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INVARIANTS OF FINITE GROUPS GENERATED
BY PSEUDO-REFLECTIONS IN
POSITIVE CHARACTERISTIC
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Introduction

Let $R$ be a commutative ring, and let $V$ be a finitely generated free R-module.
Let $R[V]$ be a polynomial ring over $R$ associated with $V$. Then a finite subgroup
$G$ of $GL(V)$ acts naturally on $R[V]$ . We denote by $R[V]^{G}$ the ring of invariants
of $R[V]$ under the action of $G$ .

Let $R=k$ be a field and suppose that $|G|$ is a unit of $k$ . It is known ([4], [9],

[3], [8]) that $k[V]^{G}$ is a polynomial ring if and only if $G$ is generated by pseudo-
reflections in $GL(V)$ .

But, in the case where $|G|\equiv 0$ mod char$(k)$ , there are only the following results:
(1) L. E. Dickson [5]; $F_{q}[T_{1}, \cdots, T_{n}]^{GL(n,q)}$ and $F_{q}[T_{1}, \cdots, T_{n}]^{SL(n.q)}$ are polynomial

rings, where $F_{q}$ is the finite field of $q$ elements.
(2) M.-J. Bertin [1]; $F_{q}[T_{1}, \cdots, T_{n}]^{Unip(n,q)}$ is a polynomial ring, where

Unip$(n, q)=\{\sigma\in GL(n, q):\sigma=\left\{\begin{array}{ll}1 & 0\\* & 1\end{array}\right\}\}$ .

(3) J.-P. Serre [8]; (i) If $k[V]^{G}$. is a $polyno^{\sim}nia1$ ring, then $G$ is generated by

pseudo-reflections in $GL(V)$ . (ii) $F_{q}[T_{1}, T_{2}, T_{3}, T_{4}]^{O_{4}^{+}(Fq)}$ is not a polynomial ring,

where $O_{4}^{+}(F_{q})$ is the orthogonal group and char$(F_{q})\neq 2$ .
The purpose of this paper is to determine finite irreducible subgroups $G$ of

$GL(V)$ such that $k[V]^{G}$ are polynomial rings in the case where $|G|\equiv 0$ mod char$(k)$ .
Let $V$ be an n-dimensional vector space over a finite field $k$ of characteristic $p$ and
let $G$ be a subgroup of $GL(V)$ . Then our results are the following

[I] If $G$ is a transitive imprimitive group generated by pseudo-reflections, then
$k[V]^{G}$ is a polynomial ring.

[II] Suppose that $p\neq 2,$ $n\geqq 3$ and $G$ is an irreducible group generated by trans-
vections. Then $k[V]^{G}$ is a polynomial ring if and only if $G$ is conjugate in $GL(V)$
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to $SL(n, q)$ .
[III] Suppose that $p\neq 2$ and $V$ is a $fail/lful$ linear representation of least degree

of the symmetric group $S_{m}$ of degree $m$ with $m\geqq 7$ . Then $k[V]^{S_{m}}$ is a polynomial
ring if and only if $(m,p)=1$ and all transpositions of $S_{m}$ are represented by reflec-
tions in $GL(V)$ .

[IV] Let $F$ be a subfield of $k$ and let $O_{n}(F)$ be the orthogonal group of dimen-
sion $n$ over F. Suppose that $G$ is a subgroup of $O_{n}(F)$ which contains the commutator
subgroup $\Omega_{n}(F)$ of $O_{n}(F)$ . If $n\geqq 4$ , then $k[V]^{G}$ is not a polynomial ring.

Let $G\subseteqq GL(V)$ be an irreducible primitive group and let $p\neq 2$ . If $G$ is generated
by transvections, $G$ is called a transvection group. Transvection groups are classified
by A.E. Zalesskii and V.N. Serezkin [11]. This result will be used in the proof
of [II]. On the other hand $G$ is called a reflection group if $G$ is a group generated
by reflections which contains no transvections. By using the classification stated
in V.N. Serezkin [7], we can determine all reflection groups $G$ such that $k[V]^{G}$

are polynomial rings under the assumption of $n\geqq 4,$ $p>7$ . For convenience we will
describe their results in \S 1.

\S 1. Preliminaries

Let $V$ be a vector space over a field $k$ . According to [2], an element $\sigma\in GL(V)$

is called a pseudo-reflection in $V$ if $dimV_{\sigma}\leqq 1$ where $V.=(1-\sigma)V$.
On the other hand an automorphism $\sigma$ of an integral domain $R$ is called a

generalized reflection in $R$ if $(\sigma-1)R\subseteqq p$ for some prime ideal $\mathfrak{p}$ of $R$ of height 1.
For a subgroup $G$ of $Aut(R)$ and a prime ideal $\mathfrak{p}$ of $R$ , we put $D_{G}(\mathfrak{p})=\{\sigma\in G;\sigma(\mathfrak{p})=$

$\mathfrak{p}\}$ (resp. $I_{G}(\mathfrak{p})=\{\sigma\in G:(\sigma-1)R\subseteqq \mathfrak{p}\}$ ) which is called the decomposition group of $G$ at
$\mathfrak{p}$ (resp. the inertia group of $G$ at p).

Let $R=\bigoplus_{i=0}^{\infty}R_{i}$ be a graded algebra over $R_{0}$ with a graduation $\{R_{i}\}$ . We define
that

$\Lambda ut_{qr}(R)=$ { $\sigma\in Aut(R);\sigma$ preserves the graduation of $R$},

$\Lambda ul_{R_{0}-gr}(R)=$ { $\sigma\in Aut_{gr}(R);\sigma$ acts trivially on $R_{0}$ },

$R_{+}=\bigoplus_{i>0}R_{i}$ .

THEOREM 1.1. ([8]) Let $R$ be a regular local ring with the residue class field $k$ .
Let $G$ be a finite subgroup of $Aut(R)$ such that $|G|\cdot 1_{R}\in U(R)$ and $k^{G}=k$ , where $U(R)$

denotes the unit group of R. $T1_{l}enR^{G}$ is a regular local ring if and only if $G$ is
generated by generalized reflections.

The following lemma is well known.
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LEMMA 1.2. Let $R$ be a noetherian graded algebra over a field $k$ . Then the
following conditions are equivalent:

(1) $R$ is a graded polynomial algebra over $k$ .
(2) $R_{R_{+}}$ is a regular local ring.

