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A CHARACTERIZATION OF THE $R$-ELEMENTARY
GROUPS AT $2$ WITH CHARACTERS OF

SCHUR INDEX $2$ OVER $R$

By

Michitaka HIKARI

Let $H$ be a group. We call $H$ an R-elementary group at 2 if
(i) $H$ is a semi-direct product $ P\langle a\rangle$ of a 2-group $P$ and a cyclic 2’-group $\langle a\rangle$ ,

and
(ii) For each $x\in P,$ $xax^{-1}=a$ or $a^{-1}$ .

In order to study the representations of finite groups over $R$ , there are some
approachs. Our approach is based on the Brauer-Witt theorem ([4], p. 31). By

the Brauer-Witt theorem, if $\chi$ is an irreducible complex character of Schur index

2 over $R$ for a finite group $G$ , then there exist a subgroup $H$ of $G$ which is R-

elementary at 2, and an irreducible complex character $\mu$ of $H$ of Schur index 2

over $R$ such that $(x_{H}, \mu)\neq 0(mod 2)$ . Therefore it is important to study the re-
presentations of R-elementary groups at 2 over $R$ . The purpose of this paper is

to give necessary and sufficient conditions in group theoretical terms for the

existence of the characters of Schur index 2 over $R$ in the case where groups are
R-elementary groups at 2.

First, using the Witt-Roquette theorem for $p$-groups, we will determine the

2-groups with characters of Schur index 2. Secondly, we will study the represen-
tations of an R-elementary group $H$ with non-trivial 2’-group $\langle a\rangle$ . In the case
where $C_{H}(a)$ has an abelian Sylow 2-group, the representations of such group over
$R$ were studied by Gow in [3]. Let $G$ be a finite group and let $a$ be an element

of $G$ . Assume that $C_{G}(a)$ has an abelian Sylow 2-subgroup $P$ and that there exists

an element $x$ in $G$ satisfying $xax^{-1}=a^{-1}$ , but $yay^{-1}\neq a^{-1}$ for any involution $y$ in $G$ .
Gow showed that in this case $G$ has a complex irreducible character of Schur
index 2 over $R$ . To prove this theorem Gow used essentially the fact that complex

irreducible characters of $ P\langle a\rangle$ are linear. So we can not use Gow’s method in the

case where $C_{G}(a)$ has a non-abelian Sylow 2-subgroup. However for R-elementary

groups at 2 we can characterize the groups with real-valued complex irreducible
characters of Schur index 2 over $R$ and the groups with non-trivial real-valued
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complex irreducible characters of Schur index 1 over $R$ .
In this paper we mean by an irreducible character a complex irreducible

character. As usual $Q,$ $R,$ $C$ denote the rational number field, the real number
field and the complex number field respectively.

\S 1. Preliminary lemmas

Let $G$ be a finite group and let $\chi$ be an irreducible character of $G$ , and let
$m_{F}(\chi)$ denote the Schur index of $\chi$ over a field $F$. We let $F(\chi)$ denote the field
generated over $F$ by the algebraic numbers $\chi(g),$ $g\in G$ . Let $\overline{\chi}$ denote the complex
conjugate character of $\chi$ . Let $H$ be a subgroup of $G$ . We denote by $\chi_{H}$ the
restriction of $\chi$ to $H$. For a character $\mu$ of $H$ we denote the character of $G$

induced from $\mu$ by $\mu^{G}$ . Frobenius and Schur ([2], p. 21) studied the number $\nu(\chi)$

$=|G|^{-1}\sum_{g\epsilon G}\chi(g^{2})$ and showed the following remarkable result.

(1.1.) (Frobenius-Schur) Let $G$ be a finite group and let $\chi$ be an irreducible
character of G. Then we have

(i) $\nu(\chi)=1$ if and only if $R(\chi)=R$ and $m_{R}(\chi)=1$ ,
(ii) $\nu(\chi)=-1$ if and only if $R(\chi)=R$ and $m_{R}(\chi)=2$ ,
(iii) $\nu(\chi)=0$ if and only if $R(\chi)=C$.

The character $\chi$ is called the character of the first kind (respectively, the
second kind, the third kind), if $\nu(\chi)=1$ (respectively, $\nu(\chi)=-1,$ $\nu(\chi)=0$).

The following well known theorem ([2], p. 73) plays an essential part in the
study of representations of $p$-groups.

(1.2) (Witt-Roquette) Let $P$ be a p-group. Let $F$ be a field of characteristic $0$ .
Suppose that one of the following hypotheses is satisfied

(i) $p\neq 2$

(ii) $p=2$ and $i=\sqrt{-1}\in F$

(iii) $p=2$ and $P$ does not contain a cyclic subgroup of index 2.
Then if $\chi$ is a nonlinear irreducible faithful character of $P$ there exist $P_{0}\triangleleft P$

and a character $\zeta$ of $P_{0}$ such that $|P:P_{0}|=p,$ $\chi=\zeta^{P}$ and $F(\chi)=F(\zeta)$ .

REMARK. In the case (iii), if $F(\chi)\$ i$ , the character $\zeta$ is nonlinear.

Let $G$ be a group, let $H$ be a subgroup of $G$ and let $\zeta$ be a character of $H$.
Even if $\zeta$ is an irreducible character of $H$, the character $\zeta^{G}$ is not always irre-
ducible. However in the case where $\zeta$ is a linear character, using the Mackey
decomposition theorem ([2], p. 51), we have following
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LEMMA 1.3. Let $G$ be a finite group, let $H$ be a subgroup of $G$ , and let $\zeta$ be

a linear character of H. Put $\chi=\zeta^{G}$ . Then $\chi$ is not an irreducible character of $G$

if and only if there exists an element $x$ of $G-H$ such that $ xhx^{-1}h^{-}\in Ker\zeta$ for all
$h\in H^{x}\cap H$, where $Ker\zeta=\{h\in H|\zeta(h)=\zeta(1)\}$ .

PROOF. Let $Hx_{1}H(x_{1}=1),$ $Hx_{2}H,$ $\cdots,$
$Hx{}_{n}H$ be all the $(H, H)$ double cosets in $G$ .

By the Mackey decomposition theorem,

$(\chi, \chi)_{C^{\prime}}.=(\zeta^{G}, \zeta^{G})_{G}=\sum_{i=1}^{n}((\zeta^{x_{i}})_{HnH}^{x}i\zeta_{H^{x}nH}i)_{HnH}^{x}i$

$=1+\sum_{i=2}^{n}((\zeta^{x_{i}})_{HnH}^{x}i\zeta_{H^{x}nH}i)_{H^{x}nH}i$

Therefore $\chi$ is not irreducible if and only if for some $x_{i}(2\leqq i\leqq n)((\zeta^{x_{i}})_{H^{x}nH}i$

$\zeta_{H^{x}nH}i)_{H^{x}nH}i\neq 0$ . Since $\zeta$ is a linear character, $((\zeta^{x_{i}})_{H}^{x\iota_{\cap H}}, \zeta_{H^{x}nH}i)_{H^{x}nH}i\neq 0$ if and
only if $\zeta(x_{i}hx_{i}^{-1})=\zeta^{x_{i}}(h)=\zeta(h)$ for all $h\in H^{x_{i}}\cap H$. And the condition $\zeta(x_{i}hx_{i}^{-1})=\zeta(h)$

means $ x_{i}hx_{i}^{-1}h^{-1}\in Ker\zeta$ , because $\zeta$ is a linear character. Hence $\chi$ is not irreducible
if and only if there exists an element $x$ of $G-H$ such that $ xhx^{-1}h^{-}\in Ker\zeta$ for all
$h\in H^{x}\cap H$.

