

0 0 1

1 1 1

—1 0 0

0 —1 0

0 0 —1

-1 -1 -1

for suitable indexing. By (2), (3), and [10, Theorem 63.3],

Ls 1 0 01 0 01 0O
D=%, 01 0 01 0 010
X 0 01 0 01 0 O 1
s 1 1 1 1 1 1 1 1 1.

This completes the proof of (i).
(ii) Since by=B\(S), as in the proof of (i) we get
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100

010

001 9 0

111

? ?

' 0
(11) D=7 11111

? ?

0
111 111
? ? ?

111111111

and
d5l+ds}+d7]_:1 fOI‘ Z:]., Tty 6

(12> d92+d10,1+d11.1=]— for 2::1) 2: 3) 77 8; 9
dis, 1+dig, 2 4-dss, =1 for 2=1, ---, 9.

As in the proof of (i), we have

rogf B fog @

1 1 0 0 1 0 0
1 1 0 O 0 1 0
1 1 0 0 0 0 1
-1 —1 0 0 1 1 1
—1 1 1 0 —1 0 0
-1 1 1 0 0 -1 0
—1 1 1 0 0 0 -1
(13) @i= 1 (@de=—1 =1 0 (@a=—1 —1 -1
~1 1 0 1 -1 0 0
—1 1 0 1 0 —1 0
—1 1 0 1 0 0 —1
1 —1 0 —1 -1 -1 -1
1 1 1 1 0 0

1 1 1 0 1 0

1 1 0 0 1

-1, -1 -1 -1, 1 1 1

where dff, df., di., ¢% and ¢% are the same as in (i). By Lemmas 6.6 and 1.16,
we know the degrees of all X; and ¢,. Thus, by (11), (12), (13) and [10, Theo-
rem 63.3], we may assume
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Xs
(14) D= %
X

==
- O = O
L e e R )
—_ O O
o = O
= -0 O

Similarly, we may assume

X

(15) D= X%, ?
4%
4, 1 11

So, by (11), (12), (13), (14), and [10, Theorem 63.3],

<O
—_ O O
- = o O

X1
(16) D: xl‘ ?

3
0 0 0
1
0
1

—_ O O
—_ - O

10
01
11

Thus, considering the degrees of X; and oo, by (11)-(16) we get the following
six cases:

Xy 1 00 1 00 010 0 01 010 0 01
%10 010 0 01 1 00 1 00 0 01 010
X1 0 01 010 0 0 1 010 1 00 1 0 0
Xio 1 11 1 11 1 11 1 11 1 1 1 1 11
X1s 1 00 1 00 010 0 01 010 0 01
Xia 010 0 01 1 00 1 00 0 01 010
Xis 0 01 010 0 01 010 1 00 1 00
X6 111, 111, 111, 111, 111, 111

D1 Pe B3 D1 P2 Py D1 P Py Py P by Py Be Ps Py P Bs

Thus, for suitable indexing of X; and ¢,, we obtain (ii).
The following theorem is one of the main results of this section.

THEOREM 6.8. Let G=G/O(G) and S=0'(G). If G is nonsolvable, e=9 and
e(S)#9, then we have the following.
(1) S=Z,XZ,XL,q) for some ¢>3 with ¢q=3 or 5 (mod 8).
(il) For any subnormal subgroup L of G of odd index with e(L)=9,
o=By(L).

PrRoOOF. We may assume O(G)=1 by Lemma 1.1, so that S=0'(G).
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(i) Since G is nonsolvable, ¢(S)=3. Thus, we get (i) from [Proposition 1.10
and Lemma 1.12.
(ii) Firstly, we want to prove that

if L is a normal subgroup of G such that |G:L| is an odd prime and
*) e(L)=9 and if H is a normal subgroup of L such that |L:H]| is an odd
prime and e(H)=3, then By=B,(L).