For an element $\sigma$ of $Aut(R)$ and a $\sigma$ -stable prime ideal $\mathfrak{p},$ $\sigma$ induces an element

of $Aut(R_{\dagger^{)}})$ which is denoted by the same symbol $\sigma$ . Let $R=\bigoplus_{i=0}^{\infty}R_{i}$ be a noetherian
graded polynomial algebra over a field $R_{0}=k$ . Then, for $\sigma\in Aut_{k-gr}(R),$ $\sigma$ is a gen-
eralized reflection in $R$ if and only if $\sigma$ is so in $R_{R_{+}}$ . Therefore, from (1.1), we
obtain

COROLLARY 1.3. Let $R=\bigoplus_{i=0}^{\infty}R_{i}$ be a noetherian graded polynomial algebra over
a field $R_{0}=k$ , and let $G$ be a finite subgroup of $Aut_{k-gr}(R)$ such that $|G|\cdot 1_{k}\in U(k)$ .
Then $R^{G}$ is a graded polynomial algebra over $k$ if and only if $G$ is generated by

generalized reflections.

LEMMA 1.4. (e.g. [2]) Suppose that $R=k[T_{1}, \cdots, T_{n}]$ is a polynomial ring over an
algebraically closed field $k$ and that $G$ is a finite subgroup of $GL_{n}(k)$ . If $R^{G}$ is a
polynomial ring, then $R^{D_{G}(\mathfrak{m})}$ is a polynomial ring for any maximal ideal $\mathfrak{m}$ of $R$ and
$D_{G}(\mathfrak{m})$ is generated by pseudo-reflections.

PROOF. $dim(R_{m^{D_{G}(m)}})=dim((R^{G})_{\mathfrak{m}\cap R^{G}})$ and $R_{m^{D_{G}(1tt)}}$ is unramified over $(R^{G})_{\mathfrak{m}\cap R^{G}}$ .
Hence $R_{\mathfrak{m}^{D_{G}(\mathfrak{m})}}$ is a regular local ring. Since $\mathfrak{m}$ is $D_{G}(\mathfrak{m})$-stable,

$R_{m^{D_{G}(11t)}}=(R^{D_{G}(m)})_{\mathfrak{m}nR^{D_{G^{(\mathfrak{m})}}}}$ .

On the other hand there exist elements $a_{i}\in k(1\leqq i\leqq n)$ such that $\mathfrak{m}=(T_{1}-a_{1},$
$\cdots,$

$T_{n}-$

$a_{n})$ . Put $X_{i}=T_{i}-a_{i}(1\leqq i\leqq n)$ and regard $R=k[X_{1}, \cdots, X_{n}]$ as a graded algebra by
$degX_{i}=1$ . Then $D_{G}(\mathfrak{m})\subseteqq Aut_{k-gr}(R)$ and $R_{+}=\mathfrak{m}$ . Therefore $S=R^{D_{G}(m)}$ is a graded
subalgebra of $R$ and $S_{+}=\mathfrak{m}\cap R^{D_{G}(\downarrow \mathfrak{n})}$ . Since $S_{+}$ is a regular local ring, $S$ is a
polynomial ring over $k$ by (1.2). Hence $D_{G}(\mathfrak{m})$ is generated by pseudo-reflections.

From here to the end of this section, we assume that $V$ is an n-dimensional
vector space over a finite field $k$ of characteristic $p\neq 2$ . A pseudo-reflection $\sigma\neq 1$ is
called a transvection if $\sigma|$ $V.=1$ and a reflection if $\sigma|V_{\sigma}=-1$ . Let $G$ be a subgroup
of $GL(V)$ . Then we use the following notation:

$P(G)=$ {$\sigma\in G;\sigma$ is a $pseudo\cdot reflection$},

$T(G)=$ {$\sigma\in G;\sigma$ is a transvection},

$R(G)=$ {$\sigma\in G;\sigma$ is a reflection}.
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A.E. Zalesskii and V.N. Serezkin obtained the following result which gives

the classification of transvection groups.

THEOREM 1.6. ([11]) Suppose that $G\subseteqq GL(V)(n\geqq 2)$ is a transvection group. Then
$G$ is coniugate in $GL(V)$ to one of the groups $SL(n, q),$ $sp(n, q)$ or $SU(n, q)$ , except

for the case where $G\cong SL(2,5),$ $G\subseteqq SL(2,3^{2})$ .

Recently V.N. Serezkin obtained the following

THEOREM 1.7. ([6], [7]) Suppose $n>3,$ $p>5$ . Let $G\subseteqq GL(V)$ be a reflection group.
Then $G$ is conjugate in $GL(V)$ to one of the groups in the following list:

(1) The orthogonal groups $O_{2m\vdash 1}(F),$ $O_{2m}^{\pm}(F)$ , where $F$ is a subfield of $k$ and

$n=2m+1,2m$ respectively, or the groups $ x\cdot\Omega$ , where $x\in R(O_{n}(F))$ and $\Omega$ is the com-
mutator subgroup of the orthogonal group $O_{n}(F)$ .

(2) The symmetric groups $S_{tl+1}$ where $n+1\not\equiv 0$ mod $p$ , and $S_{n+2}$ where $n+2\equiv 0$

mod $p$ .
(3) The nine exceptional groups, namely,

$W(F_{4}),$ $W(N_{4}),$ $EW(N_{4}),$ $W(H_{4})$ where $n=4;W(K_{5})$ where $n=5$ ;
$W(K_{6}),$ $W(E_{b})$ where $n=6;W(E_{7})$ where $n=7;W(E_{8})$ where $n=8$ .

However the complete proof of this result has not been published yet.

For a field $k$ of characteristic $p>7$ , the orders of the groups in part (3) of (1.7)

are units in $k$ .

\S 2. Monomial groups

Let $V$ be a finitely generated free module over a commutative ring $R$ . A

subgroup $G$ of $GL(V)$ is said to be monomial if $G$ has a monomial form on some
R-basis of $V$ ([12], \S 43). For a field $k$ , if $G\subseteqq GL_{n}(k)$ is a finite transitive imprimitive

group generated by pseudo-reflections, then $G$ is a monomial group.
In this section, we use the following notation.

$NoTA’\Gamma ION2.1$ . Let $R$ be an integral domain $an\subset Jk$ be the quotient field of $R$ .
Put

$lI_{n}(R)=$ {$\sigma\in GL_{n}(R):\sigma$ is a permutation matrix},

$D_{n}(R)=$ {$\sigma\in GL_{n}(R):\sigma$ is diagonal}.

For a finite subgroup $G$ of $GL_{n}(R)$ of monomial form, the sequence $ 1\rightarrow D(G)\rightarrow G\rightarrow$

$\Delta$

$lI_{n}(R)$ is exact, where $\Delta$ : $G\rightarrow ll_{n}(R)$ is the canonical homomorphism and $D(G)=$

$D_{\iota}(R)\cap G$ . Let
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$\tilde{P}(G)=$ { $\sigma\in G$ \ddagger $\sigma$ is a pseudo-reflection in $GL_{n}(k)$ }.

We identify $S_{n}$ with $lT_{n}(R)$ .