LEMMA 1.4. Let $G$ be a finite group, let $H$ be a subgroup of $G$ and let $\zeta$ be

a character of H. Put $\chi=\zeta^{G}$ . Then $Ker\chi=\bigcap_{g\in G}(Ker\zeta)^{g}$ .

PROOF. Let $x$ be an element of $\bigcap_{g\in G}(Ker\zeta)^{g}$ . Since $ g^{-1}xg\in Ker\zeta$ for all $g\in G$ , we
have $\chi(x)=\zeta^{G}(x)=\zeta^{G}(1)$ . Therefore $ x\in Ker\chi$ . Conversely, we assume that $ x\in Ker\chi$

Let $\{g_{1}, \cdots, g_{n}\}$ be a set of (left) representatives of $G/H$ in $G$ . We may assume that
$x\in H^{g_{i}}$ for $i\leqq s$ and $x\not\in H^{g_{i}}$ for $i>s$ . Let $m$ be the order of $x$ . As is well known,

$\zeta^{g_{i}}(x)$ is a sum of m-th roots of unity $\epsilon_{ij}(1\leqq j\leqq\zeta(1))$ if $i\leqq s$ and $\zeta^{g_{i}}(x)=0$ if $i>s$ .

Thus $\chi(x)=\sum_{i\approx 1}^{s}\sum_{j=1}^{\zeta(1)}\epsilon_{ij}$ . Since $\chi(1)=\sum_{i=1}^{s}\sum_{j=1}^{\zeta(1)}\epsilon_{ij}$ if and only if $\zeta(1)s=\chi(1)$ and $\epsilon_{ij}=1$ for

all $(i,j)$ , we have that $\zeta^{g_{i}}(x)=\zeta(1)=\zeta^{q_{i}}(1)$ for all $i$ , and this means that $x\in\bigcap_{g\in G}(Ker\zeta)^{g}$ .

\S 2. 2-groups

Let $G$ be the quaternion group of order 8. It is well known that the ordinary

quaternion algebra $\Lambda$ over $Q$ appears in $QG$ as a simple component. Let $F$ be a
field of characteristic $0$ . The 2-groups with characters of Schur index 2 over $F$

can be determined in the following

THEOREM 2.1. Let $F$ be a field of characteristic $0$ . Let $P$ be a finite 2-group.

Then there is a faithful irreducible character of $P$ of Schur index 2 over $F$ if and
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only if $P$ and $F$ satisfy the following conditions:
(i) There exist subgroups $Q\supset A\supset K$ of $P$ such that $K$ is a normal subgroup of

$Q$ and that $A/K$ is a cyclic subgroup of $Q/K$ of index 2.
(ii) $Q/K$ is a generalized quaternion group of order $2^{n+1}\geqq 8$ .
(iii) If $x$ is an element of $P-A$ , there exists an element $a$ in $A^{x}\cap A$ such

that $xax^{-1}a^{-1}\not\in K$.
(iv) $\bigcap_{x\in P}K^{x}=1$ .
(v) $ F(\epsilon_{2^{n}}+\epsilon_{2^{\overline{n}^{1}}})\otimes_{Q}\Lambda$ is a division ring, where $\epsilon_{2n}$ is a primitive $2^{n}$-th root of

unity.

PROOF. We assume that there exists a faithful irreducible character $\chi$ of $P$

of Schur index 2 over $F$. Since $m_{F}(\chi)=2,$
$\chi$ is not linear. If $P$ does not contain

a cyclic subgroup of index 2, by (1.2) there exist $P_{0}\triangleleft P$ and a character $\zeta_{0}$ of $P_{0}$

such that $|P:P_{0}|=2,$ $\chi=\zeta_{0^{P}}$ and $F(\chi)=F(\zeta_{0})$ . If $\zeta_{0}$ is realizable in $F(\zeta_{0})$ , then $\chi=\zeta_{0^{P}}$

is realizable in $F(\chi)=F(\zeta_{0})$ , which contradicts the assumption $m_{F}(\chi)=2$ . Therefore
$m_{F}(\zeta_{0})\neq 1$ and $\zeta_{0}$ is not linear. So we can define inductively a subgroup $P_{i}$ of $P$

and a character $\zeta_{i}$ of $P_{i}(i=0,1,2, -, t)$ such that $|P_{i}$ : $P_{i+1}|=2,$ $\zeta_{i}=\zeta_{i+1}^{P_{i}},$ $F(\zeta_{i})=$

$F(\zeta_{i+1}),$ $m_{F}(\zeta_{l})\neq 1$ and $P_{l}/Ker\zeta_{t}$ contains a cyclic subgroup of index 2. We denote
$P_{t},$ $Ker\zeta_{l},$ $\zeta_{l}$ by $Q,$ $K,$ $\zeta$ , respectively. And if we denote by $A$ the inverse image of
the cyclic subgroup of $Q/K$ of index 2 in $Q$ , then $Q,$ $A,$ $K$ satisfy the condition (i).
As is well known, $Q$ is a splitting field of $Q/K$ if $Q/K$ is not a generalized quater-
nion group. In the case where $Q/K$ is a generalized quaternion group of order
$2^{n+1}\geqq 8$ , the faithful irreducible character $\zeta$ of $Q/K$ corresponds to the simple com-
ponent $ F(\zeta)\otimes_{Q}\Lambda$ of $F(\zeta)[Q/K]$ and $m_{F}(\zeta)\neq 1$ if and only if $ F(\zeta)\otimes_{Q}\Lambda$ is a division
algebra. Thus we have (ii) and (v), because $F(\zeta)=F(\epsilon_{2^{n}}+\epsilon_{2^{\overline{n}^{1}}})$ . The faithful
irreducible character $\zeta$ of $Q/K$ is induced by a faithful linear character $\lambda$ of $A/K$,
and $\chi=\zeta^{P}=\lambda^{P}$ . Therefore by Lemma 1.3 the condition (iii) is satisfied. Moreover
since $\chi$ is a faithful irreducible character of $G$ , from Lemma 1.4 the condition (iv)
is satisfied.