Let by=B(L). By Lemma 3.1, E(B,)=Fk(by)=16 and [(B,)=I(b,)=9. We may
write O'(G)=S=<(x, y>X Ly,(q) and P=<x, y, z, wp where {z, w) is a Sylow 2-
subgroup of L,(q). By the proof of Lemma 6.6, we may assume x*=ux, y*=jy,
Z'=w, w'=zw, x'=y, y'=xy, z'=2z and w'=w where s, t& N (P)=s, t, CL(P)>.
So Ng(P)=<s, t, C4(P)>. By the proof of Lemma 3.1, I(b,,)=1. Thus, by Lemma
1.9, X;(xz2)==1 for all X;€Irr(B,). By Lemma 6.6, we know the values %41) and
T,(xz) for all ¥;€Irr(b,). Using this, if 7, #’ lrr(b,) and Z(1)=%'(1), then I(xz)=
¥'(xz)==1. Hence it follows from Corollary 1.8 that B,=b,. Thus we get (*).
On the other hand, G/S is solvable from [12, Theorem]. Hence we can verify
(ii) by repeating the above way. This completes the proof.

PROPOSITION 6.9. Let D be the decomposition matrix of B,, and let S=
O (G/O(G)). If e=9, then we have following.
(i) When G is solvable,

100
010 0
001
100
0 010
001
100
p= 0 o otLo
001
111000000
000111000
000000111
100100100
010010010
001001001
111111171 1.

(ii) When G is nonsolvable and e(S)=9, we know D from Theorem 3.4(2)
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and Lemma 1.16(ii).
(iii) When G is nonsolvable and e(S)=3, we know D from Theorem 6.8 and

Proposition 6.7.

REMARK 1. There is a finite group G with an elementary abelian Sylow
2-subgroup P of order 16 such that e¢(G)=9 and O'(G/O(G))=Z,XZ,XLyxq) for
g>3 with ¢=3 or 5 (mod8). Let <z, w) be a Sylow 2-subgroup of L.(g), and
let S=<x, y>X Ly,(q) and P=<x, y, z, w) where {x, y> is elementary abelian of
order 4. There is an automorphism » of <{x, y> with x"=y and y"=xy. We can
consider that r& Aut(S) if its we consider that r is trivial on L,(g). So there is
a semi-direct product G of its normal subgroup S by <#>. Then, ¢(G)=9 and O’(G)=
S=Z,XZ;X Ly(q).

The next theorem is one of the main results of this section.

THEOREM 6.10. If G is nonsolvable and e=15, then B,=B,(SL(2, 16)).

ProoF. By Lemma 1.1, we may assume O(G)=1. Let S=0’(G). Since G
is nonsolvable, it follows from Proposition 1.10 and Lemma 1.12 that ¢(S)#1 and
e(S)#5. So that e(S)=3 or 15. Firstly, suppose e¢(S)=3. By Proposition 1.10
and Lemma 1.12, S=Z,XZ,x L,(q) for some ¢>3 with ¢=3 or 5 (mod 8). Thus,
there is an involution xPNZ(S). We can write Ng(P)={s, Cs(P)> for some
s&Ng(P). Thus, x*=x. Since e=15, we can write Ng(P)=<t, Cz(P)> for some
te Ng(P). Since N (P)/Cs(P) can be considered as a subgroup of Ng(P)/Ce(P)
through the canonical monomorphism, we get that s=¢* (mod Cg(P)) for some
integer ¢ with %0 (mod 3). Thus, x=x'"", This is a contradiction. Hence
e(S)=15, so that S=SL(2, 16) from Proposition 1.10 and Lemma 1.12.

