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A COMPLETE SYSTEM OF GRAMMARS
FOR PLANE GRAPHS

By
Tadahiro UESU

Introduction

In [1], for directed graphs, it was shown that the system of simple graph
grammars is complete. In this paper, a system of grammars for plane graphs1,
called plane graph grammars, is introduced, and it is shown that this system is
complete, i.e. the following theorem holds:

THEOREM. For each alphabet $T$ , the class of all sets of labelled plane graphs
over $T$ defined by plane graph grammars identical with the class of all recursively
enumerable $sets^{2}$ of labelled plane graphs over $T$ .

A production of our system is an ordered pair $(K_{1}, K_{2})$ , where each $K_{t}(i=1,2)$

is a partially labelled plane graph in a shape of a wheel such that its hub is a
labelled plane graph, its spokes are unlabelled edges and its rim is an unlabelled
cycle, and $K_{1}$ and $K_{2}$ have the same rim. An illustration of a production is shown
in Figure 0.1.

$\rightarrow$

$K_{1}$ $K_{2}$

Fig. 0.1. Production $(K_{1}, K_{2})$ . $H_{1}$ and $H_{2}$ are the hubs of $K_{1}$ and $K_{2}$ respectively.
For each $K_{i}(i=1,2)$ , dotted circle represents the rim, dotted straight lines
represent spokes, and small double circle denotes the origin of the rim.

Received September 6, 1978. Revised February 6, 1979
1 Intuitively speaking, a plane graph is a graph on a plane in which no two edges intersect.

We are concerned with plane graphs in which loops and multiple edges are permitted.
2 A set of plane graphs is recursively enumerable if, by a Godel numbering, the set of

Godel numbers of plane graphs in it is recursively enumerable.
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The notion of direct derivation of our system is defined in the following manner:
Let $(K_{1}, K_{2})$ be a production as shown in Figure 0.1, $H_{i}$ the hub of $K_{i}$ , and $G_{i}$ a
labelled plane graph in which $H_{i}$ occurs as shown in Figure 0.2 for $i=1,2$ . $G_{2}$ is

said to be directly derived from $G_{1}$ according to $(K_{1}, K_{2})$ if there exists a partially

labelled plane graph $S$ , as shown in Figure 0.2, with the same unlabelled cycle as
the rim of $K_{1}$ such that $G_{i}(i=1,2)$ results from first embedding $K_{i}$ into the inside

of the cycle of $S$ so that the rim of $K_{i}$ may fit on the cycle of $S$ , then contracting

all spokes of $K_{i}$ to their labelled ends and erasing the rest of the rim.

$G_{1}$
$\dot{S}$ $G_{2}$

Fig. 0.2. $G_{2}$ is directly derived from $G_{1}$ according to $(K_{1}, K_{2})$ in Figure 0.1.
The unlabelled cycle of $S$ is the same as the rim of $K_{1}$ .

The outline of the proof of Theorem is this: Let $R$ be a recursively enumerable

set of labelled plane graphs over an alphabet $’\Gamma$ . We give an effective coding from

the labelled plane graphs over 7’ into the finite strings over some alphabet. Then

the set $R_{0}$ of all the strings which correspond to elements in $R$ is recursively

enumerable. For each finite string $A_{1}A_{2}\cdots A_{n}$ of symbols, a plane graph, called a
plane-graph-expression of the string, of the form

is given. Then, by the same way as [1], it is verified that the set $R_{1}$ of all the

plane-graph-expressions of strings in $R_{0}$ is defined by a plane graph grammar $G_{0}$ .
We furthermore give a finite set $P$ of productions such that for each labelled plane

graph $H$ in $R$ and for the corresponding plane graph $H_{1}$ to $H$ in $R_{1},$ $H$ is derived

from $H_{1}$ according to the set $P$ of productions, and no other labelled plane graph
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over $T$ may be derived from $H_{1}$ according to $P$. It is then verified that the plane
graph grammar which results from connecting $G_{0}$ with $P$ defines the set $R$ .

In [2] and [3], they were concerned with the study of grammars for plane
simple graphs3 and introduced the notion of a cut-curve. Our notion of a rim with
spokes may be considered as an extension of their notion of a cut-curve.

In the first section of this paper, the formal definition of plane graphs is given.
In the second section, the definition of labelled plane graphs and several concepts
concerned with labelled plane graphs are given. In the third section, the formal
definition of plane graph grammars is given. In the last two sections, the precise
proof of Theorem is given. And in Appendix, it is also shown that the system of
canonical plane graph grammars is complete, where the notion of a canonical plane
graph grammar is an analogue of the notion of a simple graph grammar in [1]:
A plane graph grammar is said to be canonical if for each production $(K_{1}, K_{2})$ of
it, no two spokes in $K_{i}(i=1,2)$ have an end in common.

1. Plane Graphs

A graph is an ordered triple (V, $E,$ $\Psi$ ) consisting of two disjoint sets $V,$ $E$ and
a function $\Psi$ from $E$ to the set of unordered pairs of (not necessarily distinct)
elements of V. $V,$ $E$ and $\Psi$ are respectively called the set of vertices, the set of
edges and the incidence function of $G$ . If $e$ is an edge and $v$ is a vertex in $\Psi(e)$ ,
then the vertex $v$ is called an end of $e$ . An edge with a single end is called a
loop, and an edge with distinct ends a link. The ends of an edge are said to be
incident with the edge, and vice versa. A vertex which is incident with no edge
is called an isolated vertex. If $e$ is an edge, and if $u$ and $v$ are the ends of $e$ ,
then the sequence $uev$ is called a step. A walk is a finite sequence of the form
$v_{0}e_{1}v_{1}e_{2}v_{2}\cdots e_{k}v_{k}$ where $1\leq k,$ $e_{i}$ is an edge and the ends of $e_{t}$ are $v_{i-1}$ and $v_{i}$ for each
$i(i=1_{-}, 2, \cdots, k)$ . The vertices $v_{0}$ and $v_{k}$ are called the origin and the terminus of
the walk respectively, and $v_{1},$ $v_{2},$ $\cdots,$ $v_{k-1}$ its internal vertices. A walk in which
vertices occurring at distinct places are distinct is called a path. A walk whose
origin and terminus are the same is said to be closed. A closed walk in which
any internal vertex does not occur twice is called a cycle. A connected graph is
a graph that contains a walk with the origin $u$ and the terminus $v$ for each pair
$u,$ $v$ of distinct vertices.

Intuitively speaking, a plane graph is a diagram on the plane which consists
of finite points and finite arcs joining certain pairs of these points such that no

8 A plane graph is a plane simple graph if it has no loops and no two of its edges join
the same pair of vertices.
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two arcs cross one another. We call such a diagram an intuitive plane graph.

An intuitive plane graph partitions the plane into finite regions. Each region

is called a face of the intuitive plane graph. Note that, for each intuitive plane

graph, there is exactly one unbounded face. We call the unbounded face the ex-

terior face. For example, the face $F_{1}$ in Figure 1.1 is the exterior face.