Conversely we assume that the conditions (i), (ii), (iii), (iv) and (v) are satisfied.
Let $\lambda b\circ\vee$ a faithful linear character of $A/K$ We denote $\lambda^{Q},$ $\lambda^{P}$ by $\zeta,$

$\chi$ respectively.
Then by Lemmas 1.3 and 1.4 $\chi$ is a faithful irreducible character of $P$. The as-
sumptions (ii) and (v) mean $m_{F}(\zeta)=2$ . If $\chi$ is realizable in $F(\chi)\subset F(\zeta)$ , we have
$m_{F}(\zeta)|(\zeta, \chi)_{Q}=1$ , which contradicts the fact $m_{F}(\zeta)=2$ . Using the fact that $m_{F}(\chi)|2$ ,
we have $m_{F}(\chi)=2$ .

REMARK. In the case where $F$ is an algebraic number field, the necessary and
sufficient conditions for $ F(\epsilon_{2}n+\epsilon_{2^{\overline{n}^{1}}})\otimes_{Q}\Lambda$ to be a division ring were given [1] by
Fein, Gordon and Smith.
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When $F=R$, we have following

THEOREM 2.2. Let $P$ be a finite 2-group. Then there is a nonlinear faithful
irreducible character of $P$ of the first kind (respectively, the second kind) if and
only if $P$ satisfies the following conditions (i), (ii), (iii) and (iv).

(i) There exist subgroups $Q\supset A\supset K$ of $P$ such that $K$ is a normal subgroup of
$Q$ and that $A/K$ is a cyclic subgroup of $Q/K$ of index 2.

(ii) $Q/K$ is a dihedral group (respectively, a generalized quaternion group) of
order $2^{n+1}\geqq 8$ .

(iii) If $x$ is an element of $P-A$ , there exists an element $a$ in $A^{x}\cap A$ such
that $xax^{-1}a^{-1}\not\in K$

(iv) $\bigcap_{x\in P}K^{x}=1$ .

PROOF. Let $\chi$ be a faithful irreducible character of $P$. We assume that
$R(\chi)=R$ . By (1.2) there are a subgroup $P_{i}$ of $P$ and a character $\zeta_{i}$ of $P_{i}(i=0,1$ ,
2, $\cdots,$

$t$) such that $|P_{i}$ : $P_{i+1}|=2,$ $\zeta_{i}=\zeta_{i+1}^{P_{i}},$ $R(\zeta_{i})=R(\zeta_{i+1})$ and $P_{t}/Ker\zeta_{l}$ contains a
cyclic subgroup of index 2. In the case where $\chi$ is of the second kind, the theorem
holds by Theorem 2.1, because $ R(\epsilon_{2^{n}}+\epsilon_{2^{\overline{n}^{1}}})\otimes_{Q}\Lambda=R\otimes_{Q}\Lambda$ is the Hamilton’s quaternion
field. Hence we can assume that $\chi$ is of the first kind. We denote $P_{t},$ $Ker\zeta_{l},$ $\zeta_{t}$

by $Q,$ $K,$ $\zeta$ respectively. Let $A$ be the inverse image of the cyclic subgroup of $Q/K$

of index 2 in $Q$ . Then the conditions (i) and (iv) are satisfied. Since $R(\zeta)=R(\chi)$

$=R,$ $Q/K$ is a dihedral group or a generalized quaternion group. If $Q/K$ is a
generalized quaternion group, $\chi$ is of the second kind. Hence $Q/K$ is a dihedral
group. Since the faithful irreducible character $\zeta$ of $Q/K$ is induced by a faithful
linear character of $A/K$, by Lemma 1.3 the condition (iii) is satisfied. Conversely
we assume that the conditions (i), (ii), (iii) and (iv) are satisfied. Further assume
that $Q/K$ is a dihedral group. Let $\lambda$ be a faithful linear character of $A/K$ We
denote $\lambda^{P}$ by $\chi$ . By Lemmas 1.3 and 1.4 $\chi$ is a faithful irreducible character of $P$.
Since a faithful irreducible character $\lambda^{Q}$ of $Q/K$ is realizable as a character of a
$R[Q/K]$ -module, $\chi$ is realizable as a character of a RP-module. Hence $\chi$ is of the
first kind.

Now we will prove some lemmas used in the following section.

LEMMA 2.3. Let $P$ be a finite 2-group, let $Q$ be a subgroup of $P$ of index 2,
let $\{1, g\}$ be a set of representatives of $P/Q$ , and let $\mu$ be an irreducible character of
$Q$ with $R(\mu^{P})=R$ . Further we assume that $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ (respectively,

$-1)$ .
If $\mu^{P}$ is irreducible, then
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(1) $\mu$ is of the third kind and $\mu^{P}$ is of the first kind (respectively, the second

kind).

If $\mu^{P}$ is not irreducible, the following conditions are satisfied
(2) There exist characters $\chi$ and $\chi^{\prime},$ $\chi\neq\chi^{\prime}$ , of $P$ such that $\mu^{P}=\chi+\chi^{\prime}$ and that

$f^{l},$ $\chi$ and $\chi^{\prime}$ satisfy one of the following conditions
(i) $\mu,$ $\chi$ and $\chi^{\prime}$ are of the first kind (respectively, the second kind).

(ii) $\mu$ is of the second kind (respectively, the first kind), and $\chi$ and $\chi^{\prime}$ are of
the third kind.

Conversely if one of the conditions (1) and (2) is satisfied, then we have

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ (respectively, $-1$ ).

PROOF. Since $|P;Q|=2$ , we obtain $h^{2}\in Q$ for all $h\in P$, which implies

$|P|^{-1}\sum_{h\in P}\mu^{P}(h^{2})$

$=|P|^{-1}\sum_{h\in P}(\mu+\mu^{g})(h^{2})$

$=|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})(h^{2})+|P|\leftarrow 1\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})$ .

Now we assume that $\mu^{P}$ is an irreducible character of $P$ and $R(\mu)=R$ . We will

show that this assumption induces a contradiction. Remarking that $\mu$ is of the

first kind (respectively, the second kind) if and only if $\mu^{g}$ is of the first kind

(respectively, the second kind), we have $|Q|^{-1}\sum_{h\in Q}\mu(h^{2})=|Q|^{-1}\sum_{h\in Q}\mu^{g}(h^{2})$ by (1.1). Thus

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})(h^{2})=\pm 1$ . By the assumption $R(\mu^{P})=R$ we obtain $|P|^{-1}\sum_{h\in P}\mu^{P}(h^{2})=\pm 1$ .
This contradicts the assumption that $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=\pm 1$ . Therefore we have

that $\mu$ is of the third kind if $\mu^{P}$ is irreducible. Moreover by (1.1) $|P|^{-1}\sum_{h\in Q}(\mu+$

$\mu^{g})(h^{2})=0$ , and so $|P|^{-1}\sum_{h\in P}\mu^{P}(h^{2})=|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})$ . Therefore in the case

where $\mu^{P}$ is irreducible, $\mu^{P}$ is of the first kind (respectively, the second kind) if

and only if $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{\sigma})((gh)^{2})=1$ (respectively, $-1$ ).