LEMMA 2.2. Let $G\subseteqq GL_{n}(R)$ be a finite subgroup of monomial form generated
by pseudo-reflections in $GL_{n}(k)$ . Assume that the following conditions are satisfied:

(1) The sequence $1\rightarrow D(G)\rightarrow G\rightarrow\Pi_{n}(R)\rightarrow 1$ is exact and $\Pi_{n}(R)$ is contained in
$G$ .

(2) $\tilde{P}(D(G))=\{E_{n}\}$ .
Then $R[T_{1}, \cdots, T_{n}]^{G}$ is a polynomial ring.

PROOF. For $r\in\tilde{P}(G)-\{E_{n}\}$ , there exists $\tau_{r}\in\Pi_{n}(R)$ such that $\tau_{r^{-1}}\Delta(r)r\tau_{r}\in H=$

$diag[D_{2}(R), 1_{n-2}]$ where $diag[D_{2}(R), 1_{n-2}]=\{diag[\sigma, 1_{n-2}];\sigma\in D_{2}(R)\}$ . For matrices
$A,$ $B,$ $C,$

$\cdots,$ $diag[A, B, C, \cdots]$ means the block diagonal matrix defined canonically.
Put $L=\{\tau_{r^{-1}}\Delta(r)r\tau_{r} ; r\in\tilde{P}(G)-\{E_{n}\}\}\cup\{E_{n}\}$ . Then $L$ is a subgroup of $H$ and there is
a monomorphism from $L$ into $U(R)$ . Hence $L$ is generated by $\sigma_{1}=diaq[a, a^{-1}$

)
$1_{n-2}$ ].

Let $\sigma_{2}=diag[a, 1, a^{-1},1_{n-3}],$
$\cdots,$

$\sigma_{n-1}=diaq[a, 1_{n-2}, a^{-1}]$ and put $m=|\langle a\rangle|$ . It is easy to
show that $ D(G)=\langle\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}\rangle$ . Since any monomial of $R[T_{1}, \cdots, T_{n}]$ is a semi-
invariant of $D(G)$ , we have $R[T_{1}, \cdots, T_{n}]^{D(G)}=R[T_{1}^{m}, \cdots, T_{n^{m}},\prod_{i=1}^{n}T_{i}]$ . Let $S=$

$R[T_{1}, \cdots, T_{n}]^{D(G)},\tilde{S}=R[T_{1}^{m}, \cdots, T_{n}^{m}],$ $U=\prod_{i=1}^{n}T_{i},$ $X_{i}=T_{i}^{m}(1\leqq i\leqq n)$ . Then $ S=\tilde{S}\oplus\tilde{S}U\oplus$

$\oplus\tilde{S}U^{m-1}$ and $G/D(G)$ acts on $S$ as permutations of $\{X_{1}, \cdots, X_{n}\}$ . Let $U_{i}(1\leqq i\leqq n-1)$

be the fundamental symmetric polynomial of degree $i$ in $R[X_{1}, \cdots, X_{n}]$ . Then we
must have $R[T_{1}, \cdots, T_{n}]^{G}=R[U_{1}, \cdots, U_{n-1}, U]$ .

LEMMA 2.3. $LelV=\bigoplus_{i=1}^{n}RY_{i}$ be a free R-module and let $G$ be a finite subgroup

of $GL(V)$ generated by the set $\tilde{P}(G)$ such that $G$ has a monomial form on the basis
$\{Y_{1}, \cdots, Y_{n}\}$ . Then there is an R-basis $\{X_{1}, \cdots, X_{n}\}$ of $V$ such that the following
conditions are satisfied:

(1) $G$ has a monomial form on the basis $\{X_{1}, \cdots, X_{n}\}$ .
We regard $G$ as a subgroup of $GL_{n}(R)$ afforded by $\{X_{1}, \cdots, X_{n}\}$ . Let $\Delta;G\rightarrow\Pi_{n}(R)$

be the canonical homomorphism.
(2) There exists a canonical isomorphism $H\cong lT_{n_{1}}(R)\times\cdots\times\Pi_{n_{S}}(R)$ , where $H=$

$Im(\Delta)$ and $\sum_{i=1}^{\theta}n_{i}=n$ .
(3) $H$ is contained in $G$ .

PROOF. We identify $G$ with the image of the matrix representation of $G$ afforded
by the R-basis $\{Y_{1}, \cdots, Y_{n}\}$ . Let $H^{\prime}$ be the image of the canonical homomorphism
$\Delta^{\prime}$ : $G\rightarrow\Pi_{n}(R)$ . Since $G$ is generated by the set $\tilde{P}(G)$ , we may assume that $H^{\prime}=$

$H_{1}\times\cdots\times H_{s}$ where
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$H_{1}=diag[\Pi_{n_{1}}(R), 1_{n-n_{1}}]$ , $H_{2}=diag[1_{n_{1}}, \Pi_{n_{2}}(R), 1_{n-n_{1}-n_{2}}]$ ,
..., $H_{s}=diag[1_{n-n_{s}}, \Pi_{n_{s}}(R)]$ .

Since $\Delta^{\prime-1}((i, i+1))\cap\tilde{P}(G)\neq\phi(1\leqq i\leqq n-1)$ , we can choose the following elements:

$\Delta^{\prime-1}((1,2))\cap\tilde{P}(G)\ni\sigma_{1}^{(1)},$
$\cdots,$

$\Delta^{\prime-1}((1, n_{1}))\cap\tilde{P}(G)\ni\sigma_{n_{1}-1}^{(1)}$ ,

$\Delta^{\prime-1}((n_{1}+1, n_{1}+2))\cap\tilde{P}(G)\ni\sigma_{1}^{(2)},$ $\cdots$ ,

$\Delta^{\prime-1}((n_{1}+1, n_{1}+n_{2}))\cap\tilde{P}(G)\ni\sigma_{n_{2}-1}^{(2)}$ ,

$\Delta^{\prime-1}((\sum_{i=1}^{s-1}n_{i}+1,\sum_{t=1}^{s-1}n_{i}+2))\cap\tilde{P}(G)\ni\sigma_{1}^{(s)},$ $\cdots$ ,

$\Delta^{\prime-1}((\sum_{i=1}^{s-1}n_{i}+1,$ $n))\cap\tilde{P}(G)\ni\sigma_{n_{S}-1}^{(s)}$ .

Put

$X_{1}=Y_{1},$
$X_{2}=Y_{1}^{\sigma_{1}^{(1)}},$

$\cdots,$

$X_{n_{1}}=Y_{1}^{\sigma^{(1_{1})}}n-1$

$X_{n_{1}\vdash 1}=Y_{n_{1}\vdash 1},$
$X_{n_{1}\dashv 2}=Y_{n_{1^{(2)}}}^{\sigma_{1_{+1}}},$

$\cdots,$

$X_{n_{1}+n_{2}}=Y_{n_{1}}^{\sigma}(2)n_{+^{2}1^{-1}}$

$X=Y_{s1},$ $\cdots,$$X_{ns\frac{n(}{\sum_{=}}1}\sum_{i=1}^{s-1}n_{i}+1\sum_{i=1}n_{i}+1=Y_{i^{\sigma}1}^{s_{n_{i^{\{1}}^{-1}}^{)}}s$

Then $\{X_{1}, \cdots, X_{n}\}$ is the R-basis of $V$ such that the conditions stated in this lemma

are satisfied.