Fig. 1.1

The boundary of a face consists of finite connected components. For each connected
component which is not a single point, we have a closed walk in the following

manner: For the face $F_{1}$ in Figure 1.1, for example, the closed walk uavbucwdxewcu

may be obtained, if we trace along the connected component not the point $y$ of the

boundary from right to left, as seen from the inside of the face $F_{1}$ . Such a closed

walk has the following property:

PROPERTY P. Steps occurring at distinct places in the walk distinct and, for
each pair $u,$ $v$ of distinct vertices in the walk there exists a unique path $P$ with the

origin $u$ and the terminus $v$ such that each step in $P$ occurs in the walk.

For the above example, the unique path from $w$ to $v$ is wcuav.

$Db1^{\grave{}}1NlTlON1.1$ . Let $G$ be a graph. A closed walk in $G$ is a $l$)$oundary$ walk

in $G$ if it has the Property P.

DEFINITION 1.2. Let $G$ be a graph. A quasiboundary in $G$ is a finite set con-

sisting of isolated vertices and boundary walks in $G$ such that any pair of its

boundary walks has no vertex in common.
Let $G$ be the graph

$(\{\iota l, v, w, x, y\},$ $\{a, b, c, d, e\},$ $|1^{\Gamma}$ },

where $\Psi(a)=|l^{r}(b)=\{u, v\},$ $7/’(c)=\{u, w\},$ $?//(cl)=\Psi(e)=\{w, x\}$ . Each intuitive plane graphs
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in Figure 1.1 represents the graph $G$ . The boundary of the face $F_{1}$ represents the
quasiboundary { $y$ , uavbucwdxewcu}, and also each boundary of the faces $F_{2}$ and $F_{3}$

represents the same quasiboundary. So a quasiboundary does not necessarily cor-
responds to a unique face. But when the exterior face is indicated, a quasiboundary
corresponds to a unique face. Then we have the formal definition of plane graphs:

DEFINITION 1.3. A plane graph is an ordered triple $(G, B_{0}, B)$ consisting of a
graph $G$ , a quasiboundary $B_{0}$ in $G$ and a finite set $B$ of quasiboundaries in $G$ with
the following properties.

(1) $B_{0}\in B$.
(2) If $B$ and $B^{\prime}$ are distinct elements of $B$, then there is a finite sequence

$B_{1},$
$\cdots,$

$B_{m}$ of elements of $B$ such that $B_{1}$ is $B,$ $B_{m}$ is $B^{\prime}$ and each $B_{i}(i=2,3, \cdots, m)$

has an edge in common with $B_{i-1}$ .
(3) If $v$ is an isolated vertex of $G$ , then there exists one and only one $B$ in

$B$ such that $v\in B$ .
(4) If $e$ is a loop of $G$ and $u$ is the end of $e$ , then there exist precisely two

elements of $B$ such that each of them contains a boundary walk in which the step
$ueu$ occurs.

(5) If $e$ is a link of $G$ , and if $u$ and $v$ are the ends of $e$ , then there exists
one and only one element of $B$ containing a boundary walk in which the step $uev$

occurs.
In the above definition, the quasiboundary $B_{0}$ denotes the boundary of the

exterior face. It is easily checked that each formal plane graph denotes a unique

intuitive plane graph, and that for each intuitive plane graph there is a formal
plane graph which denotes the intuitive plane graph.

EXAMPLE 1.1. Let

$B_{0}=\{zaz\}$ , $B_{1}=\{sctbs\}$ , $B_{2}=\{ufveu\}$ , $B_{3}=$ { $zaz,$ $w$ , xgygx, sbtduevfudtcs},

and

$B=\{B_{0}, B_{1}, B_{2}, B_{3}\}$ .

And let $G$ be the graph which is naturally determined by $B$. Then the ordered
triple $(G, B_{0}, B)$ is a plane graph and the corresponding digram is as shown in
Figure 1.2.

For a plane graph $(G, B_{0}, B),$ $B$ is called the set of its boundaries and $B_{0}$ is
called the exterior boundary of it. When $G=(V, E, \Psi)$ and $B=\{B_{0}, B_{1}, \cdots, B_{n}\}$ we
write the plane graph $(G, B_{0}, B)$ in displayed form as

(V, $E,$ $\Psi,$ $B_{0},$ $B_{1},$
$\cdots,$

$B_{n}$).
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$a$

Fig. 1.2

DEFINITION 1.4. For a boundary walk $v_{0}e_{1}v_{1}e_{2}v_{2}\cdots e_{k}v_{k}$ , each boundary walk of
the form $v_{i-1}e_{i}v_{i}e_{i+1}e_{i+I}\cdots e_{k}v_{k}e_{1}v_{1}\cdots e_{i-1}v_{i-1}(i=1,2, \cdots, k)$ is said to be homologous to
the boundary walk $v_{0}e_{1}v_{1}e_{2}v_{2}\cdots e_{k}v_{k}$ . Two quasiboundaries $B$ and $B^{\prime}$ in a graph are
said to be homologous if for each element $X$ in $B$, there exists an element in $B^{\prime}$

which is identical or homologuous to $X$, and vice versa. Two sets $B$ and $B^{\prime}$ of
quasiboundaries in a graph are said to be homologous if for each element $B$ in $B$,

there is an element in $B^{\prime}$ which is homologous to $B$, and vice versa. Two plane
graphs $(G, B_{0}, B)$ and $(G^{\prime}, B_{0^{\prime}}, B^{\prime})$ are said to be homologous if $G$ and $G^{\prime}$ are identical,
$B_{0}$ and $B_{0^{\prime}}$ are homologous, and $B$ and $B^{\prime}$ are homologous.

Two graphs (V, $E,$ $\Psi$ ) and (V’, $E^{\prime},$
$\Psi^{\prime}$ ) are said to be isomorphic if there is a

one-to-one function $\phi$ from $V\cup E$ onto $V^{\prime}\cup E^{\prime}$ such that $e\in E$ if and only if $\phi(e)\in E^{\prime}$ ,

and $v\in\Psi(e)$ if and only if $\psi(v)\in\Psi^{\prime}(\phi(e))$ ; such function $\psi$ is called an isomorphism

between (V, $E,$ $\Psi$) and (V’, $E^{\prime},$ $\Psi^{\prime}$ ). Given an isomorphism $\phi$ between graphs $G$ and
$G^{\prime}$ we extend it to walks by the following recursive definition: For any walk $W$

in $G$ , if $\phi(W)$ have already been defined, then

$\phi(Wev)=\phi(W)\phi(e)\psi(v)$ .

We, in addition, extend it to quasiboundaries and sets of quasiboundaries by the
following mannar: For any quasiboundary $B$ in $G,$ $X\in B$ if and only if $\phi(X)\in\phi(B)$ ;
for any set $B$ of quasiboundaries in $G,$ $B\in B$ if and only if $\phi(B)\in\phi(B)$ .