Next we assume that $\mu^{P}$ is not irreducible. We may decompose $\mu^{P}$ into a sum
of irreducible characters of $P,$ $\mu^{P}=\chi+\chi^{\prime}$ Using the fact $1=(\chi_{Q}, \mu)_{Q}=(\chi, \mu^{P})_{P}$ we
obtain $(\chi, \chi^{\prime})=0$ . Since $2\mu=\chi_{Q}+\chi_{Q}^{\prime}=(\mu^{P})_{Q}=\mu+\mu^{g}$ , we have $\mu=\mu^{g}$ Hence

$|P|^{-1}\sum_{h\in P}\chi(h^{2})$

$=|P|^{-1}\sum_{h\in P}\chi^{\prime}(h^{2})$

$=|P|^{-1}\sum_{h\in Q}\mu(h^{2})+|P|^{-1}\sum_{h\in Q}\mu((gh)^{2})$ .

On the other hand by the assumption

$|P|^{-1}\sum_{h\in Q}\mu((gh)^{2})=2^{-1}(|P|^{-1}\sum_{h\in Q}(\mu+\mu^{q})((qh)^{2}))=\pm 2^{-1}$ .
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If $\mu$ is of the third kind, we have $|P|^{-1}\sum_{h\in P}\chi(h^{2})=\pm 2^{-1}$ , which contradicts the
Frobenius-Schur theorem (1.1). Therefore $\mu$ is of the first kind or of the second
kind. In the case where $\mu$ is of the first kind, $|P|^{-1}\sum_{h\in P}\chi(h^{2})=|P|^{-1}\sum_{h\in P}\chi^{\prime}(h^{2})=1$

(respectively, $0$) if and only if $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ (respectively, $-1$ ). In the
case where $\mu$ is of the second kind, $|P|^{-1}\sum_{h\in P}\chi(h^{2})=|P|^{-1}\sum_{h\in P}\chi^{\prime}(h^{2})=0$ (respectively,

$-1)$ if and only if $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ (respectively, $-1$ ). Hence the lemma
was proved.

LEMMA 2.4. Let $\epsilon_{k}$ be a primitive $2^{n_{k}}$ -th root of unity $(k=1, \cdots, m)$ . Assume
that $n_{k}\geqq 2$ and $\sum_{k=1}^{m}\epsilon_{k}\in Q$ . Then we have $\sum_{k=1}^{m}\epsilon_{k}=0$ .

PROOF. This is easy, therefore we omit it.

LEMMA 2.5. Let $P$ be a finite 2-group, let $Q$ be a subgroup of $P$ of index 2,
let $\{1, g\}$ be a set of represenlatives of $P/Q$ and let $\mu$ be a character of Q. Let $T$

be a subgroup of $Q$ , let $\lambda$ be a linear character of $T$ and let $X=\{h_{1}, \cdots, h_{m}\}$ be a
set of (left) representatives of $Q/T$. We put

$A=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{\iota^{-1}}\in T-Ker\lambda, h_{i}(gh)^{4}h_{i^{-1}}\in Ker\lambda\}$ ,

$B=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{i^{-1}}\in Ker\lambda\}$ ,

$\alpha=|A|$ and $\beta=|B|$ .
Assume that $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})\in Q$ .

(1) If $\mu=\mu^{g}$ and $\lambda^{Q}=\mu$ , then we have

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=|Q|^{-1}(\beta-\alpha)$ .

(2) If $\lambda^{Q}=(\mu^{P})_{Q}$ , then we have

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=|P|^{-1}(\beta-\alpha)$ .

PROOF. First we assume that $\mu=\mu^{q}$ and $\lambda^{Q}=\mu$ Then $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=$

$|Q|^{-1}\sum_{h\in Q}\mu((gh)^{2})=|Q|^{-1}\sum_{h\in Q}\lambda^{Q}((gh)^{2})=|Q|^{-1}\sum_{h\in Q}\sum_{i=1}^{m}\lambda(h_{i}(gh)^{2}h_{i^{-1}})$ , where $\lambda(h_{i}(gh)^{2}h_{t^{-1}})=0$ if
$h_{i}(gh)^{2}h_{i^{-I}}\not\in T$. If $h_{i}(gh)^{2}h_{i^{-1}}\in T$ and the order of $ h_{i}(gh)^{2}h_{\iota^{-1}}Ker\lambda$ in $ T/Ker\lambda$ is $2^{n}$ ,

then $\lambda(h_{i}(gh)^{2}h_{i^{-1}})$ is a primitive $2^{n}$-th root of unity. Thus by the assumption that
$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})\in Q$ and by Lemma 2.4 it holds that

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})$

$=|Q|^{-1}\sum_{(h,h_{i})\in A}\lambda(h_{i}(gh)^{2}h_{\iota^{-1}})+|Q|^{-1}\sum_{(h,h_{i})\in B}\lambda(h_{i}(gh)^{2}h_{i^{-1}})$

$=|Q|^{-1}(\beta-\alpha)$ .
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Secondly we assume $\lambda^{Q}=(\mu^{P})_{Q}$ . Then along the same line as above we obtain

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((qh)^{2})$

$=|P|^{-1}\sum_{h\epsilon Q}\lambda^{Q}((gh)^{2})$

$=|P|^{-1}\sum_{h\in Q}\sum_{i=1}^{m}\lambda(h_{i}(gh)^{2}h_{i^{-1}})$

$=|P|^{-1}(\beta-\alpha)$ .

\S 3. R-elementary groups at 2

Let $H$ be an R-elementary group at 2, $i.e$ .
(i) $H$ is a semi-direct product $ P\langle a\rangle$ of a 2-group $P$ and a cyclic 2’-group $\langle a\rangle$ ,

and
(ii) For each $x\in P,$ $xax^{-1}=a$ or $a^{-1}$ .

We denote $\langle a\rangle,$ $C_{P}(a)$ by $A,$ $Q$ respectively. If $H$ is a direct product $P\times A$ of $P$

and $A$ , an irreducible character $\chi$ of $H$ is decomposed into a product of an irre-
ducible character $\mu$ of $P$ and an irreducible character $\tau$ of $A,$

$\chi=\mu\tau$ . In this case
$\chi$ is of the first kind (respectively, the second kind) if and only if $\mu$ is of the first
kind (respectively, the second kind) and $\tau=1_{A}$ . But in \S 2 we already studied when
$P$ has irreducible characters of the first kind (respectively, the second kind). So
in this section we assume that $A\neq 1$ and $|P:Q|=2$ , and we only study the irre-
ducible characters of $H$ which are faithful on $A$ . We denote by $\{1, g\}$ a set of
representatives of $P/Q$ .