THEOREM 2.4. Let $G$ be a finite monomial subgroup of $GL_{n}(R)$ generated by

pseudo-reflections in $GL_{n}(k)$ . Then $R[T_{1}, \cdots, T_{n}]^{G}$ is a polynomial ring over $R$ .

PROOF. By (2.3), we may assume that $G$ is indecomposable in $GL_{n}(R)$ . Hence
$G$ contains the group $\Pi_{n}(R)$ . Since $ H=\langle\tilde{P}(D(G))\rangle$ is a normal subgroup of $G$ , there

is an integer $m$ such that $R[T_{1}, \cdots, T_{n}]^{H}=R[T_{1}^{m}, \cdots, T_{n^{m}}]$ . $G/H$ acts R-linealy on
$\sum_{i=1}^{n}RX_{i}$ and $G/H$ has a monomial form on the basis $\{X_{1}, \cdots, X_{n}\}$ , where $ X_{i}=T_{i}^{m}(1\leqq$

$i\leqq n)$ . If we regard $G$ as a subgroup of $GL_{n}(R)$ , then the sequence $ 1\rightarrow D(G/H)\rightarrow$

$G/H\rightarrow\Pi_{n}(R)\rightarrow 1$ is exact and $\Pi_{n}(R)$ is contained in $G/H$ If $\tilde{P}(D(G/H))\neq\{E_{n}\}$ , we
continue this procedure. So we may assume that $\tilde{P}(D(G/H))=\{E_{n}\}$ . In this case,

by (2.2), $R[X_{1}, \cdots, X_{n}]^{G/H}$ is a polynomial ring over $R$ .

\S 3. Unipotent abelian groups

We will consider about invariants of subgroups of the group:
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$A(m, n:q)=\{\left\{\begin{array}{ll}E_{m} & 0\\M & E_{n}\end{array}\right\}$ : $M\in Mat_{n\times m}(F_{q})\}$ .

We preserve the following notation in this section.

NOTATION 3.1. Let $k=F_{q}$ where $q=pf$ and $p$ is a prime. Let

$\sigma=\left\{\begin{array}{ll}E_{m} & 0\\M & E_{n}\end{array}\right\}$ , $M=[\mu_{1}\cdots\mu_{m}]$

where $\mu i(1\leqq i\leqq m)$ are column veclors. If $\sigma\neq 1$ , we put $\varphi(\sigma)=\mu i_{0}$ where $i_{0}=\min\{i$ :
$\mu i\neq 0\}$ . And if $\sigma=1$ , put $\varphi(\sigma)=0$ . For a subgroup $G$ of the group $A(m, n;q)$ , set
$d(G)=dim_{k}\langle\varphi(P(G))\rangle_{k}$ , where $\langle\varphi(P(G))\rangle_{k}$ is the subspace of the column vector space
$k^{n}$ spanned by the set $\varphi(P(G))$ . The group $A(m, n:q)$ acts linearly on the polynomial
ring $S=k[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}]$ in the form that for $\sigma=[\sigma_{ij}]\in A(m, n:q)$

$({}^{t}[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}])^{\sigma}=[\sigma_{ij}]^{t}[X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}]$ .

LEMMA 3.2. Let $G$ be a subgroup of $A(m, n:q)$ generated by pseudo-reflections.
Then there exists an element $\delta\in GL(n, q)$ such that $Z_{i}\in S^{G}(d(G)<i\leqq n)$ where

${}^{t}[Z_{1}, \cdots, Z_{n}]=\delta^{t}[Y_{1}, \cdots, Y_{n}]$ .

PROOF. Put $d=d(G)$ . We can choose elements $\sigma_{i}\in P(G)(1\leqq i\leqq d)$ such that
$\langle\varphi(P(G))\rangle_{k}=\bigoplus_{i=1}^{d}k\varphi(\sigma_{i})$ . Hence, for some $\delta\in GL(n, q)$ , we have $\varphi(\delta^{\prime}\sigma_{i}\delta^{\prime-1})\in ke_{i}(1\leqq i\leqq d)$ ,
where $\delta^{\prime}=diag[1_{m}, \delta]$ and $\{e_{1}, \cdots, e_{n}\}$ is the standard basis of $k^{n}$ . Since $ G=\langle P(G)\rangle$

and $\langle\varphi(P(G))\rangle_{k}=\bigoplus_{i=1}^{d}k\varphi(\sigma_{i})$ , this lemma is obvious.

PROPOSITION 3.3. Let $G$ be a subgroup of $A(m, n:q)$ of order $p^{d(G)}$ generated
by pseudo-reflections. Then $S^{G}$ is a polynomial ring.

PROOF. Put $d=d(G)$ and choose elements $\sigma_{i}\in P(G)(1\leqq i\leqq d)$ such that $\langle\varphi(P(G))\rangle_{k}$

$=\bigoplus_{i=1}^{d}k\varphi(\sigma_{i})$ . By (3.2) there exists $\Psi^{\prime}=diag[1_{m}, \Psi]\in GL(m+n, q)$ such that $\varphi(\Psi^{\prime}\sigma_{i}\Psi^{\prime-1})\in$

$ke_{i}(1\leqq i\leqq d)$ and $Z_{i}\in S^{G}(d<i\leqq n)$ , where $\{e_{1}, \cdots, e_{n}\}$ is the standard basis of $k^{n}$ and
${}^{t}[Z_{1}, \cdots, Z_{n}]=\Psi^{t}[Y_{1}, \cdots, Y_{n}]$ . Set

$\Psi^{\prime}\sigma_{i}\Psi^{\prime-1}=\left\{\begin{array}{llll} & & E_{m} & 0\\\tilde{w}_{i1} & \cdots & \tilde{w}_{im} & E_{n}\end{array}\right\}$ $(1\leqq i\leqq d)$ .

Then we have $\tilde{w}_{ij}=w_{ij}e_{i}(1\leqq i\leqq d;1\leqq j\leqq m)$ for some $w_{ij}\in k$ . Let

$W_{i}=Z_{i}^{p}-(\sum_{j=1}^{m}w_{ij}X_{j})^{p-1}Z_{i}$ $(1\leqq i\leqq d)$ .

$S^{G}$ is integral over $k[X_{1}, \cdots, X_{m}, W_{1}, \cdots, W_{d}, Z_{d+1}, \cdots, Z_{n}]$ . Since the rings have the
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common quotient field, we obtain

$S^{G}=k[X_{1}, \cdots, X_{m}, W_{1}, \cdots, W_{d}, Z_{d+1}, \cdots, Z_{n}]$ .