DEFINITION 1.5. Two plane graphs $(G, B_{0}, B)$ and $(G^{\prime}, B_{0^{\prime}}, B^{\prime})$ are said to be
isomorphic if there is an isomorphism $\phi$ between the graphs $G$ and $G^{\prime}$ such that
$\phi(B_{0})$ is homologous to $B_{0^{\prime}}$ and $\phi(B)$ is homologous to $B^{\prime}$ ; such $\phi$ is called an
isomorphism between plane graphs $(G, B_{0}, B)$ and $(G^{\prime}, B_{0}^{\prime}, B^{\prime})$ .
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A plane subgraph of a given plane graph is obtained by erasing edges or
vertices off the plane graph. The formal definition is recursively given as follows:

DEFINITION 1.6. Let $P$ be a plane graph.
(1) A homologous plane graph to $P$ is a plane subgraph of $P$.
(2) If (V, $E,$ $\Psi,$ $B_{0},$ $B_{1},$

$\cdots,$
$B_{n}$) is a plane subgraph of $P,$ $v$ is an isolated vertex

of it and $v\in B_{i}(0\leq i\leq n)$ , then a homologous plane graph to the plane graph

$(V-\{v\}, E, \Psi, B_{0}, B_{1}, \cdots, B_{i-1}, B_{i}-\{v\}, B_{i+1}, \cdots, B_{n})$

is a plane subgraph of $P$.
(3) If (V, $E,$ $\Psi,$ $B_{0},$ $B_{1},$

$\cdots,$
$B_{n}$) is a plane subgraph of $P,$ $e$ is a link with ends

$u,$ $v$ , and $W$ is a boundary walk in $B_{i}(0\leq i\leq n)$ which is homologous to the walk
of the form $ueV_{1}eV_{2}$ , then a homologous plane graph to the plane graph

(V, $E-\{e\},$ $\Psi-\{(e,$ $\{u,$ $v\})\}^{4},$ $B_{0},$ $B_{1},$
$\cdots,$

$B_{i-1},$ $(B_{i}-\{W\})\cup\{V_{1},$ $V_{2}\},$ $B_{i+1},$
$\cdots,$

$B_{n}$)

is a plane subgraph of $P$.
(4) If (V, $E,$ $\Psi,$ $B_{0},$ $B_{1},$

$\cdots,$
$B_{n}$) is a plane subgraph of $P,$ $e$ is an edge with (not

necessarily distinct) ends $u,$ $v,$ $W_{1}$ is a boundary walk in $B_{i}(0\leq i<n)$ which is homo-
logous to the walk of the form $X_{1}ev$ , and $W_{2}$ is a boundary walk in $B_{j}(i<j\leq n)$

which is homologous to the walk of the form $veuX_{2}$ , then a homologous plane graph

to the plane graph

(V, $E-\{e\},$ $\Psi-\{(e, \{u, v\})\},$ $B_{0},$ $B_{1},$
$\cdots,$

$B_{i-1},$ $(B_{i}\cup B_{j}-\{W_{1}, W_{2}\})\cup\{X_{1}X_{2}\}$ ,
$B_{i+1},$

$\cdots,$
$B_{j-1},$ $B_{J\vdash 1},$

$\cdots,$
$B_{n}$)

is a plane subgraph of $P$.
(5) The only plane subgraphs of $P$ are those given by (1) $-(4)$ .
Consider the plane graph $P$ as shown in Figure 1.3. Contract the link $l$ to one

point. Then the plane graph $P^{\prime}$ is obtained.

P $P^{f}$

Fig. 1.3. Contraction of link $l$.

4 A function is a subset of the direct product of the domain and the range.
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The notion of contraction of links is defined as follows:

DEFINITION 1.7. Let $P$ be a plane graph (V, $E,$ $\Psi,$ $B_{0},$ $B_{1},$
$\cdots,$

$B_{n}$), and $l$ a link
with ends $u,$ $v$ . Let $\Psi^{\prime}$ be the incidence function of the graph $(V-\{v),$ $E-\{l\},$ $\Psi^{\prime}$ )

such that for each edge $e$ in $E-\{l\},$ $\Psi^{\prime}(e)$ is the set obtained by replacing $v$ in
$\Psi(e)$ by $u$ if $\Psi(e)$ contains $v,$ $\Psi(e)$ otherwise. For each boundary $B_{i}$ of $P$ and for
each element $X$ in $B_{i}$ , let $X^{\prime}$ be the sequence which result from first replacing all
of the occurrences of $v$ in $X$ by $u$ , then removing all of the occurrences of the
sequence $ul$, and set $B_{i^{\prime}}=\{X^{\prime}|X\in B_{i}\}$ . Then $(V-\{v\}, E-\{l\}, \Psi^{\prime}, B_{0^{\prime}}, B_{1}^{\prime}, \cdots, B_{n^{\prime}})$ is the
reduct of $P$ by contracting $l$ to $u$ . $P^{\prime}$ is the reduct of $P$ by contracting $l_{1},$ $l_{2},$

$\cdots,$
$l_{m}$

to $u_{1},$ $u_{2},$ $\cdots,$ $u_{m}$ if there exists a sequence $P_{0},$ $P_{1},$ $P_{2},$ $\cdots P_{m}$ such that $P_{0}$ is $P,$ $P_{m}$ is
$P^{\prime}$ and $P_{i}$ is the reduct of $P_{i-1}$ by contracting $l_{i}$ to $u_{i}$ for $i=1,2,$ $\cdots,$ $m$ .

PROPOSITION 1.1. For each plane graph, each reduct of it is a plane graph.

2. Labelled Plane Graphs

DEFINITION 2.1. A partially labelled plane graph is an ordered pair $(P, \lambda)$ con-
sisting of a plane graph $P$ and a function $\lambda$ whose domain is a set of vertices and
edges of $P$. A labelled plane graph is a partially labelled plane graph $(P, \lambda)$ such
that the domain of $\lambda$ is the set of all vertices and all edges of $P$.

Let $(P, \lambda)$ be a partially labelled plane graph. If the range of $\lambda$ is a subset of
an alphabet $T$ , then $(P, \lambda)$ is said to be over T. An edge or a vertex of $(P, \lambda)$ is
said to be labelled if it is contained in the domain of $\lambda$ , unlabelled otherwise. The
value $\lambda(x)$ is called the label of $x$ for each element $x$ of the domain of $\lambda$ . If $(P, \lambda)$

is over $T$ and $f$ is a one-to-one function from $T$, then the partially labelled plane
graph $(P,f\circ\lambda)$ is relabelled from $(P, \lambda)$ according to $f$. If $P^{\prime}$ is the plane subgraph
of $P$ such that the set of verices and edges of $P^{\prime}$ is the domain of $\lambda$ , then the
labelled plane graph $(P^{\prime}, \lambda)$ is called the labelled part of $(P, \lambda)$ .

DEFINITION 2.2. Two labelled plane graphs $(P, \lambda)$ and $(P^{\prime}, \lambda^{\prime})$ are said to be
isomorphic if there is an isomorphism $\phi$ between the plane graphs $P$ and $P^{\prime}$ such
that $\lambda$ is the composition of $\phi$ and $\lambda^{\prime}$ , i.e. $\lambda=\lambda^{\prime}\circ\phi$ .

DEFINITION 2.3. A partially labelled plane graph is a rimmed kernel if the
following conditions are satisfied:

(1) The exterior boundary has a single element called the rim, and the rim
is a cycle.

(2) The origin of the rim is incident with no edge which does not occur in

the rim.
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(3) For each internal vertex $v$ of the rim, there exists one and only one edge
called a spoke which is incident with $v$ and does not occur in the rim. Each spoke
is also incident with a vertex not of the rim.