Let $\chi$ be an irreducible character of $H$. We assume that $R(\chi)=R$ and $Ker\chi\cap$

$A=1$ . Let $\chi_{1}$ be an irreducible character of $QA$ satisfying $(\chi_{QA}\chi_{I})\neq 0$ . Then we
can decompose $\chi_{1}$ into a product of an irreducible character $\mu$ of $Q$ and an irre-
ducible character $\tau$ of $A,$

$\chi_{1}=\mu\tau$ . We assume that $Ker\tau\neq 1$ . If $x$ is an element

of $Ker\tau$ , then we have

$\chi_{1}^{H}(x)=\mu(1)\tau(x)+\mu(1)\tau(gxg^{-1})=\mu(1)\tau(x)+\mu(1)\tau(x^{-1})$

$=\mu(1)\tau(1)+\mu(1)_{T}(1)=\chi_{1}^{H}(1)$ .
Therefore $(\chi_{1}^{H})_{A}$ is not faithful, which contradicts the fact that $\chi_{A}$ is faithful.
Hence $\tau$ is faithful. Since $A$ is not trivial, $R(\tau)=C$, which means $R(\mu\tau)=C$. Since
$\tau\neq\overline{\tau}=\tau^{q},$ $(\mu\tau, (\mu\tau)^{g})=1$ . By the Frobenius reciprocity theorem $((\mu\tau)^{H}, (\mu\tau)^{H})_{H}=(\mu\tau+$

$(\mu\tau)^{g},$ $\mu\tau)_{QA}=1$ , and so $\chi=(\mu\tau)^{H}$ . Moreover we have $\mu^{q}=\overline{\mu}$ , because $R(\chi)=R$ .
In this section, for an irreducible character $\chi$ of $H$ satisfying $Ker\chi\cap A=1$ and

$R(\chi)=R$ , we mean by $\mu,$
$\tau$ above $\mu,$

$\tau$ respectively.
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LEMMA 3.1. (1) $\chi$ is of the first kind if and only if
$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ .

(2) $\chi$ is of the second kind if and only if
$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=-1$ .

PROOF. Since $R(\mu\tau)=R((\mu\tau)^{g})=C$, by (1.1) we have

$|QA|^{-1}\sum_{h\in QA}\mu\tau(h^{2})=|QA|^{-1}\sum_{h\in QA}(\mu\tau)^{g}(h^{2})=0$ .

Thus
$|H|^{-1}\sum_{h\in H}\chi(h^{2})$

$=|H|^{-1}\sum_{h\in H}(\mu\tau+(\mu\tau)^{g})(h^{2})$

$=|H|^{-1}\sum_{h\in QA}(\mu\tau+(\mu\tau)^{g})(h^{2})+|H|^{-1}\sum_{h\in QA}(\mu\tau+(\mu\tau)^{g})((qh)^{2})$

$=|H|^{-1}\sum_{h\in QA}(\mu\tau+(\mu\tau)^{g})((gh)^{2})$

$=|H|^{-1}\sum_{h\in Q}\sum_{k\in A}(\mu\tau+(\mu\tau)^{g})((ghk)^{2})$

$=|H|^{-1}\sum_{h\in Q}\sum_{k\in A}(\mu\tau+(\mu\tau)^{g})((gh)^{2})$

$=|P|^{-1}\sum_{h\in Q}(\mu\tau+(\mu\tau)^{g})((gh)^{2})$

$=|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})$ .

Therefore by (1.1) Lemma 3.1 holds.

Now we will characterize R-elementary groups at 2 with characters of the

first kind and R-elementary groups at 2 with characters of the second kind.

First we study in the case where $R(\mu)=R$ and $\mu$ is a linear character of $Q$ .

PROPOSITION 3.2. $H$ has an irreducible character $\chi$ of the first kind (respec-

tively, the second kind) such that $Ker\chi\cap A=1,$ $R(\mu)=R$ and $\mu$ is linear, if and only

if $H$ satisfies the following condition $(A)$ .
(A) There exists a subgroup $K$ of $Q$ such that $K\triangleleft P$ and $P/K$ is an elementary

abelian group of order $\leqq 4$ (respectively, a cyclic group of order 4).

PROOF. If $R(\mu)=R$ , then we have $\mu^{q}=\overline{\mu}=\mu$ . We denote $Ker\mu$ by $K$ For
$x\in K\mu(gxg^{-1})=\mu^{g}(x)=\mu(x)=\mu(1)$ , which implies $g\in N_{P}(K)$ . Since $N_{P}(K)\supset Q$ , we
obtain that $P\triangleright K$. Because $\mu$ is linear and $R(\mu)=R$ , it holds that $|Q/K|\leqq 2$ . Thus
$|P/K|\leqq 4$ . From the assumption $R(\chi)=R$ we have $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=\pm 1$ by

Lemma 3.1. Since $R(\mu)=R$ , by Lemma 2.3 there exist characters $\xi$ and $\xi^{\prime},$ $\xi\neq\xi^{\prime}$ ,
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of $P$ such that $\mu^{P}=\xi+\xi^{\prime}$ . Moreover by Lemma 2.3 $\xi$ and $\xi^{\prime}$ are of the first kind
(respectively, the third kind) if $\chi$ is of the first kind (respectively, the second kind),

because $\mu$ is of the first kind. First we will show that $Ker\xi\cap Ker\xi^{\prime}=K$ In fact
$(\xi+\xi^{\prime})_{Q}=(\mu^{P})_{0}=2_{/l}$ , and so $Ker\xi\cap Ker\xi^{\prime}\supset K$ Let $x\in Ker\xi\cap Ker\xi^{\prime}$ . If $x\in P-Q$ , we
have $0=\mu^{P}(x)=\xi(x)+\xi^{\prime}(x)=\xi(1)+\xi^{\prime}(1)$ , which is impossible. Therefore $x\in Q$ , and
$2\mu(1)=\xi(1)+\xi^{\prime}(1)=\xi(x)+\xi^{\prime}(x)=2\mu(x)$ , which implies $\mu(x)=\mu(1)$ . Hence we have $x\in K$,

and it holds that $Ker\xi\cap Ker\xi^{\prime}=K$ Therefore we may assume that $P/K$ is a
subgroup of $P/Ker\xi\times P/Ker\xi^{\prime}$ . In the case where $\chi$ is of the first kind, we have
$R(\xi)=R(\xi^{\prime})=R$ . Thus $|P/Ker\xi|,$ $|P/Ker\xi^{\prime}|\leqq 2$ , and $P/K$ is an elementary abelian
group of order $\leqq 4$ . In the case where $\chi$ is of the second kind, we have $R(\xi)=$

$R(\xi^{\prime})=C$. Since $ K=Ker\xi\cap Ker\xi^{\prime}\subset Ker\xi$ , we obtain $4\geqq|P/K|\geqq|P/Ker\xi|\geqq 4$ . Hence
$|P/K|=4$ and $ K=Ker\xi$ . Further $R(\xi)=C$ means that $P/K$ is a cyclic group of
order 4.