PROPOSITION 3.4. Let $G$ be a subgroup of $A(1, n:q)$ . Then $k[X, Y_{1}, \cdots, Y_{n}]^{G}$ is
a polynomial ring and we can construct a system of fundamental invariants of $G$ .

PROOF. Assume that $|G|>p^{d(G)}$ . Choose elements $\sigma_{1}^{(1)},$

$\cdots,$
$\sigma_{d(0)}^{(1)}\in G$ such that

$\langle\varphi(P(G))\rangle_{k}=\zeta+)k\varphi(\sigma_{i}^{(1)})d(G)i=1$ Put $ G_{1}=\langle\sigma_{1}^{(1)}, \cdots, \sigma_{d(G)}^{(1)}\rangle$ , and take a suitable element $\Psi^{\prime}=$

$diag[1, \Psi]\in GL(n+1, q)$ as we did in the proof of (3.3). Let ${}^{t}[Z_{1}, \cdots, Z_{n}]=\Psi^{l}[Y_{1}, \cdots, Y_{n}]$

and let $W_{i}=Z_{i}^{p}-(w_{i}X)^{p-1}Z_{i}(1\leqq i\leqq d(G))$ , where the elements $w_{i}\in k(1\leqq i\leqq d(G))$ are
determined by $\Psi^{\prime}$ . Then we have $k[X, Y_{1}, \cdots, Y_{n}]^{G_{1}}=k[X, W_{1}, \cdots, W_{d(G)}, Z_{d(G)+1}, \cdots, Z_{n}]$

and $Z_{i}\in k[X, Y_{1}, \cdots, Y_{n}]^{G}(d(G)<i\leqq n)$ . For $\sigma\in G^{(1)}=G/G_{1}$ , there exist elements $a_{\sigma}^{(i)}\in k$

$(1\leqq i\leqq d(G))$ which satisfy $W_{i^{\sigma}}=W_{i}+a_{\sigma}^{(i)}X^{p}$ . Let $\tilde{X}=X^{p}$ and set

$\tilde{V}=k\tilde{X}\oplus kW_{1}\oplus\cdots\oplus kW_{d(G)}\oplus kZ_{d(G)\dashv 1}\oplus\cdots\oplus kZ_{n}$ .

Then $G^{(1)}$ acts linearly and faithfully on the k-space $\tilde{V}$ and we can identify the

group $G^{(1)}$ with the image of the canonical homomorphism from $G^{(1)}$ to the group
$A(1, d(G):q)$ which is defined on the basis {X, $W_{1},$

$\cdots,$ $W_{d(G)}$ }. If $d(G^{(1)})\neq 0$ , then

we can construct a subgroup $G_{2}$ of $G^{(1)}$ such that $|G_{2}|=p^{d(G(1))}=p^{d(G_{2})}$ . By (3.3),

$k[X, W_{1}, \cdots, W_{d(G)}]^{G_{2}}$ is a polynomial ring. Hence $(k[X, Y_{1}, \cdots, Y_{n}]^{G_{1}})^{G_{2}}$ is a polynomial

ring. Put $G^{(2)}=G^{(1)}/G_{2}$ . If $cl(G^{(2)})\pm 0\backslash $
’ then we continue this procedure. Since $G$

is finite, there is an integer $j>0$ such that $d(G^{(j)})=0$ . $cl(G^{(j)})=0$ implies $G^{(j)}=\{1\}$ ,

and so this proposition is proved.

$PROPOS1^{\prime}\Gamma ION3.5$ . Let $G$ be a subgroup of $\Lambda(m, 1:q)$ . Then $k[X_{I}, \cdots, X_{m}, Y]^{G}$

is a polynomial ring.

PROOF. First we suppose that $G$ is contained in $A(m, 1;p)$ and $ G=_{i=1}\times^{l}\langle\tau_{i}\rangle$ . In

this case we may assume that $Y^{\tau_{i}}=Y+a_{i}X_{i}(1\leqq i\leqq t)$ for some elements $a_{i}\in k$ . Put
$V_{1}(T)=T^{p}-(a_{1}X_{1})^{p-1}T$ and define $V_{i}$

{
$(T)=V_{i}(T)^{p}-V_{i}(a_{i}X_{i})^{p-1}V_{i}(T)(1\leqq i<t)$ in-

ductively. Then we must have $k[X_{1}, \cdots, X_{m}, Y]^{G}=k[X_{1}, \cdots, X_{m}, V_{t}(Y)]$ . Using this

result we can prove the general case. The canonical isomorphism $ k=F_{p}1\oplus F_{p}w_{2}\oplus$

$...\oplus F_{p}w_{f}\ni\sigma-(\sigma^{(1)}, \cdots, \sigma^{(f)})\in F_{p}^{f}$ as $F_{p}$-spaces induces a group homomorphism $\eta$ :
$A(m, 1:q)\rightarrow A(mf, 1:p)$ defined by

$\left\{\begin{array}{llll} & E_{m} & & 0\\b_{1}, & \ldots, & b_{m} & 1\end{array}\right\}-\left\{\begin{array}{lllllll} & & & E_{mf} & & & 0\\b_{1}^{(1)}, & \ldots, & b_{1}^{(f)}, & b_{m}^{(1)}, & \ldots, & b_{m}^{(f)} & 1\end{array}\right\}$ .

Let $R=k[X_{1}^{(1)}, \cdots, X_{1}^{(f)}, \cdots, X_{m}^{(1)}, \cdots, X_{m}^{(f)}, Y]$ be a polynomial ring of $mf+1$ variables

with the canonical action of $\eta(G)$ . Define a ring homomorphism $\rho$ from $R$ to $S=$
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$k[X_{1}, \cdots, X_{m}, Y]$ by $\rho(Y)=Y,$ $\rho(X_{1}^{(1)})=X_{1},$ $\rho(X_{1}^{(2)})=w_{2}X_{1},$
$\cdots,$ $\rho(X_{1}^{(f)})=w_{f}X_{1},$ $\cdots,$

$\rho(X_{m}^{(1)})$

$=X_{m},$ $\cdots,$ $\rho(X_{m^{f)}})=w_{f}X_{m}$ . There exists a polynomial $V(Y)\in R$ such that

$R^{\eta(G)}=k[X_{1}^{(1)}, \cdots, X_{1}^{(f)}, \cdots, X_{m}^{(1)}, \cdots, X_{m}^{(f)}, V(Y)]$ .

Then we obtain $S^{G}=k[X_{1}, \cdots, X_{m}, \rho(V(Y))]$ .

THEOREM 3.6. Let $G$ be a subgroup of $GL_{n}(k)$ and let $R=k[T_{1}, \cdots, T_{n}]$ . Then

for any minimal prime ideal $\mathfrak{p}$ of $R,$ $R^{I_{G}(\mathfrak{p})}$ is a polynomial ring and can be determined
effectively.