We prove B,=B,(S) by induction on |G|. Let G#S. Since G/S is solvable
by [12, Theorem], G has a normal subgroup H of odd prime index with SSH.
Let by,=B,(H), and let z be an involution in P. Since b,= By(S) by induction, we
get k(b,)=16 and

1 for i=1 1 for i=1
*) (D=1 15 for i=2, ---, 9 X(2)=1—1 for i=2,--,9
17 for =10, ---, 16, 1 for =10, ---, 16
using [10, Theorem 38.2], where {X,, ---, %} =Irr(b,). Since all involutions in

P are G-conjugate, PN\G’=P by [10, Theorem 18.4]. Thus, k'(B,) is odd from
Proposition 1.5. Now, we want to claim that k(B,)=16. If k'(B,)=1, we get
from Propositions 1.5 and 1.6 that k(B,)=16. Suppose k(B,)#16. Since e=15,



The principal 2-blocks of finite groups 61

l(b,)=1. Thus, by Lemma 1.152), k(B,)=8. So that k’(B,)=3, 5 or 7. Let
{xlr Tty XS} :Irr(BO)'

Case 1. P'(By)=7: We may assume X,(1)=--- =X,(1)=1 and X,(1)>1. By
Clifford’s theorem, Proposition 1.3 and (*), we have X;|gz= -+ =X;|z=%,. Thus,
by Proposition 1.4, (Xs|x, %;)#0 for j=2, ---, 16. Then we have a contradiction

from Clifford’s theorem and (*) by considering the degrees of ;.

Case 2. k'(By)=5: We may assume X;(1)=1 for i=1, ---, 5 and X,(1)>1 for
j=6,7,8. As in Case 1 we know X |p=--=X;|x=%. Since k(By)#k(b,),
By=b,. So that we get from Proposition 1.6 that G#VH where V is a sub-
group of G with Ce(P)=PXV. Since k'(By)=5, |G:H|=5 by Proposition 1.5.
So, by Clifford’s theorem and Proposition 1.4,

XG'II:22+ +Ze, X7IH:ZI+ +211,
X8|H=Z12+ +216

for suitable indexing of %,, ---, %,,. Hence we have a contradiction from Clifford’s
theorem and (*) by considering the degrees of ¥;

Case 3. k'(By)=3: Let X, (1)=1 for i=1, 2, 3 and X;,(1)>1 for j=4, :--, 8.
As in Case 2, |G:H|=3. Then, by Proposition 1.4, for suitable indexing of
22, A ilb‘y we get
x4]H:iz+7za+i4; Xs]H:Zts“‘ie‘*‘i'z, XGIH:ZS+Z9+Z10
x7'H=211+i12+21s, Xsll;!:zu'}"ils“l'zw

Then we have a contradiction as in Case 2.
Thus, k(B,)=16. Let {X,, .-, X} =Irr(B,). Since [(b,)=1, X;(z)=+1 for i=

1, -+, 16 from Lemma 1.9. Thus, we know from Clifford’s theorem, Proposition
1.3 and (*) that X;| z=Irr(b,) for all =1, ---, 16. Hence, by Proposition 1.4, we
may assume that X;|y=%; for all i=1, ---, 16. This shows k’(B,)=1. So that

B,=b, from Propositions 1.5 and 1.6. This completes the proof of the theorem.

PROPOSITION 6.11. If e=15, then there is a basic set W of B, such that W
contains the trivial Brauer character and the decomposition matrix of B, with
respect to W has the form

1l 1
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where 0;,=*+1.

PROOF. The proof is similar to that of Proposition 5.2 (cf. the case when

e¢=7 in Proposition 5.2).

LEMMA 6.12. If e=21, then there is an involution ze P and there are two
elements s, t€ Ng(P) such that Ng(P)=<s, t, Co(P)), 2'=2z and zt=z.

ProoF. Firstly, we want to prove that

there is an involution u=P and there are two elements s, te Ng(P) such
*) that Ng(P)=¢s, t, Co(P)>, s and ¢t have orders 3 and 7 modulo Ce(P)
1 respectively, and u’=u.