Conversely suppose that $H$ satisfies the condition (A). Let $\mu$ be a faithful
linear character of $Q/K$ and let $\tau$ be a faithful linear character of $A$ . We will
prove that $(\mu\tau)^{H}$ is an irreducible character of $H$ of the first kind (respectively, the
second kind). First we assume that $Q=K$ Then $\mu=1_{Q}$ , and $((1_{Q}\tau)^{PA})_{QA}=1_{Q}\tau+1_{Q}\overline{\tau}$ ,

which implies that $(1_{Q^{T}})^{PA}$ is an irreducible character of $H$. We define the char-
acters $\xi$ and $\xi^{\prime}$ of $P$ by $\xi(x)=\xi^{\prime}(x)=1$ for $x\in Q$ and $\xi(x)=1,$ $\xi^{\prime}(x)=-1$ for $x\in P-Q$ .
Then $1_{Q^{P}}=\xi+\xi^{\prime}$ . Since $\xi$ and $\xi^{\prime}$ are of the first kind, by Lemmas 2.3 and 3.1
$(1_{0^{T}})^{II}$ is of the first kind. Secondly we assume that $|Q/K|=2$ . In this case
$((\mu\tau)^{Il})_{QA}=\mu\tau+\mu\overline{\tau}$ , and $(\oint\ell\tau)^{H}$ is an irreducible character of $H$. Since $R((\mu\tau)^{H})=R$

and $R(\mu)=R$ , by Lemma 2.3 there exist characters $\xi$ and $\xi^{\prime},$ $\xi\neq\xi^{\prime}$ , of $P$ such that
$\mu^{P}=\xi+\xi^{\prime}$ . In the case where $P/K$ is an elementary abelian group of order 4 both
$\xi$ and $\xi^{\prime}$ are of the first kind. So in this case, using Lemmas 2.3 and 3.1, we
obtain that $(\mu\tau)^{H}$ is of the first kind. Next we assume that $P/K$ is a cyclic group
of order 4. We put $ P/K=\langle y\rangle$ . We define the linear characters $\xi$ and $\xi^{\prime}$ of $P/K$

by $\xi(y)=i$ and $\xi^{\prime}(y)=-i$ . Then we have $\mu^{P}=\xi+\xi^{\prime}$ . Since $R(\xi)=R(\xi^{\prime})=C$, by
Lemmas 2.3 and 3.1 we conclude that $(\mu\tau)^{H}$ is of the second kind.

Secondly we study in the case where $R(\mu)=R$ and $\mu$ is a nonlinear character
of $Q$ .

PROPOSITION 3.3. $H$ has an irreducible character $\chi$ of the first kind (respectively,

the second kind) such that $Ker\chi\cap A=1,$ $R(\mu)=R$ and $/t$ is nonlinear, if and only

if $H$ satisfies the following condition (B).

(B) There exist subgroups $T,$ $K$ of $Q$ which satisfy the following conditions
(i) $T\triangleright K$ and $T/K$ is a cyclic group.
(ii) For $x\in Q-T$ there exists an element $a$ of $T^{x}\cap T$ such that $xax^{-1}a^{-1}\not\in K$
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There exists an element $y$ of $P-Q$ which satisfies $yby^{-1}b^{-1}\in K$ for all $b\in T^{y}\cap T$.
(iii) Let $X=\{h_{1}, \cdots, h_{m}\}$ be a set of representatives of $Q/T$. We put

$C=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{i^{-1}}\in T-K, h_{i}(gh)^{4}h_{i}^{-1}\in K\}$ ,

$D=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{i^{-1}}\in K\}$ ,

$\gamma=|C|$ and $\delta=|D|$ .

Then we have $|Q|^{-1}(\delta-\gamma)=1$ (respectively, $-1$ ).

PROOF. Since $\mu$ is nonlinear, by Theorem 2.2 there exist a subgroup $S$ of $Q$

and a character $\zeta$ of $S$ such that $R(\zeta)=R$ and $\zeta^{Q}=\mu$ . Moreover in the case where

$\mu$ is of the first kind (respectively, the second kind) $ S/Ker\zeta$ is a dihedral group
(respectively, a generalized quaternion group). Therefore $ S/Ker\zeta$ contains a cyclic

group $ T/Ker\zeta$ of index 2 and $\zeta$ is induced by a faithful linear character $\lambda$ of
$ T/Ker\zeta$ . We denote $Ker\zeta$ by $K$. Since $\lambda^{Q}=\mu$ is irreducible but $\lambda^{P}=\mu^{P}$ is not

irreducible, by Lemma 1.3 the condition (ii) is satisfied. From Lemma 2.5 we
obtain (iii). So the condition (B) is satisfied.

Conversely we assume that the condition (B) is satisfied. Let $\lambda$ be a faithful
linear character of $T/K$ and let $\tau$ be a faithful linear character of $A$ . By Lemma

1.3 the condition (ii) means that $\lambda^{Q}$ is irreducible but $\lambda^{P}$ is not irreducible. We

denote $\lambda^{Q}$ by $\mu$ . Then $(\mu^{P})_{Q}=\mu+\mu^{g}$ and $\mu=\mu^{g}$ , because $\mu^{P}$ is not irreducible. Since
$(\mu\tau)^{g}=\mu\overline{\tau}\neq\mu\tau,$ $(\mu\tau)^{H}$ is irreducible. On the other hand by (1.1) $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})$

$=|P|^{-1}\sum_{h\in P}\mu^{P}(h^{2})-|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})(h^{2})\in Q$ . Therefore the assumption of Lemma 2.5

is satisfied, and the condition (iii) means $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=1$ (respectively, $-1$ ).

Using Lemma 3.1 we conclude that $(\mu\tau)^{H}$ is of the first kind (respectively, the
second kind).

Thirdly we study in the case where $R(\mu)=C$.

PROPOSITION 3.4. $H$ has an irreducible character $\chi$ of the first kind (respec-

tively, the second kind) such that $Ker\chi\cap A=1$ and $R(\mu)=C$, if and only if $H$

satisfies the following condition $(C)$ .
(C) There exist subgroups $S\supset T\supset K$ of $P$ which satisfy the following conditions

(i) $S\triangleright K,$ $S/K$ is a dihedral group (respectively, a generalized quatemion group)

and $T/K$ is a cyclic subgroup of $S/K$ of index 2.
(ii) For $x\in P-T$ there exists an element $a$ of $T^{x}\cap T$ such that $xax^{-1}a^{-1}\not\in K$

(iii) One of the following conditions is satisfied
(a) $K\subset T\cap Q$ and $(S\cap Q)/K$ is a cyclic subgroup of $S/K$ of index 2.
(b) $K\subset T\cap Q$ and $(S\cap Q)/K$ is not abelian, or $K\not\subset T\cap Q$ . Let $X=\{h_{1}, \cdots, h_{m}\}$ be
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a set of representatives of $Q/(T\cap Q)$ . We put

$C=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{i^{-1}}\in T-K, h_{i}(gh)^{4}h_{i^{-1}}\in K\}$ ,

$D=\{(h_{i}, h)\in X\times Q|h_{i}(gh)^{2}h_{i^{-1}}\in K\}$ ,

$/^{\prime=}|C|$ and $\delta=|D|$ .
Then we have $|P|^{-1}(\delta-\gamma)=1$ (respectively, $-1$ ) and $|T:(T\cap Q)|=2$ .