(4) The unlabelled vertices are the vertices of the rim.
(5) The unlabelled edges are the edges of the rim and the spokes.
A partially labelled plane graph is a canonical rimmed kernel if, in addition,

the following condition is satisfied:
(6) Distinct spokes have distinct ends.
The labelled part of a rimmed kernel is called the $hub$ of the rimmed kernel.
Examples of rimmed kernels are shown in Figure 2.1.

$\rightarrow-\Phi\sim$

$|^{\prime}|\backslash ^{\prime}\square ^{\backslash }fl_{\backslash }^{\prime}]\times_{/^{1}}\backslash _{/^{1}}$

$\backslash _{\infty^{t}}$ $\backslash ’\beta$

$\sim\leftrightarrow--$
,

K $K^{\prime}$

Fig. 2.1. Examples of rimmed kernels. $K$ is a canonical rimmed kernel. $K^{\prime}$

is not canonical. Here, dotted circles represent rims, dotted straight lines
represent spokes, and small double circles represent the origins of rims.

DEFINITION 2.4. A partially labelled plane graph is a shell if the following
conditions are satisfied:

(1) There exists one and only one boundary which is not exterior and con-

$s$

Fig. 2.2. An example of a shell. Dotted circle denotes the rim. Small double
circle denotes the origin of the rim.
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sists of a single cycle called the rim whose vertices and edges are unlabelled.
(2) The origin of the rim is incident with no edge which does not occur in

the rim.
(3) The vertices and the edges which do not occur in the rim are labelled.
An example of a shell is shown in Figure 2.2.

DEFINITION 2.5. Let $K$ and $S$ be a rimmed kernel

$((V^{K}, E^{K}, V^{J^{K}}, B_{0^{K}}, B_{1}^{K}, \cdots, B_{m^{K}}), \lambda^{K})$ ,

and a shell

$((V^{S}, E^{S}, \Psi^{S}, B_{0^{S}}, B_{1}^{S}, \cdots, B_{n^{S}}, B_{n+1}^{S}), \lambda^{s})$ ,

respectively, such that

$V^{K}\cap V^{S}=\{v_{1}, v_{2}, \cdots, v_{k}\}$ , $E^{K}\cap E^{S}=\{e_{1}, e_{2}, \cdots, e_{k}\}$ ,

$v_{k}e_{1}v_{1}e_{2}v_{2}\cdots v_{k-1}e_{k}v_{k}$ is the rim of $K,$ $v_{k}e_{k}v_{k-1}\cdots v_{2}e_{2}v_{1}e_{1}v_{k}$ is the rim of $S$ , and the rim
of $S$ is the element of $B_{n+1}^{S}$ . Let $P$ be the reduct of the plane graph

$(V^{K}\cup V^{S}, E^{K}\cup E^{S}, \Psi^{K}\cup\Psi^{S}, B_{0^{S}}, B_{1}^{S}, \cdots, B_{n^{S}}, B_{1}^{K}\cdots, B_{m^{K}})$

by contracting all the spokes of $K$ to their labelled ends. If a labelled plane graph

$H$ is isomorphic to the labelled part of $(P, \lambda^{K}\cup\lambda^{S})$ , then the ordered pair $(K, S)$

is called a partition of $H$.

EXAMPLE 2.1. Let $K$ and $K^{\prime}$ be the rimmed kernels as shown in Figure 2.1,

and $S$ the shell as shown in Figure 2.2. Then $(K, S)$ and $(K^{\prime}, S)$ respectively are
the partitions of the labelled plane graphs $H$ and $H^{\prime}$ which are shown in Figure

2.3.

H $H^{\prime}$

Fig. 2.3
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3. Plane graph grammars

DEFINITION 3.1. A produclion is an ordered pair of rimmed kernels with the
same rim. For a production $(K, K^{\prime}),$ $K$ and $K^{\prime}$ are respectively called the left kernel
and the right kernel of $(K, K^{\prime})$ . The production $(K^{\prime}, K)$ is called the inverse produc-
tion of $(K, K^{\prime})$ . A production is said to be canonical if its kernels are canonical.

EXAMPLE 3.1. Let $K$ and $K^{\prime}$ be the rimmed kernels as shown in Figure 3.1.
Then $(K, K^{\prime})$ is a production, and not canonical.

’ $-@^{-}\sim$ –\copyright -\sim

$1_{1}^{/_{\backslash ^{/_{\backslash ^{\prime}}}}}\square ^{A_{\iota_{/^{1_{1}}}}}\alpha_{\backslash }^{\prime\backslash _{\backslash ^{\backslash }/}}$

,

$-\rightarrow$

$\iota_{t^{/}}^{/}\iota\triangle^{\backslash _{\backslash }}K_{\sim}^{\prime}\sim--*_{/^{\{}}\backslash /^{1}$

$\mathfrak{u}_{\backslash }^{\prime}\sim-\sim\rightarrow\prime p$
$\iota_{\aleph^{/_{\vee}}}\sim$

.-..

$,\backslash p^{\prime}$

$\overline{K}$

$K^{f}$

Fig. 3.1. An example of a production.

DEFINITION 3.2. A labelled plane graph $H^{\prime}$ is directly derived from a labelled
plane graph $H$ according to a production $(K, K^{\prime})$ if there exists a shell $S$ such that
$(K, S)$ and $(K^{\prime}, S)$ are partitions of $H$ and $H^{\prime}$ respectively. A labelled plane graph
$G$ is derived from a labelled plane graph $H$ according to a set $P$ of productions if
there exists a finite sequence $H_{0},$ $H_{1},$

$\cdots,$
$H_{n}$ of labelled plane graphs such that $H_{0}$

is $H,$ $H_{n}$ is $G$ and $H_{i+1}$ is directly derived from $H_{i}$ according to some production
in $P$ for $i=0,1,$ $\cdots,$ $n-1$ .

For example, $H^{\prime}$ in Example 2.1 is directly derived from $H$ in Example 2.1
according to the production $(K, K^{\prime})$ in Example 3.1.

DEFINITION 3.3. A plane graph grammar over an alphabet $T$ is an ordered
triple $(T, I, P)$ in which $I$ is a labelled plane graph and $P$ is a finite set of produc-
tions. A plane graph grammar $(\ulcorner l^{1}, I, P)$ is said to be canonical if $P$ is a finite set
of canonical productions.

In the following, we identify isomorphic labelled plane graphs.

DEFINITION 3.4. If $G$ is a plane graph grammar $(T, I, P)$ , then the set of all
the labelled plane graphs over $T$ that are derived from $I$ according to $P$ is called
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the plane graph language defined by $G$ .
For each string $A_{1}A_{2}\cdots A_{n}$ over an alphabet $r/^{1}$ , the labelled plane graph

is called the plane-graph-expression with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ of the string.

PROPOSITION 3.1. Let $\prime l$ be an alphabet and let $\sigma,$

$\lambda$ and $\tau$ be labels not in $T$ .
For each recursively enumerable set $R$ of strings over 7’, there exists a canonical
plane graph grammar $G$ such that the plane graph language defined by $G$ consists

of all the plane-graph-expressions with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ of strings in $R$ .

Proof is obtained by the same way as Proposition 2.1 in [1].