PROOF. We may assume that $|N|\equiv 0$ mod $p$ where $N=I_{G}(\mathfrak{p})$ . There exists a
normal $p$-subgroup $H$ of $N$ such that $([N:H],p)=1$ . Since the action of $H$ on $R$

preserves the natural graduation of $R,$ $\mathfrak{p}$ is generated by a homogeneous polynomial

of degree 1. Exchanging the basis of $\bigoplus_{i=1}^{n}kT_{i}$ , we can regard $H$ as a subgroup of
$A(1, n-1:q)$ . By (3.4), $R^{H}$ is a polynomial ring. $N/H$ is generated by generalized
reflections in $R^{H}$ , therefore $R^{N}=(R^{H})^{N/H}$ is a polynomial ring.

THEOREM 3.7. Preserve the notation of (3.6) and let $I_{G}^{*}(\mathfrak{p})=\{{}^{t}[\sigma_{ij}]:\sigma=[\sigma_{ij}]\in I_{G}(\mathfrak{p})\}$

for any minimal prime ideal $\mathfrak{p}$ of R. Then $R^{l_{G}^{*}(\mathfrak{p})}$ is a polynomial ring.

PROOF. This theorem is reduced to (3.5).

REMARK 3.8. Let $V$ be an n-dimensional k-space and let $G$ be an abelian sub-
group of $GL(V)$ generated by pseudo-reflections. If $n\leqq 3$ , then $k[V]^{G}$ is a polynomial
ring. Suppose that $n=4$ and that $G=Sp(4, p)\cap A(2,2:p)$ . Then $G$ is an abelian
group generated by transvections, but $k[V]^{G}$ is not a polynomial ring.

\S 4. Symmetric groups

First we will give a remark.

PROPOSITION 4.1. Let $k$ be a field and let $G$ be a finite group. Let $V$ and
$W$ be finite dimensional G-faithful $kG$ -modules. Suppose that there exists a kG-
epimorphism $\varphi:V\rightarrow W$. If $k[V]^{G}$ is a polynomial ring, then $k[W]^{G}$ is a polynomial
ring.

PROOF. Put $g=|G|$ . Then $k[V]=\sum_{i=1}^{o}k[V]^{G}f_{i}$ for some $f_{i}\in k[V](1\leqq i\leqq g)$ . It

follows that $k[W]=\sum_{i=1}^{q}k[W]^{G}\tilde{\varphi}(f_{i})$ , where the homomorphism $\tilde{\varphi}:k[V]\rightarrow k[W]$ is the

epimorphism induced by $\varphi$ . Since $G$ acts faithfully on $W,$ $k[W]$ is a free $k[W]^{G_{-}}$

module. Hence $k[W]^{G}$ is a polynomial ring.
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We preserve the following notation from here to (4.4).

NOTATION 4.2. Suppose that $k$ is a finite field of characleristic $p\neq 2$ and that
$n$ is an integer with $n+2\equiv 0$ mod $p,$ $n\geqq 3$ . Let $\tilde{V}=\bigoplus_{i=0}^{n+1}ke_{i},$ $V^{\prime}=\bigoplus_{i=1}^{n+1}k(e_{i}-e_{0})$ and $V=$

$V^{\prime}/k\sum_{i=0}^{n+1}e_{i}$ be vector spaces with natural $kS_{n+2}$-module structure, where $S_{n+2}$ is the
symmetric group of degree $n+2$ . Let $F:S_{n+2}\rightarrow GL_{n+2}(k)$ (resp. $F^{\prime}$ : $S_{n+2}\rightarrow GL_{n+1}(k)$ )

be the matrix representation of $S_{n+2}$ on the basis $\{e_{0}, e_{1}, \cdots, e_{n+1}\}$ (resp. $\{e_{1}-e_{0},$
$\cdots,$ $e_{n\vdash 1}-$

$e_{0}\})$ and put $\tilde{G}=Im(fl)$ (resp. $G^{\prime}=Im(F^{\prime})$). Let

$w=[_{-1}^{-.\cdot.\cdot...1}1$ $01$

$0$

1

$\in GL_{n+2}(k)$ , $z=[1111$ $1122.1\cdots 11.2..\cdot..\cdot.\cdot 111\cdots 1\in GL_{n+1}(k)$ ,

$ G=w\tilde{G}w^{-1}\approx$ , $G^{\prime\prime}=zG^{\prime}z^{-1}$ .

We denote by $G$ the subgroup of $GL_{n}(k)$

$\{g\in GL_{n}(k):\left\{\begin{array}{ll}1 & 0\\b_{g} & g\end{array}\right\}\epsilon G^{\prime\prime}\}$ .

$Lel\Phi:\tilde{G}\rightarrow G^{\prime}$ (resp. $\Psi:G^{\prime}\rightarrow G$) be the canonical isomorphism $\tilde{G}\rightarrow G\rightarrow G^{\prime}\approx$ (resp. $ G^{\prime}\rightarrow$

$G^{\prime\prime}\rightarrow G)$ . Then the two maps $P(\tilde{G})\ni\sigma-\Phi(\sigma)\in P(G^{\prime}),$ $P(G^{\prime})\ni\sigma-\Psi(\sigma)\in P(G)$ are
bijective.

LEMMA 4.3. $k[V^{\prime}]^{S_{n+2}}$ and $k[V]^{S_{n\vdash 2}}$ are not polynomial rings.

PROOF. $G^{\prime}$ (resp. $G$ ) acts naturally on the column vector space $k^{n+1}$ (resp. $k^{n}$).

(A) Let $G^{\prime}(a^{\prime})$ be the stabilizer of $G^{\prime}$ at $a^{\prime}$ , where $a^{\prime}=^{t}[1,2,$ $\cdots,p-1,0,1,$ $\cdots,p-$

$1,$
$\cdots,$ $0,1,$ $\cdots,p-1$ ] $\in k^{n+1}$ . We identify $S_{n+2}$ with the group of permutation matrices

in $GL_{n+2}(k)$ . For $\delta\in G^{\prime}(a^{\prime})$ , there is an element $d$ of $F_{p}$ such that

$\Phi^{-1}(\delta)\left\{\begin{array}{l}0\\a\end{array}\right\}=\left\{\begin{array}{l}0\\a\end{array}\right\}+\left\{\begin{array}{l}d\\\vdots\\ d\end{array}\right\}$ .