PROOF. Since $R(\mu)=C$ and $\mu^{g}=\overline{\mu},$ $\mu^{P}$ is a nonlinear irreducible character of $P$.
Thus by Theorem 2.2 there exist a subgroup $S$ and an irreducible character $\zeta$ of
$S$ such that $\zeta^{P}=\mu^{P},$ $R(\zeta)=R$ and $ S/Ker\zeta$ is a dihedral group (respectively, a gen-
eralized quaternion group) if $\mu^{P}$ is of the first kind (respectively, the second kind).

Further applying Lemmas 2.3 and 3.1 we have that $ S/Ker\zeta$ is a dihedral group
(respectively, a generalized quaternion group). Let $T$ be the inverse image of the
cyclic subgroup of $ S/Ker\zeta$ of index 2 in $S$ . Then there exists a faithful linear
character $\lambda$ of $ T/Ker\zeta$ such that $\lambda^{S}=\zeta$ . Since $\lambda^{P}=\zeta^{P}=\mu^{P}$ is irreducible, by Lemma
1.3 the condition (ii) is satisfied for $ K=Ker\zeta$ . Thus if we put $ K=Ker\zeta$ , then the
conditions (i) and (ii) are satisfied.

To prove the condition (iii) first we assume that $K\subset T\cap Q$ and $(S\cap Q)/K$ is
an abelian group. Under this assumption we will show that $(S\cap Q)/K$ is a cyclic

subgroup of index 2. In the case where $\chi$ is of the first kind $S/K$ is a dihedral
group. We put $ S/K=\langle x, y|x^{2^{n}}=1, y^{2}=1, y^{-1}xy=x^{-1}\rangle$ , and we assume that $(S\cap Q)/K$

$\cap\langle x\rangle=\langle x^{2}\rangle$ . Since $(yx^{i})^{2}=1$ and $(yx^{i})^{-1}x(yx^{i})=x^{-1}$ , we may assume that $y\in(S\cap Q)/K$

Since $(S\cap Q)/K=\langle y, x^{2}\rangle$ is abelian, we have $n=2$ . We define characters $\xi$ and $\xi^{\prime}$

of $\langle y, x^{2}\rangle$ by $\xi(1)=1,$ $\xi(x^{2})=-1,$ $\xi(y)=1,$ $\xi(x^{2}y)=-1,$ $\xi^{\prime}(1)=1,$ $\xi^{\prime}(x^{2})=-1,$ $\xi^{\prime}(y)=-1$ ,
$\xi^{\prime}(x^{2}y)=1$ . Then $\zeta_{SnQ}=\xi+\xi^{\prime}$ and $\xi^{S}=\zeta$ . This means $\xi^{P}=(\xi^{S})^{P}=\zeta^{P}=\mu^{P}$ Therefore
$\xi^{Q}+\xi^{Q^{g}}=(\xi^{P})_{Q}=(\mu^{P})_{Q}=\mu+\overline{\mu}$ . Since $\xi^{P}=(\xi^{Q})^{P}$ is irreducible, $\xi^{Q}$ is also irreducible
and $\xi^{Q}=\mu$ or $\overline{\mu}$ However $R(\xi^{Q})=R)$ which contradicts the assumption $R(\mu)=C$.
Hence $(S\cap Q)/K\cap\langle x\rangle\neq\langle x^{2}\rangle$ . Since $|\langle x\rangle$ : $(S\cap Q)/K\cap\langle x\rangle|\leqq|S:(S\cap Q)|\leqq|P;Q|=2$ , we
have $(S\cap Q)/K\cap\langle x\rangle=\langle x\rangle$ . We recall that $(S\cap Q)/K$ is abelian, and we conclude
that $(S\cap Q)/K=\langle x\rangle$ . Thus $(S\cap Q)/K$ is a cyclic subgroup of $S/K$ of index 2. In
the case where $\chi$ is of the second kind $S/K$ is a generalized quaternion group. We
put $ S/K=\langle x, y|x^{2}n=1, y^{2}=x^{2}n-1y^{-1}xy=x^{-1}\rangle$ . Since $|\langle x\rangle:(S\cap Q)/K\cap\langle x\rangle|\leqq 2,$ $(S\cap Q)/K$

$\cap\langle x\rangle=\langle x^{2}\rangle$ or $\langle x\rangle$ . When $(S\cap Q)/K\cap\langle x\rangle=\langle x^{2}\rangle$ , we mayass ume $y\in(S\cap Q)/K$, and
$(S\cap Q)/K=\langle x^{2}, y\rangle$ . Since $\langle x^{2}, y\rangle$ is abelian, we have $n=2$ and $(S\cap Q)/K=\langle y\rangle$ , which
implies that $(S\cap Q)/K$ is a cyclic subgroup of $S/K$ of index 2. Thus, in any case,

$(S\cap Q)/K$ is a cyclic subgroup of $S/K$ of index 2.
Next we assume that $K\subset T\cap Q$ and $(S\cap Q)/K$ is not abelian or that $K\not\subset T\cap Q$ .

First we show that $|T:T\cap Q|=2$ . Suppose that $T=T\cap Q$ . Since $K\subset T=T\cap Q$ ,
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$(S\cap Q)/K$ is not abelian. Since $S\supset S\cap Q\supset T$ and $T/K$ is cyclic, we obtain that
$S=S\cap Q$ . Thus $\zeta^{P}=(\zeta^{Q})^{P}=\mu^{P}$ , which implies $\zeta^{Q}=\mu$ or $\overline{\mu}$ , because $\zeta^{Q}$ is irreducible.
But $R(\zeta^{Q})=R$ , which contradicts the assumption $R(\mu)=C$. Therefore it holds that
$|T:T\cap Q|=2$ . We put $\eta=\lambda_{Tn0}$ . Since $|T:T\cap Q|=2$ , we may assume $g\in T$. Let
$\{x_{1}=1, \cdots, x_{n}\}$ be a set of representatives of $P/T$. Since $|P:T|=|Q:T\cap Q|$ , we may
assume $x_{i}\in Q$ . For $h\in Q$ we can easily see that $\lambda^{P}(h)=\sum_{k=1}^{n}\lambda^{x_{k}}(h)=\sum_{k=1}^{n}\eta^{x_{k}}(h)=\eta^{Q}(h)$ .
Therefore $(\mu^{P})_{Q}=(\lambda^{P})_{Q}=\eta^{Q}$ , and so $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=|P|^{-1}\sum_{h\in Q}\eta^{Q}((gh)^{2})$ . By

Lemma 2.5 $|P|^{-1}\sum_{h\in Q}(\mu+\mu^{g})((gh)^{2})=|P|^{-1}(\delta-\gamma)$ . Further using Lemma 3.1 we have
$|P|^{-1}(\delta-\gamma)=1$ (respectively, $-1$ ).