PROPOSITION 3.2. Let $R$ be a plane graph language defined by a (canonical)

plane graph grammar, $P$ a finite set of (canonical) productions and $\Sigma$ an alphabet.

Then there is a (canonical) plane graph grammar which defines the set of all the

labelled plane graphs over $\Sigma$ that are derived from the elements in $R$ according to
$P$.

PROOF. Let $T$ be the alphabet consisting of all the labels occurring in the

elements of $R$ , and $\tau*$ the alphabet consisting of all the labels occurring in the

productions of $P$. Let 7” be an alphabet disjoint with $ T\cup T^{*}\cup\Sigma$ , and $f$ a one-to-

one function from $T$ to $T^{\prime}$ . Then there is a (canonical) plane graph grammar
$(T^{\prime}, I, P^{\prime})$ which defines the set of all the relabelled plane graphs from elements

in $R$ according to $f$. We may assume that the labels occurring in the productions

of $P^{\prime}$ are not in $ T\cup\tau*\cup\Sigma$ . Let $P^{\prime\prime}$ be the set of productions as shown in Figure

3.2. Then the (canonical) plane graph grammar $(\Sigma, I, P^{\prime}\cup P^{\prime\prime}\cup P)$ defines the set

of all the labelled plane graphs over $\Sigma$ that are derived from the elements in $R$

according to $P$. This completes the proof.

$|/]_{\backslash ^{\prime}4^{1}}0_{\vee^{\prime^{\backslash _{/}}}}^{\circ\}_{\backslash }}1_{l}X_{A^{\prime}}\rightarrow/_{1^{/_{\backslash ^{\prime_{\backslash }}}}}\vee\infty_{-}o^{o}A_{1}^{\backslash ,})\sim 6^{\prime}$

Fig. 3.2. The productions in $P^{\prime\prime}$ . $A,$ $B$ and $C$ are labels from T. $A^{\prime}$ denotes
$f(A)$ .
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4. The completeness of the system of plane graph grammars

We are now going to show that the system of plane graph grammars is com-
plete. We begin with the notion of a $\Delta$ -map which is a labelled plane graph in a
shape of a triangulation of a polygon:

DEFINITION 4.1. A labelled plane graph is a $\Delta$ -map if either it is the empty

graph or each boundary of it consists of a single cycle and the cycle of each boundary

other than the exterior boundary has exactly three vertices.

DEFINITION 4.1. Let $rl^{1}$ be an alphabet, and $\Pi$ and A labels not in $T$ . And let
$P_{T,\Pi,\Lambda}$ be the set of productions as shown in Figure 4.1. A $\Delta$ -map $D$ over $T\cup\{\Pi, \Lambda\}$

is a $\Delta$ -expression with auxiliary labels $\Pi,$ $\Lambda$ of a labelled plane graph $G$ over $T$ if
$D$ is derived from $G$ according to $P_{T,\Pi,\Lambda}$ .

$/’-O\circ\cdot\backslash \backslash $ $/^{-}-@\sim\backslash \backslash $
$/’-\{\circ\succ\backslash \backslash $

$/-<\circ>\backslash \backslash $

$\iota$
$\{$

/ /
$1$

$1$

$\vee\wedge-$
$|\rightarrow|$

$\epsilon$

/ / $\circ/_{\backslash _{\backslash _{\backslash /}/}}---GA_{-}--\infty_{/}^{1}\sim\rightarrow(\}_{\backslash _{\backslash }/^{-}}^{/}\infty^{\prod_{--\prime}}\}^{1})\backslash \backslash $

$\backslash $

$\backslash $

/ /
$\backslash $

$\backslash _{\backslash }--/$
$\backslash \sim-$

$/\nearrow e\circ\backslash \backslash \backslash $ $//-- O\sim_{s}\backslash $

$d_{\backslash ^{-OA_{\sim-}O,+}}^{\prime_{\backslash }}\backslash B,\rightarrow\&_{\backslash _{\backslash }^{A_{\sim}}}\infty_{-}^{\Lambda_{-}}B^{\backslash },\backslash /\mathcal{P}^{\iota}$

Fig. 4.1. The productions in $P_{T,\Pi,\Lambda}$ . $A$ and $B$ are labels from 7’. $\epsilon$ denotes the
empty graph.

EXAMPLE 4.1. In Figure 4.2, $D$ is a J-expression of $G$ .

$\circ$

G $D$

Fig. 4.2. An example of a $\Delta$ -expression of a labelled plane graph.
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The following proposition is trivial:

PROPOSITION 4.1. Let $’/^{7}$ be an alphabet, and $\Pi$ and A labels not in 7’. If $R$

is a recursively enumerable set of labelled plane graphs over $r1’$ , then the set of all
$\lrcorner$ -expressions with auxiliary labels $\Pi,$ $\Lambda$ of elements in $R$ is recursive $ly$ enumerable.

In order to prove Theorem, we need to use the following lemma, whose proof
is given in the next section.

LEMMA. If $R$ is a recursively enumerable set of $\Delta$ -maps over an $alp/labet$ , then
there exists a plane graph grammar which defines $R$ .

Now, we prove Theorem:

PROOF OF THEOREM. It is clear that a plane graph language defined by a
plane graph grammar is recursively enumerable. Let $ Rb\circ$. a recursively enumerable
set of labelled plane graphs over 7‘, and let $\Pi$ and A $b\circ$. labels not in 7‘. Then,
by Proposition 4.1, the set $R^{\prime}$ of all $\lrcorner$ -expressions with auxiliary labels $\Pi,$ $\Lambda$ of
elements in $R$ is $reC^{1}Jrsively$ enumerable. Therefore, by Lemma, there exists a
plane graph grammar which defines $R^{\prime}$ . Let $P$ be the set of all inverse productions
of elements in the set $P_{7}$ of productions. Then, $R$ is the set of all the labelled
plane graphs over 7‘ that are derived from the elements in $R^{\prime}$ according to $P$.
Therefore, by virtue of Proposition 3.2, $R$ is defined by a plane graph grammar.
This completes the proof.

5. Proof of Lemma

We assume that each edge is a positive integer. Let $\underline{\backslash }$ and $\Sigma_{1}$ be disjoint
alphabets, $|$ and *labels not in $\Sigma\cup\Sigma_{1}$ and $f_{1}$ one-to-one correspondence from 2 to
$\rightarrow 1\backslash ^{7}$ , and let those $\Sigma^{\backslash }\rightarrow^{\urcorner}1$ ,

$,$

$*$ and $ f_{1}b\circ$. fixed for the following discussion. For each
element A in $\underline{\backslash }$‘, let $A^{1}$ denote $f_{1}(A)$ .