We may assume O(G)=1 by the proof of Lemma 1.1. Since S=0’(G) is normal
in G, e(S)=1,7 or 21. When ¢(S)=7 or 21, we get (*) from Proposition 1.10 and
Lemma 1.12. Assume e(S)=1. Then P is normal in G and |G:P|=21. We can
write G=<s, t, P> for s, tG such that s and ¢ have orders 3 and 7 modulo P,
respectively. Clearly, there is an involution ye P with y‘=y. Suppose x’#x
for all involutions x&P. Then, ¢(Cs(»))=7. By Proposition 5.2 and [10, Lemma
66.1], the Cartan matrix of b, has 2 as an elementary divisor of multiplicity 6.
Thus, by [5, (7G)], [18, Proposition 1.2] and [10, Theorem 65.4], we get I(By=7
since all involutions in G are conjugate. On the other hand, I(B,)=5 since G/P
is noncyclic of order 21 (cf. Lemma 1.13). This is a contradiction. Hence we
obtain (*).

Next, we prove the lemma. There is an involution ze P with z*=z. By (%),
there are other two involutions v, we P such that v*=v, w*=w and u, v, w are
all distinct. It suffices to show ze< {«, v, w}. Suppose z< {u, v, w}. Since z°#z,
we know that {1, u, v, w, 2, uz, vz, wz} is the set of all representatives of {s)-
conjugate classes of P. Since u#z we get u‘#u. Thus, {1, u, uz, z} is the set
of all representatives of {t>-conjugate classes of P. Hence, by elementary calcu-
lation, we get that ve {uz, u‘z, ---, u'°zZ}. Hence no two elements in {, v, z}
are conjugate in G. These show that all G-conjugate classes of P are {1}, {z}
{u, ut, -, u®} and {uz, u'z -, u*’z}. Thus, z'=z. This is a contradiction.

This completes the proof.
LEMMA 6.13. If e=21, then k(B,)=16 and I(B,)=>.

PROOF. Let s, ¢ and z be the same as in Lemma 6.12. Hence s and ¢ have
orders 3 and 7 modulo Cg4(P), respectively. There is an involution x€ P with
x*=x and x*#x. Thus, {1, x, xz, z} is the set of all representatives of conjugate
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classes of G of 2-elements by [10, Lemma 18.5]. We may assume O(G)=1 by
Lemma 1.1. By Z*-theorem [10, Theorem 67.1], z= Z(G). These imply from [10,
Theorems 68.4 and 65.4] that k(B,)=2I(Bo)+I(bs)+I(bs,). Since e(CG(x))=3, 1(bg)
=3 by Theorem 24(1). Similarly, [(b,)=3. Since z€Z(G), as in the proof of
Lemma 2.2 we get from Lemma 4.1 and Proposition 1.2 that [(B,)=5, so that
k(B,)=16.

LEMMA 6.14. Assume e=21, O(G)=1, O'(G)=Z,XSL(2, 8) and G has a normal
subgroup H of odd prime index with e(H)=7. Then for any involution z in
SL(2, 8), we have

Xi(D= - =X(1)=1, X(1)= -+ =X1x(1)=7,
X13(1)2X14(1):21) X15(1):X16(1>:27:
X1<=Z): e =X(2)=1, Xi(2)= - =X (2)=—1,

Xi5(2)=X1(2)=—3, Xls(z)les(z),:B.
where {X1=1g, X5, -+, X1} =Irr(By).

PrROOF. Let by,=B,H), S=0'(G)=<w)xSL(2, 8) and P=<w, x, vy, 2> where
{x, y, zy is a Sylow 2-subgroup of SL(2, 8). As in the proof of Lemma 5.3, G/H
=<{rH> for some r& Ng(P), Co(P)=Cx(P) and |G:H|=3. We can write Ng(P)
=<t, Cs(P)> for some te Ng(P). Since PNZ(S)=<{w), it follows from Lemma 6.12
and Z*-theorem [10, Theorem 67.1] that weZ(G). Then, by the proof of Lemma
6.13, we may assume that z’#z, z"=z and [(b,)=3. By the proof of Lemma 2.2,
I(B,(Cs(2))=1. So that Cs(z) is 2-nilpotent from [10, Corollary 65.3]. Hence
Cs(2) is solvable. Since e(Cg(2))=3, by Proposition 6.1, b,=B(P-Z,) where P-Z,
is a semi-direct product of its normal subgroup P by Z; and it is not the direct
product PXZ,. Then, by Lemma 6.5, we know the generalized decomposition