Since $\Phi^{-1}(\delta)\in P(\tilde{G})$ for $\delta\in P(G^{\prime}(a^{\prime}))$ , we have $d=0$ . Therefore $\Phi^{-1}(P(G^{\prime}(a^{\prime})))=\{(i_{0},j_{0})$ :
$i_{0}\equiv j_{0}$ mod $p,$ $i_{0}\neq j_{0}$ } $\cup\{E_{n+2}\}$ . On the other hand

$\sigma^{\prime}=[_{-1}^{-1}-1$

$1_{0}1$
$01\in G^{\prime}(a^{\prime})$ ,
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but $\sigma^{\prime}$ is not contained in $\langle P(G^{\prime}(a^{\prime}))\rangle$ . Since $G^{\prime}(a^{\prime})$ is the decomposition group of $G^{\prime}$

at some maximal ideal of $\overline{k}[V^{\prime}]$ , we have shown that $k[V^{\prime}]^{s_{n\}2}}$ is not a polynomial
ring by (1.4).

(B) For some $a\in k^{n},$ $za^{\prime}=\left\{\begin{array}{l}0\\a\end{array}\right\}$ . Let $G(a)$ be the stabilizer of $G$ at $a$ . Then
$\Psi(G^{\prime}(a^{\prime}))=G(a)$ . Since $\langle P(G^{\prime}(a^{\prime}))\rangle\neq G^{\prime}(a^{\prime})$ and $P(G^{\prime})\ni\tau-\Psi(\tau)\in P(G)$ is bijective,
we obtain $\langle P(G(a))\rangle\neq G(a)$ . Hence $k[V]^{s_{n\}2}}$ is not a polynomial ring by (1.4).

REMARK 4.4. Suppose that $V^{J*}$ is the dual space of $V^{\prime}$ . Then $k[V^{;*}]^{s_{n+2}}$ is a
polynomial ring over $k$ by (4.1).

THEOREM 4.5. Let $k$ be a finite field of characteristic $p\neq 2$ and let $V$ be a
faithful linear representation of least degree of $S_{n}$ with $n\geqq 7$ . Then the following
conditions are equivalent:

(1) $k[V]^{S_{n}}$ is a polynomial ring.
(2) $(n, p)=1$ and all transpositions of $S_{n}$ are represented by reflections in

$GL(V)$ .
And if $V$ satisfies these conditions, then we have $dim(V)=n-1$ .

PROOF. According to [10] and (4.3), it is sufficient to show that (2) implies (1).

We can obtain the $kS_{n}$-module $V$ as in (2) as follows. Let $\tilde{V}$ be a canonical
representation of $S_{n}$ of degree $n$ . Since $(n,p)=1$ , the sequence $0\rightarrow\tilde{V}^{s_{n}}\rightarrow\tilde{V}\rightarrow Coker(i)\rightarrow 0i$

is a split exact sequence of $kS_{n}$-modules and Coker(i) is $kS_{n}$-isomorphic to $V$.
Therefore, by (4.1), $k[V]^{S_{n}}$ is a polynomial ring over $k$ .

\S 5. Classical groups

In this section $k$ is a finite field of characteristic $p\neq 2$ .

THEOREM 5.1. Let $G$ be a subgroup of $GL_{2}(k)$ . Suppose that $ T(G)=\phi$ in the
case of $p=3$ . Then $k[T_{1}, T_{2}]^{G}$ is a polynomial ring if and only if $G$ is generated by

pseudo-reflections.

PROOF. We have only to show the if part. Assume that $G$ is generated by
pseudo-reflections. Since $ T(G)=\phi$ implies $(|G|,p)=1,$ $k[T_{1}, T_{2}]^{G}$ is a polynomial ring
in the case of $ T(G)=\phi$ . Suppose that $ T(G)\neq\phi$ and let $ H=\langle T(G)\rangle$ . Then we have
$(|G/H|,p)=1$ . If $G$ is reducible, we may assume that $H$ is contained in $A(1,1:q)$ .
Since $k[T_{1}, T_{2}]^{H}$ is a polynominal ring, $k[T_{1}, T_{2}]^{G}=(k[T_{1}, T_{2}]^{H})^{G/H}$ is regular by (1.3).

Hence, by (2.4), we can suppose that $G$ is irreducible primitive. By Clifford’s theorem
([12], \S 49), $H$ is irreducible and $H$ is conjugate in $GL_{2}(k)$ to $SL(2, q)$ . It is known
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that $k[T_{1},$ $T_{2}\rfloor^{H}$ is a polynomial ring. By (1.3), $k[T_{1}, T_{2}]^{G}$ is regular. Thus the proof
is completed.

THEOREM 5.2. For a transvection group $G\subseteqq GL_{n}(k)(n\geqq 3)$ , the following con-
ditions are equivalent:

(1) $k[T_{1}, \cdots, T_{n}]^{G}$ is a polynomial ring over $k$ .
(2) $G$ is conjugate in $GL_{n}(k)$ to $SL(n, q)$ .

PROOF. According to (1.6), it suffices to prove that $k[T_{1}, \cdots, T_{n}]^{G}$ is not a poly-
nomial ring for $G=Sp(n, q)$ or $SU(n, q^{2})$ . Put $S=k[T_{1}, \cdots, T_{n}]$ .

(A) First we suppose that $n=4$ and $G=Sp(4, q)$ . Let $\{T_{1}, T_{2}, T_{3}, T_{4}\}$ be the
canonical basis on which $G$ can be expressed in the form $\{\sigma\in SL(4, q);{}^{t}\sigma\Phi\sigma=\Phi\}$

where

$\Phi=\left\{\begin{array}{ll}0 & E_{2}\\-E_{2} & 0\end{array}\right\}$ .

Take maximal ideals $\mathfrak{m}_{1}=(T_{1}-1, T_{2}, T_{3}, T_{4}),$ $\mathfrak{m}_{2}=(T_{1}, T_{2}-1, T_{3}, T_{4}),$ $\mathfrak{m}_{3}=(T_{1},$ $T_{2},$ $T_{3}-$

$1,$ $T_{4}$ )
$,$

$\mathfrak{m}_{4}=(T_{1}, T_{2}, T_{3}, T_{4}-1)$ of $S$ and put $H=\bigcap_{i=1}^{2}D_{G}(\mathfrak{m}_{i}),$ $ N=\langle D_{H}(\mathfrak{m}_{3}), D_{H}(\mathfrak{m}_{4})\rangle$ . Then
there exist homogeneous polynomials $X_{1},$ $X_{2}$ of degree $q$ such that $S^{N}=k[T_{1}, T_{2}, X_{1}, X_{2}]$ .
We regard $S^{N}=\bigoplus_{i=0}^{\infty}(S^{N})_{i}$ and $S^{H}=\bigoplus_{i=0}^{\infty}(S^{H})_{i}$ as graded subalgebras of S. Assume that
$S^{H}$ is a polynomial ring. Since $dim_{k}(S^{H})_{1}=2$ , there are homogeneous polynomials
$f_{1},f_{2}$ , which satisfy $S^{H}=k[T_{1}, T_{2},f_{1},f_{2}]$ . $S^{N}$ is integral over $S^{H}$ and so the set
$\{T_{1}, T_{2},f_{1},f_{2}\}$ is a system of parameters of $S^{N}$ at origin. Let $\varphi:S^{N}\rightarrow k[X_{1}, X_{2}]\subseteqq S$

be a ring homomorphism defined by $\varphi(T_{1})=\varphi(T_{2})=0$ and $\varphi(X_{i})=X_{i}(i=1,2)$ . From
$\varphi(f_{i})\neq 0$ , we obtain $deg(f_{i})=deg(\varphi(f_{i}))$ in $S(i=1,2)$ . Hence $deg(f_{i})$ is a power of
$q$ . But $|H|=q^{3}=\prod_{i=1}^{2}deg(f_{i})$ and $\varphi((S^{H})_{q})=\varphi((S^{N})_{q})^{H/N})=0$ , which is a contradiction.
Therefore $S^{G}$ is not a polynomial ring by (1.4). The general case is reduced to
the case of $sp(4, q)$ with aids of (1.2) and (1.4).