DEFINITION 5.1. Let $D$ be a J-map over N. For each edge $i$ of $D$ , let $\tilde{l}$ be $i$

if $i$ does not occur in the exterior boundary, $0$ otherwise. If $v_{13}i_{11}v_{11}i_{12}v_{12}il3v_{13}$ ,
$v_{23}i_{21}v_{21}i_{22}v_{22}i_{2S}\iota_{23},$

$\cdots,$
$v_{n3}i_{n1}v_{n1}i_{n2}v_{n2}i_{n\dagger}v_{n3}$ is a sequence without repetition of all the

cycles in the boundaries other than the exterior boundary of $D$ , and if the label
of $v_{jk}$ is $A_{jk}$ and the label of $i_{jk}$ is $B_{jk}$ for $j=1,2,$ $\cdots,$ $n;k=1,2,3$ , then the string
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$A_{13}^{1}B_{11}|\underline{|\cdot\cdot}|A_{11}^{1}B_{12}|_{\sim-}|\cdot\cdot|A_{12}^{1}B_{13}|\underline{|\cdot\cdot}|^{*}A_{23}^{1}B_{21}|\underline{|\cdot\cdot}|A_{21}^{1}B_{22}|\underline{|\cdot\cdot}|A_{22}^{1}B_{23}|\underline{|\cdot\cdot}|^{*}$

$j_{11}$ $\tilde{l}_{12}$ $\tilde{l}_{13}$ $\tilde{l}_{21}$ $l_{22}^{-}$ $\tilde{l}_{23}$

$..*A_{n3}^{1}B_{n1}|\underline{|\cdot\cdot}|A_{n1}^{1}B_{n2}\underline{||\cdot\cdot}|A_{n2}^{1}B_{n3}|\underline{|\cdot\cdot}|^{*}$

$\tilde{l}_{n1}$ $\overline{l}_{n2}$ $\tilde{l}_{n8}$

is called a string-expression of $D$ . If $D$ is the empty graph, then its string-expression
is the empty string. A labelled plane graph $H$ is called a linear-plane-graph-
expression with auxiliary labels $\sigma,$

$\lambda,$ $\tau$ of $D$ if there exists a string-expression of
$D$ whose plane-graph-expression with auxiliary labels $\sigma,$

$\lambda,$ $\tau$ is $H$

The following proposition is obtained by Definition 5.1 and Proposition 3.1:

PROPOSITION 5.1. If $R$ is a recursively enumerable set of $\Delta$ -maps over $\Sigma$ , then
the set of all the string-expression of $\Delta$ -maps in $R$ is recursively enumerable, so that
the set of all the linear-plane-graph-expressions with auxiliary labels $\sigma,$

$\lambda,$ $\tau$ of $\Delta$ -maps
in $R$ is defined by a canonical plane graph grammar.

In order to prove Lemma, we provide the following sublemma:

SUBLEMMA. Let $\sigma,$

$\lambda$ and $\tau$ be labels not in X. Then there exists a finite set
$P$ of productions such that for each $\Delta$ -map $D$ over 2‘ and for each linear-plane-graph-
expression $H$ with auxiliary labels $\sigma,$

$\lambda,$ $\tau$ of $D,$ $D$ is the unique labelled plane graph

over $\underline{\backslash }$ derived from $H$ according to $P$.

$p_{ROO1^{\grave{\gamma}}}$ . Let $\underline{\backslash }2$ and $\underline{\backslash }^{\text{E_{}8}}$ be alphabets such that $\underline{\backslash },$ $\underline{\backslash }\underline{\backslash }\underline{\backslash }1,2,3$ and $\{|, *, \sigma, \lambda, \tau\}$ are
mutually disjoint, and let $f_{2}$ and $f_{3}$ be one-to-one correspondences from X to $\Sigma_{2}$ and
$\underline{\backslash }3$ respectively. For each element A in 2‘, let $A^{i}$ denote $f_{i}(A)$ for $i=2,3$ . Let
$P_{1},$ $P_{2}$ and $P_{3}$ be the sets of productions as follows:

$S^{r}rlPUI_{z}A^{\prime}\Gamma 1ON$ : $A,$ $B,$ $C,$ $D,$ $E,$ $F\in:‘.$ $X\in\underline{\backslash }\bigcup_{2}^{\underline{\backslash }}$ . $Y\in\underline{\backslash }:\cup\{|\}$ . $i=2,3$ .
The lines without label denote edges with label $\lambda$ .
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The set $P_{1}$ of productions

$’\sim 0\backslash $

’ $\backslash $

$/$ $\iota$

$\rightarrow$

$1_{\backslash }$

$\epsilon$ 1
/

$\backslash \sim-’$
’

’
$-\circ\infty$

$\rightarrow$
$t_{\backslash }/^{J_{\sim}^{\backslash }}-A_{-}^{1}O_{/}^{\backslash }-,-\S$

$J^{\prime}\backslash -\circ 0-\backslash $

$\rightarrow$
$*_{\backslash /}^{J.\backslash }\circ Y_{---}A^{1,}\circ,\cdot\theta\backslash $

$J^{\prime\backslash }\backslash $

$’-0\alpha_{\vee}$

$\rightarrow$ $\uparrow^{\prime}-\cdot\cdot O$ $l|$

$\backslash $ /

$\backslash /\backslash \sim-\prime f$

$\rightarrow$

$\rightarrow$
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$\rightarrow$

$\rightarrow$

$\rightarrow$

The set $P_{3}$ of productions
$\rightarrow-O\circ-\sim$

$\phi_{\backslash _{\backslash _{\backslash }^{\prime}/^{\backslash }}}^{J_{-\acute{\grave{m}}_{-}^{\backslash }}\backslash }X_{\sim\leftrightarrow-}B_{-}C^{\sim^{)},}-\theta$ $\rightarrow$

$\rightarrow$
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Set $P=P_{1}\cup P_{2}\cup P_{3}$ . Let $D$ be a $\Delta$ -map over $\Sigma$ , and $H$ a linear-plane-graph-expression

of $D$ . Now we show that $D$ is derived from $H$ according to $P$. Let $H$ be of the

form as shown in Figure 5.1. (In our figures, we omit the label $\lambda.$) First it is

easily checked that the labelled plane graph $H_{1}$ as shown in Figure 5.2 is derived

from $H$ according to $P_{1}$ .

Linear-Plane-Graph-Expression $H$

Fig. 5.1

$H_{1}$

Fig. 5.2. Labelled plane graph $H_{1}$ derived from $H$ according to $P_{1}$ .
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If $i_{12}$ is $i_{21}$ , then $A_{11}$ is $A_{21},$ $B_{12}$ is $B_{21},$ $A_{12}$ is $A_{23}$ and $\tilde{t}_{12}=l_{21}^{-}\neq 0$ , and so the labelled
plane graph $H_{1}^{1}$ as shown in Figure 5.3 is derived from $H_{1}$ according to $P_{2}$ . If $i_{13}$

is $i_{3I}$ , then the labelled plane graph $H_{1^{2}}$ as shown in Figure 5.4 is derived from
$H_{1}^{1}$ according to $P_{2}$ . If $i_{23}$ is $i_{32}$ , then the labelled plane graph $H_{1^{3}}$ as shown in

$H_{1}^{1}$

Fig. 5.3. When $i_{12}$ is $i_{21},$ $H_{1}^{1}$ is derived from $H_{1}$ according to $P_{2}$ .

$H_{1}^{2}$

Fig. 5.4. When $i_{18}$ is $i_{S1},$ $H_{1^{2}}$ is derived from $H_{1^{1}}$ according to $P_{2}$ .