numbers of B, relative to z. This implies
+1 for i=1, ---, 12
(*) Xi(2)= ,
+3 for =13, -+, 16

for suitable indexing of X, -:-, X;e. By Lemma 2.3, by=B(S). So, by [10, Theo-
rem 38.2],
ilu):iz(l):l, (D)= - L1(1)=7,
Xu(1)= - =Z1(1)=9,

(**)
1(2)=1(2)=1, Z(2)= - =L (2)=—1,

1 (2)= - ;—‘—ZIG(Z):l
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where {{,=1y4, X,, ---, %;¢} =Irr(b,). We can write C4z(P)=PxXxV. By Theorem
2.4 and Lemma 6.13, we get [(B,)+[(b,)=I(B4S)). Hence B,%xb,, so that VH#G
by Proposition 1.6. Thus, |G: VH|=|G: H|=3. Hence, by Proposition 1.5, £’'(B,)
is divisible by 3. Since |G: H|=3, it follows from Frobenius reciprocity, Pro-
position 1.3 and (**) that k’(B,)<6. By observing the conjugate classes of G of
2-elements, we know PNG’#P from [10, Theorem 184]. Hence |G: VG’| is
divisible by 2. Thus, k'(B,)=|G:VG’|=6 from Proposition 1.5. Then, by (*)
and (**), we may assume that

xllH:'xZIH:xslH:ib X4|H:xslH=x6]H=zz-
Similarly, we may assume that

Xis| g=XsHZs+ X7, Xiul n=%g+Xo+ %10,

Xis| p=Zy+ Lo+ Xis, Xiol a=Z1a+T1s+ X1
Hence we may assume that

x?lH=x8|H=XslH:i3y xlOIH:XlllH:xlle:24-

Therefore the lemma is proved by (**).

Now, we state the next theorem which is one of the main results of this
section.

THEOREM 6.15. Let G=G/O(G) and S=0'(G). If G is nonsolvable, e=21
and e(S)#21, then we have the following.

(i) S=Z,xSL(2, 8).

(i) For any subnormal subgroup L of G of odd index with e(L)=21,
B,=By(L).

PROOF. We can assume O(G)=1 by Lemma 1.1. Hence S=0'(G).

(i) By Lemma 1.13, ¢(S)=7. Hence, by Proposition 1.10 and Lemma 1.12,
S=Z7,xSL(2, 8).

(ii) Firstly, we want to show that

if L is a normal subgroup of G such that |G:L}] is an odd prime and
*) e(L)=21, and if H is a normal subgroup of L such that |[L:H| is an
odd prime and e¢(H)=7, then B,=B,(L).

Let by=By(L). By Lemma 6.13, k(B,)=Fk(b,)=16 and [(B,)=I(b,)=5. Let S=0'(G)
=<{w)XSL2, 8 and P=<w, x, y, 2> where <{x, y, 2> is a Sylow 2-subgroup of
SL(2, 8). As in the proof of Lemma 6.14,
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+1 for i=1, ---, 12
(**) Xi(2)=
+3 for =13, ---, 16

where {X, -+, X1} =Irr(B,). Let {¥;, .-+, L1} =Irr(b,). By Lemma 6.14, we may
assume that

L= =L(D)=1, LD)= - =1, (1)=7,
213(1):i14(1):21) JZ15(1)':7216(1>:27,
(oK)
Z1(2>: Zis(z)";l, 27(2): e =X(2)=—1,

213(2)=214(2)=—3, 215(2)':115(2)=3-
Thus, as in the proof of Theorem 5.4, by (**), (***), Clifford’s theorem and Pro-
position 1.4, we may assume that X;|.=X; for all i=1, ---, 16. Hence we get
By,=b, by Corollary 1.7. This proves (*). Since G/S is solvable by [12, Theo-
rem], we can verify (ii).