Conversely we assume that the conditions (i), (ii), $(iii)-(a)$ are satisfied. Let $\xi$

be a faithful linear character of $(S\cap Q)/K$ and let $\tau$ be a faithful linear character
of $A$ . Since $\xi^{S}$ is a faithful irreducible character of $S/K$, there exists a faithful
irreducible character $\lambda$ of $T/K$ such that $\lambda^{S}=\xi^{S}$ . By Lemma 1.3 the condition (ii)

means that $\lambda^{P}$ is an irreducible character. We denote $\xi^{Q}$ by $\mu$ . Then $\mu$ is irre-
ducible, because $(\xi^{Q})^{P}=\xi^{P}=\lambda^{P}$ is irreducible. Therefore $\mu\tau$ is irreducible, and
$\mu\tau\neq\mu^{g}\overline{\tau}=(\mu\tau)^{g}$ means $(\mu\tau)^{H}$ is irreducible. We will prove that $(\xi\tau)^{SA}$ is an irreducible
character of $SA$ of the first kind (respectively, the second kind). If it is true,
$(\xi\tau)^{H}=((\xi\tau)^{QA})^{H}=(\mu\tau)^{H}$ means that $(\mu\tau)^{H}$ is of the first kind (respectively, the second
kind). In fact, under the condition $R((\xi\tau)^{SA})=R(((\xi\tau)^{SA})^{H})=R$ it is easily seen that
$m_{R}((\xi\tau)^{SA})=m_{R}(((\xi_{T})^{SA})^{H})$ . Since $|S:S\cap Q|=2$ , we may assume that $g\in S$. Since
$(S\cap Q)/K$ is a cyclic subgroup of $S/K$ of index 2 and $S/K$ is a dihedral group
(respectively, a generalized quaternion group), $R(\xi)=C$ and $\xi^{g}=\overline{\xi}$ . Therefore $(\xi\tau)^{g}$

$=\overline{\xi}\overline{\tau}$ , which implies that $R((\xi\tau)^{SA})=R$ and $(\xi\tau)^{SA}$ is irreducible. Since $S/K$ is a
dihedral group (respectively, a generalized quaternion group), $\xi^{S}$ is an irreducible
character of $S$ of the first kind (respectively, the second kind). Hence by Lemma
2.3 we have

$|S|^{-1}\sum_{h\in S\cap Q}(\xi+\xi^{g})((gh)^{2})=1$ (respectively, $-1$ ).

Further by Lemma 3.1 we conclude that $(\xi\tau)^{SA}$ is of the first kind (respectively,

the second kind). So under the assumption that $K\subset T\cap Q$ and $(S\cap Q)/K$ is abelian
the proof of the proposition is completed.

Finally we assume that the conditions (i), (ii), $(iii)-(b)$ are satisfied, and we
will prove that $H$ has an irreducible character of the first kind (respectively, the
second kind). Let $\lambda$ be a faithful linear character of $T/K$ We denote $\lambda_{\tau_{nQ}}$ by $\eta$

Then $\eta$ is a faithful linear character of $(T\cap Q)/(T\cap Q\cap K)$ . By Lemma 1.3 the
condition (ii) means that $\lambda^{P}$ is an irreducible character of $P$. Since $|P:T|=|Q:T\cap Q|$ ,

we have $(\lambda^{P})_{Q}=\eta^{Q}$ , and by Lemma 2.5 we obtain that $|P|^{-1}(\delta-\gamma)=|P|^{-1}\sum_{h\in Q}\eta^{Q}((gh)^{2})$ .
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By Theorem 2.2 $\lambda^{P}$ is of the first kind (respectively, the second kind). Therefore
$R(\eta^{Q})=R$ . On the other hand

$|P|^{-1}\sum_{h\in P}\lambda^{P}(h^{2})=|P|^{-1}\sum_{h\in P}\eta^{Q}(h^{2})$

$=|P|^{-1}\sum_{h\in Q}\eta^{Q}(h^{2})+|P|^{-1}\sum_{h\in Q}\eta^{Q}((gh)^{2})$ .

Using (1.1), we have $|P|^{-1}\sum_{h\in Q}\eta^{Q}(h^{2})=0$ , which implies that $\eta^{Q}$ is of the third kind

if $\eta^{Q}$ is irreducible. But it contradicts $R(\eta^{Q})=R$ . Now we may decompose $\eta^{Q}$ into
a sum of irreducible characters $\mu i$ of $Q,$ $\eta^{Q}=\mu_{1}+\mu_{2}+\cdots+\mu_{l}$ . Since $(\lambda^{P})_{Q}=\eta^{Q}$ , we
have $((\lambda^{P})_{Q}, \mu i)\neq 0$ , which implies $(\lambda^{P}, \mu_{i^{P}})\neq 0$ . Thus $\lambda^{P}(1)\leqq\mu i^{P}(1)$ , because $\lambda^{P}$ is
irreducible. Hence $2\lambda^{P}(1)=2\eta^{Q}(1)=\eta^{P}(1)=\mu_{1}^{P}(1)+\mu_{2^{P}}(1)+\cdots+\mu_{l^{P}}(1)\geqq t\lambda^{P}(1)$ . There-
fore $t=2$ and $\mu i^{P}=\lambda^{P}(i=1,2)$ . We put $\mu_{1}=\mu$ . Then $\mu^{g}=\mu_{2}$ and $\eta^{Q}=\mu+\mu^{g}$ . Now
we have

$|P|^{-1}\sum_{h\in Q}(\mu+\mu^{\sigma})((gh)^{2})=1$ (respectively, $-1$ )

and by Lemma 2.3 we have $\mu$ is of the third kind and $\mu^{\sigma}=\overline{\mu}$ . Since $((\mu\tau)^{H})_{QA}=$

$\mu\tau+\overline{\mu}\overline{\tau},$ $(\mu\tau)^{H}$ is irreducible and $R((\mu\tau)^{H})=R$ . Finally by Lemma 3.1 we have that
$(\mu\tau)^{H}$ is of the first kind (respectively, the second kind).

From Propositions 3.2, 3.3 and 3.4 we get

THEOREM 3.5. Let $H$ be an R-elementary group at 2. Let $P$ be a Sylow 2-
subgroup of $H$ and $ A=\langle a\rangle$ a cyclic normal 2’-group such that $PA=H$. We denote
$C_{P}(a)$ by Q. We assume that $A\neq 1$ and $P\neq Q$ . Then there exists an irreducible
character $\chi$ of $H$ of the first kind (respectively, the second kind) satisfying $Ker\chi\cap$

$A=1$ if and only if one of the conditions (A), (B) and (C) in Proposition 3.2, 3.3 or
3.4 is satisfied.
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