Figure 5.5 is derived from $H_{1}^{2}$ according to $P_{2}$ . In this way we get the labelled
plane graph $H_{2}$ over $\Sigma\cup\Sigma_{2}\cup\{\lambda\}$ which is derived from $H_{1}$ according to $P_{2}$ . For
example, see Figure 5.6. Clearly the $\Delta$ -map $D$ is derived from $H_{2}$ according to $P_{3}$ .
Therefore $D$ is derived from $H$ according to $P$. It is trivial that no other labelled
plane graph over $\Sigma$ than $D$ is derived from $H$ according to $P$. This completes the
proof.
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$H_{1}^{3}$

Fig. 5.5. When $i_{23}$ is $i_{32},$ $H_{1^{3}}$ is derived from $H_{1}^{2}$ according to $P_{2}$ .

$H_{2}$

Fig. 5.6. When $n=5,$ $i_{12}$ is $i_{21},$ $i_{13}$ is $i_{31},$ $i_{23}$ is $i_{32},$ $i_{11}$ is $i_{41},$ $i_{33}$ is $i_{51},$ $i_{42}$ is $i_{53}$ , and
$\overline{\iota}_{22}=\tilde{\iota}_{43}=\overline{\iota}_{52}=0,$ $H_{2}$ is derived from $H_{1}$ according to $P_{2}$ .

We are now ready to prove Lemma:

PROOF OF LEMMA. Let $R$ be a recursively enumerable set of $\Delta$ -maps over $\Sigma$ ,

and $\sigma,$

$\lambda$ and $\tau$ labels not in $\Sigma$ . Then, by Proposition 5.1, the set of all the linear-

plane-graph-expressions with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ of $\Delta$ -maps in $R$ is defined by a

plane graph grammar. Therefore, by Sublemma and Proposition 3.2, there exists

a plane graph grammar which defines $R$ . This completes the proof.
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Appendix. The completeness of the system of canonical plane graph grammars

We show that the system of canonical plane graph grammars is also complete.

We assume that each edge is a positive integer. We let $\Sigma,$ $\Sigma_{1}$ ,
$,$

$*$ and $f_{1}$ be
the same as in \S 5, and $A^{1}$ also denote $f_{1}(A)$ for each element A in $\Sigma$ .

Now we modify the notion of a string-expression in Definition 5.1 as follows:

DEFINITION A. Let $C$ be a non empty connected labelled plane graph over $\Sigma$ . If
$v_{0k_{0}}i_{01}v_{01}i_{02}v_{02}\cdots v_{0k_{0}-1}i_{0k_{0}}v_{0k_{0}},$ $v_{1k_{1}}i_{11}v_{11}i_{12}v_{12}\cdots v_{1k_{1}-1}i_{1k_{1}}v_{1k_{1}},$ $\cdots,$ $v_{nk_{nnnn}}i_{n1}v_{n1}i_{n2}v_{n2}\cdots v_{nk-1}i_{nk}v_{nk}$

is a sequence without repetition of all the boundary walks in the boundaries of $C$,

where the first boudary walk $v_{0k_{0}}i_{01}v_{01}i_{02}v_{02}\cdots v_{0k_{0}-1}i_{0k_{0}}v_{0k_{0}}$ is the element in the ex-
terior boundary of $C$, and if the label of $v_{jk}$ is $A_{jk}$ and the label of $i_{jk}$ is $B_{jk}$ for
$j=1,2,$ $\cdots,$ $n;k=1,2,$ $\cdots,$

$k_{j}$ , then the string

$\underline{||\cdots}|B_{0k_{0}}A_{0k_{0}-1}^{1}\cdots A_{02}^{1}|\underline{|\cdots}|B_{02}A_{01}^{1}|\underline{|\cdots}|B_{01}A_{0k_{0}}^{1*}$

$i_{0k_{0}}$
$i_{02}$ $i_{01}$

$A_{1k_{1}}^{1}B_{11}|\underline{|\cdots}|A_{11}^{1}B_{12}\underline{||\cdots}|A_{12}^{1}\cdots A_{1k_{1}-1}^{1}B_{1k_{1}}\underline{||\cdots}|^{*}$

$i_{11}$ $i_{12}$ $i_{1k_{1}}$

$A_{nk_{n}}^{1}B_{n1}|\underline{|\cdots}|A_{7}^{1_{l1}}B_{n2}\underline{||\cdots}|A_{n2}\cdots A_{nk_{n}-1}B_{nk_{n}}|\underline{|\cdots|}$

$i_{n1}$ $i_{n2}$ $i_{nk_{n}}$

is called a string-expression of $C$ . The empty string is the string-expression of the
empty graph. A labelled plane graph $H$ is called a linear-plane-graph-expression

with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ of $C$ if there exists a string-expression of $C$ whose

plane-graph-expression with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ is $H$.

In order to prove that the system of canonical plane graph grammars is com-
plete, it is sufficient to show that the following lemma (cf. Sublemma in \S 5):

LEMMA A. Let $\sigma,$
$\lambda$ and $\tau$ be labels not in $\Sigma$ . There exists a finite set $P$ of

canonical productions such that for each connected labelled plane graph $C$ over $\Sigma$

and for each linear-plane-graph-expression $H$ with auxiliary labels $\sigma,$
$\lambda,$ $\tau$ of $C,$ $C$ is

the unique labelled plane graph over $\Sigma$ derived from $H$ according to $P$.

PROOF. Let $\Pi,$ $\Sigma_{2},$ $\Sigma_{3}$ and $\Sigma_{4}$ be alphabets such that $\Pi,$ $\Sigma,$ $\Sigma_{1},$ $\Sigma_{2},$ $\Sigma_{3},$ $\Sigma_{4}$ and
$\{|, *\}$ are mutually disjoint, and let $\sigma,$

$\lambda,$
$\tau,$

$\#,$ $\#,$ $|^{0}$ , 1 and $|^{2}$ be labels not in $\Pi\cup\Sigma\cup$

$\Sigma_{1}\cup\Sigma_{2}\cup\Sigma_{3}\cup\Sigma_{4}\cup\{|, *\}$ . Let $f_{i}$ be a one-to-one correspondence from $\Sigma$ to $\Sigma_{i}$ for $i=$

$2,3,4$ , and $g$ a one-to-one correspondence from $\Sigma\times$ $(\Sigma\cup\Sigma_{1}\cup\{|, *, \tau, \mathfrak{b} \})$ to $\Pi$ . For
each element A in $\Sigma$ , let $A^{i}$ denote $f_{i}(A)$ for $i=2,3,4$ , and for each element $(A, W)$

in $\Sigma\times(\Sigma\cup\Sigma_{1}\cup\{|, \sigma, \tau, \#\})$ , let $A^{w}$ denote $g(A, W)$ . Let $P_{i}(i=1,2, \cdots, 9)$ be the set
of simple productions as follows:
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STIPULATION: $A,$ $B,$ $C\in\Sigma$ . X, $Y\in\Sigma\cup\Sigma_{1}\cup\{|\}$ . $Z\in\Sigma\cup\{\lambda\}$ . $S,$ $T\in\Sigma_{1}\cup\{|\}$ .
$U\in\Sigma\cup\Sigma_{1}$ . $V\in\Sigma\cup\Sigma_{1}\cup\{|, \tau\}$ . $i=0,1$ .
The lines without label denote edges with label $\lambda$ .