REMARK 2. There is a finite group G with elementary abelian Sylow 2-sub-
groups of order 16 such that ¢(G)=21 and O'(G/O(G))=Z,XSL(2, 8). We know
it as in Remark 1 of §2.

PROPOSITION 6.16. If e¢=21, then there is a basic set W of B, such that W
contains the trivial Brauer character and the decomposition matrix of B, with
respect to W has the form

1 1 0 0 0 0
6, O 0 0 0
0 d; O 0 0
0 o, O 0 0
0 0 o 0 0
0 0 o¢ O 0
0 0 0 6. O
0 0 0 os 0
0 0 0 0 Os
0 00 0 010
o O 0 0 On
01z O 0 012 012
0 013 0 013 Ois
0 o O O Ou
0 0 015 015 05
0 0 016 016 016
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where 0;,=+1. ‘ !

[4]
[5]
(6]
{71
£8]

[9]
(10]

(1]
(12]
[13]
[14]
[15]
[16]
(17]
(18]
(19]
(20]
(21]

PROOF. We can verify the proposition as in Proposition 5.2.

References

Alperin, J.L., Isomorphic blocks. J. Algebra 43 (1976), 694-698.

Bender, H., On groups with abelian Sylow 2-subgroups. Math. Z. 117 (1970),
164-176. .

Brauer, R., Some applications of the theory of blocks of characters of finite
groups I-IV. J. Algebra 1 (1964), 152-167; ibid. 1 (1964), 307-334; ibid. 3
(1966), 225-255; ibid. 17 (1971), 489-521.

Brauer, R., On blocks and sections in finite groups I-II. Amer. J. Math. 89
(1967), 1115-1136; ibid. 90 (1968), 895-925. .

Brauer, R., Defect groups in the theory of representations of finite groups.
Illinois J. Math. 13 (1969), 53-73. ‘

Brauer, R., On 2-blocks with dihedral defect groups. Symposia Mathematica 13
(1974), 367-393.

Brauer, R. and Nesbitt, C., On the modular characters of groups. Ann. of Math.
(2) 42 (1941), 556-590.

Curtis, C. W. and Reiner, I., Representation theory of finite groups and associ-
ative algebras. Interscience, New York, 1962.

Dade, E.C., Blocks with cyclic defect groups. Ann. of Math. (2) 84 (1966), 20-48.
Dornhoff, L., Group representation theory (parts A and B). Dekker, New York,
1971-72. _

Feit, W., Representations of finite groups (mimeographed notes). Yale Univer-
sity, Connecticut, 1969.

Feit, W. and Thompson, J.G., Solvability of groups of odd order. Pacific J.
Math. 13 (1963), 775-1029.

Fong, P., On decomposition numbers of J; and R(g). Symposia Mathematica 13
(1974), 415-422.

Gorenstein, D., Finite groups. Harper and Row, New York, 1968.

Huppert, B., Endliche Gruppen I. Springer, Berlin, 1967.

Janko, Z., A new finite simple group with abelian Sylow 2-subgroups and its
characterization. J. Algebra 3 (1966), 147-186.

Janko, Z. and Thompson, J.G., On a class of finite simple groups of Ree. J.
Algebra 4 (1966), 274-292.

Olsson, J.B., On 2-blocks with quaternion and quasidihedral defect groups. J.
Algebra 36 (1975), 212-241.

Reynolds, W.F., A block correspondence and isometries of group characters.
Math. Z. 113 (1970), 1-16.

Walter, J. H., The characterization of finite groups with abelian Sylow 2-subgroups.
Ann. of Math. (2) 89 (1969), 405-514.

Ward, H.N., On Ree’s series of simple groups. Trans. Amer. Math. Soc. 121
(1966), 62-89.

Department of Mathematics
Chiba University, Chiba, 260



	THE PRINCIPAL $2$ -BLOCKS ...
	Introduction
	References