(B) We consider the case of $G=SU(n, q^{2})$ . It is sufficient to prove the assertion
for $n=3$ . Let $\lambda-\overline{\lambda}$ be an involutory automorphism of the field $F_{q^{2}}$ , and let $\epsilon\in$

$F_{q2}^{*}$ be an element such that $Tr(\epsilon)=0$ . We denote

$\Gamma(q^{2})=\{\sigma\in SL(3, q^{2});\overline{\iota\sigma}\Psi\sigma=\Psi\}$

where

$\Psi=\left\{\begin{array}{lll}0 & \epsilon & 0\\-\epsilon & 0 & 0\\0 & 0 & 1\end{array}\right\}$ .

Suppose that $H$ is the stabilizer of $\Gamma(q^{2})$ at ${}^{t}[1,0,0]$ under the natural action of $\Gamma(q^{2})$
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on the column vector space $F_{q^{3_{2}}}$ over $F_{q^{2}}$ . It is easy to show that $H$ is not generated
by pseudo-reflections in $GL(3, q^{2})$ . Since $G$ is conjugate to $\Gamma(q^{2}),$ $S^{G}$ is not a poly-
nomial ring by (1.4).

We give the following remark which is a generalization of the preceding result
without its proof.

REMARK 5.3. Let $G$ be an irreducible subgroup of $GL_{n}(k)$ which contains a
transvection and suppose $n\geqq 4$ . Then $k[T_{1}, \cdots, T_{n}]^{G}$ is a polynomial ring if and only
if $G$ is generated by pseudo-reflections and the normal subgroup $\langle T(G)\rangle$ is conjugate
to $SL(n, q)$ in $GL_{n}(k)$ .

THEOREM 5.4. Let $F$ be a subfield of $k$ and let $\mathcal{O}$ be the orthogonal group of
a non-singular quadratic form $Q$ of dimension $n$ over F. Suppose that $G$ is a sub-
group of $\mathcal{O}$ which contains the commutator subgroup $\Omega$ of $\mathcal{O}$ . If $n\geqq 4$ , then
$k[T_{1}, \cdots, T_{n}]^{G}$ is not a polynomial ring over $k$ .

PROOF. Let $\nu$ be the index of $Q$ and let $V$ be the n-dimensional F-space with
the quadratic form $Q$ . For a subgroup $N$ of $\mathcal{O}$ , we denote by $N(x)$ the stabilizer
of $N$ at $x\in V$ under the natural action of $N$ on $V$. Let $W$ be a suitable maximal
totally isotropic subspace of $V$. If $ n=2\nu$ , then we have $H=\bigcap_{x\in W}\mathcal{O}(x)\cong F^{\nu}(y-1)/2$ In
general $V$ can be expressed as an orthogonal direct sum of hyperbolic planes $M_{i}$

$(1\leqq i\leqq\nu)$ and a quadratic space $L$ of index $0$ . Hence, if $\nu\geqq 2$ , we obtain $H^{\prime}=\bigcap_{x\in W}\mathcal{O}^{\prime}(x)$

$\cong F^{\nu}(\nu-1)/2$ where $\mathcal{O}^{\prime}=\bigcap_{x\in L}\mathcal{O}(x)$ . Suppose that $\nu\geqq 2$ . Consequently we can take
maximal ideals $\mathfrak{m}_{i}(1\leqq i\leqq\nu+2)$ of $\overline{k}[T_{1}, \cdots, T_{n}]$ such that

$F^{\nu}(\nu-1)2/\cong\bigcap_{i=1}^{\nu+2}D_{\mathcal{O}}(\mathfrak{m}_{i})=\bigcap_{i=1}^{\nu+2}D_{S\mathcal{O}}(\mathfrak{m}_{i})$

where
$S\mathcal{O}=SL_{n}(k)\cap \mathcal{O}$ .

Since $S\mathcal{O}/\Omega\cong F^{*}/F^{*2}\cong Z/2Z,\bigcap_{i=1}^{\nu+2}D_{\Omega}(\mathfrak{m}_{i})\neq\{1\}$ follows. On the other hand we have

$P(\bigcap_{i=1}^{\nu+2}D_{o}(\mathfrak{m}_{i}))=\{1\}$ . Hence $\bigcap_{i=1}^{\nu+2}D_{G}(\mathfrak{m}_{i})$ is not generated by pseudo-reflections. Next we
assume that $\nu=1$ . Then it follows that $n=4$ and $\mathcal{O}=O_{4}^{-}(F)$ . Take an isotropic
point and a non-isotropic point of $V$ appropriately. Then we can choose maximal
ideals $\mathfrak{n}_{1},$ $\mathfrak{n}_{2}$ of $\overline{k}[T_{1}, T_{2}, T_{s}, T_{4}]$ such that $|\langle P(\bigcap_{i=1}^{2}D_{o_{4}^{-}(F)}(\mathfrak{n}_{i}))\rangle|=2$ and $\bigcap_{i=1}^{2}D_{so_{4}^{-}(F)}(\mathfrak{n}_{i})$

$\cong F$ where $SO_{4}^{-}(F)=SL_{4}(k)\cap O_{4}^{-}(F)$ . Since $|SO_{4^{-}}(F)/\Omega|=2,\bigcap_{i=1}^{2}D_{G}(\mathfrak{n}_{i})$ is not generated
by pseudo-reflections. In both cases $k[T_{1}, \cdots, T_{n}]^{G}$ is not a polynomial ring by (1.4).

REMARK 5.5. Let $G\subseteqq GL_{n}(k)$ be a reflection group and let $n>3,$ $p>7$ . Then
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$k[T_{1}, \cdots, T_{n}]^{(G}$ is a polynomial ring over $k$ if and only if $G$ is conjugate in $GL_{n}(k)$

to one of the groups in the following list:

(i) The symmetric group $S_{n+1}$ where $n+1\not\equiv 0$ mod $p$ .
(ii) The groups in part (3) of (1.7).

This follows from (1.3), (1.7), (4.3), (4.4) and (5.4).
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