The set $P_{1}$ of canonical productions
$-O_{\sim}\backslash $

/
$\backslash $

$t$ 1
$\neg$ $\epsilon$

1 /

$\backslash _{\sim--\nearrow}/$

$\nearrow-O_{\backslash }^{\circ\sim}\backslash $

$\rightarrow$

$\iota^{r_{\backslash _{\sim}}}\circ_{-}\sim\nearrow^{/^{\backslash _{/^{1}}}}$

$\neg$

The set $P_{2}$ of canonical productions

$\rightarrow$

$\rightarrow$

$\rightarrow$
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The set $P_{3}$ of canonical productions

$\rightarrow$

$\rightarrow$

$\neg$

$\rightarrow\alpha\circ$

’
/

$\iota$

$\rightarrow$

$9_{\backslash _{\backslash _{\backslash }^{--O_{-}^{4_{\nearrow}}}}}^{l}\cdot A-//^{1}$

$\neg$
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The set $P_{4}$ of canonical productions

$/’\&\sim\backslash $

$t- A_{\backslash ^{1_{-\sim}}}OO^{\sigma},\cdot@/_{\backslash }\backslash /$

$\rightarrow$

$|\iota_{\backslash J}^{J^{\prime_{\backslash ^{-\alpha_{\backslash }}}}}A^{\sigma}O_{-}^{\circ}-.-\theta^{\backslash }\backslash $

,
$\rightarrow$

$\rightarrow$

$\rightarrow$

$/-\Phi_{\sim}$

$\rightarrow$
$\star A_{-}^{\mathfrak{n}^{\backslash }}O_{-}^{\backslash }\backslash _{\backslash _{\backslash }^{-}/}^{\prime}/^{1}$

$\rightarrow$
$?_{\backslash }^{l^{\prime_{-}^{J^{\prime}}}}\circ_{\sim--}^{\ovalbox{\tt\small REJECT}\cdot\backslash }\backslash \backslash \tau A^{\backslash ,}\circ^{\backslash ,^{\backslash }},1.\phi$
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The set $P_{5}$ of canonical productions

$\neg$

$\neg$

The set $P_{6}$ of canonical productions

$\rightarrow$

$\rightarrow$
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The set $P_{7}$ of canonical productions

$\rightarrow$

$\rightarrow$

$\rightarrow$

The set $P_{8}$ of canonical productions

$\rightarrow$

$\rightarrow$
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’
$\theta_{\sim}$

$\neg$
$0_{\iota_{\backslash }^{/_{\backslash }^{\prime}}}^{/}\circ\int_{\sim\dot{o}\prime}\backslash \prime A_{/^{\backslash }}^{1_{/^{\backslash }}1^{1}}A^{I}\backslash |$

$\rightarrow$

/
$\backslash \circ$

$\neg$
$*_{\backslash _{\backslash ^{\backslash }}}\cdot\cdot\circ A_{-}^{J,}\backslash /^{/^{\backslash _{1}}}$

The set $P_{9}$ of canonical productions

$\rightarrow$

Set $P=P_{i}\cup P_{2}\cup P_{3}\cup P_{4}\cup P_{5}\cup P_{6}\cup P_{7}\cup P_{8}\cup P_{9}$ . Then $P$ satisfies the condition of this
Lemma. We illustrate the proof for it with an example. Let $\Sigma=\{A_{1},$ $A_{2},$ $A_{3},$ $A_{4}$ ,
$B_{1},$ $B_{2},$ $B_{3},$ $B_{4},$ $B_{5},$ $B_{6}$ } and let $C$ be the connected labelled plane graph over $\Sigma$ as

Fig. A.l
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Fig. A.2

shown in Figure A.l, where the edge $i$ has the label $B_{i}(i=1,2, \cdots, 6)$ . And let $H$

be the linear-plane-graph-expression of $C$ as shown in Figure A.2. Let $H_{i}$ be the

labelled plane graph as shown in Figure A.i $(i=3,4, \cdots, 9)$ . Then

$H\Rightarrow^{1_{.}.2}H_{3}^{3}=^{5,6}\Rightarrow^{7}H_{4}\Rightarrow^{4}H_{5}^{2}=^{5}\Rightarrow H_{6}6,7\Rightarrow H_{7}3.42.5=\Rightarrow H_{8}6,7\Rightarrow^{8}H_{9}\Rightarrow^{9}C$ ,

where $i\Rightarrow^{J}$ means that the right-hand side is dirived from the left-hand side accord-
ing to $P_{i}\cup\cdots\cup P_{j}$ . It is trivial that $C$ is the unique labelled plane graph over $\Sigma$

derived from $H$ according to $P$.
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Fig. A.3. $H_{3}$ is derived from $H$ according to $P_{1}\cup P_{2}$ .

$H_{\iota}^{1}$

Fig. A.4-1. $H_{4^{1}}$ is derived from $H_{3}^{1}$ according to $P_{5}$ .

$H\frac{9}{4}$

Fig. A.4-2. $H_{4^{2}}$ is derived from $H_{4}^{1}$ according to $P_{6}$ .
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$H_{\dot{4}}^{3}$

Fig. A.4-3. $H_{4^{\theta}}$ is derived from $H_{4}^{2}$ according to $P_{7}$ .

$H_{4}\{^{H_{4}^{4}:}$

$|_{\backslash ^{\prime_{\backslash }}}^{t_{H_{3^{\backslash }}^{2}}}-\sim_{P^{\backslash ,^{l^{1}}}}-$
$1_{\backslash _{\backslash _{\sim-}^{-}}}^{H_{3_{J}^{\backslash }\}}^{\sim_{3}}}$

’
$|^{/^{\prime}}H_{3)}^{4^{\backslash }}\backslash _{\backslash }-\sim\sim-$

Fig. A.4. $H_{4}^{4}$ is derived from $H_{4^{3}}$ according to $P_{3}$ , so $H_{4}$ is derived from $H_{3}$

according to $P_{3}\cup P_{6}\cup P_{)}\cup P_{7}$ .

$H_{5}\{^{H_{5}^{I}:}$

$\iota_{\backslash }^{H_{3\rangle}^{4}}/^{/_{\backslash }^{-\sim}}-\backslash _{\nearrow}$

Fig. A.5. $H_{\overline{o}}$ is derived from $H_{4}$ according to $P_{4}$ .
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$H_{6}^{1}$

Fig. A.6.1. $H_{6^{1}}$ is derived from $H_{5^{1}}$ according to $P_{2}$ .

$H_{6}\{H_{6}^{2}$

:

Fig. A.6. $H_{6^{2}}$ is derived from $H_{6}^{1}$ according to $P_{5}\cup P_{6}\cup P_{7}$ , so $H_{6}$ is derived from
$H_{5}$ according to $P_{2}\cup P_{5}\cup P_{6}\cup P_{7}$ .

$H_{7}$

Fig. A.7. $H_{7}$ is derived from $H_{b}$ according to $P_{\delta}\cup P_{4}$ .



160 Tadahiro $U\llcorner s\iota$ )

$H_{8}$

Fig. A.8. $H_{8}$ is derived from $H_{7}$ according to $P_{2}\cup P_{5}\cup P_{b}\cup P_{7}$ .

$H_{9}$

Fig. A.9. $H_{9}$ is derived from $H_{8}$ according to $P_{8}$ .
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