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ON THE BAHADUR REPRESENTATION OF SAMPLE
QUANTILES FOR MIXING PROCESSES

By

Ryozo YorovAma

1. Introduction.

The asymptotic almost sure (a.s.) representation of sample quantiles for inde-
pendent and identically distributed random variables was firstly established by
Bahadur [1]. Kiefer [5, 6] obtained further developments on this line and also
investigated the a.s. representation of quantile process. Here we remark that the
representation of sample quantiles in the sense of in probability was obtained first
of all by Okamoto [7]. The extensions of Bahadur’s by relaxing the assumption
of independence of the basic random variables have been studied by a number of
authors. Especially, Sen obtained completely analogous results to Bahadur’s
one for stationary ¢-mixing processes. The object of the present paper is to show
that the Bahadur representation holds, but with a slightly different order of the
remainder term, for stationary sequences of strong mixing random variables. We
also consider the Bahadur representation for absolutely regular processes and the
a.s. representation of quantile processes for ¢-mixing and strong mixing processes.

Let{X» n=1} be a strictly stationary sequence of random variables defined on
a probability space (£, %, P). We shall say that the sequence {X»} is ¢-mixing if

a.1n sup|P(AB) — P(LA)P(B)|[P(A) =¢(n) | 0 (n—00),

absolutely regular if

a.2) E{sup|P(B|.#¥)—P(B)|} =) | 0 (n—),

and strong mixing if

1.3 sup|P(AB) —P(A)P(B)|=a#») | 0 (n—00).

Here the supremum is taken over all Ae_#¥ and Be_#%.,, and _#? denotes the
o-field generated by X»(a<#<b). Among these conditions (1.1)-(1.3), the follow-
ing inequalities hold:

a(n) =pn) =p(n).

For a discussion of mixing conditions, see for example, Ibragimov and Linnik
[3]. In late sections, in addition to (1.3), we may need the following condition:
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(1.4) gnz"{a(n)}5<oo for some k=1 and 0<d<1.

We assume that each X; has a distribution function (df)F on the unit interval
I=[0,1]. For pel, we write £(=&p) for the p-quantile of F. Let 0=Xn (< Xn ;<
-+ = Xnn=Xnn=1 denote the order statistics of the sample (Xj,::-, X»). Define
the empirical df Fn and the sample p-quantile Z.(=Zp ) as follows:

(1.5) Fa(® =n—l__§;,c<t—x,-), tel,
where ¢(#) =1(=0); =0u<0), and
1.6) Zn=Xnr, where r=[np]+1.

Further define the empirical process Vn.={V.(#): tel} and the quantile process
Qn={Qn(®): tel} as follows:

a.n Va(®) =nl2[ Fa(F-1(0)) —1],
and
a.s Q) =n2[Zs n— F1(1)].

Where no confusion is possible K, K,, etc., denote generic constants.

The main results are stated in Section 3. Section 2 deals with basic lemmas
on strong mixing Bernoullian random variables, which are used in the proofs of
the main theorem in Section 4 and the further extension to quantile process in
Section 8.

2. Preliminary lemmas.
Let {z:} be stationary sequence satisfying (1.3) with
2.1 Ez;=0, Ez2=7; 0<7<1,
P(z;]>1)=0 and Elz;|<c7z, 0<c<oo.

It is clear that (2.1) holds when z; are Bernoullian random variables, centered at
expectations. Let

Sn=2z1+:-+22, n=1.
LEMMA 2.1 (Yokoyama [11]). Under (1.4) and (2.1), for every n=1,
(2 2) E(SnZ(k+1)) éKa {nfl—ﬁ_}. +nk+lz-(k+1)(l—5)}, Kw< 0.
Consider now a double sequence of Bernoullian random variables
2.3 Uni=Un(X:), i=1,---, n;
P(Uni=1)=1—P(Uni=0) =p», 0=pn<1,
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where the basic random variables {X»} satisfy (1.3). Then we have the following
two lemmas.

LemMMA 2.2. If (1.4) holds, then for every positive K, there exist positive
constant K, such that, for every n=2,

2.9 P(w 5 Uni— pu> Kn P log n)

K.nt(logn)=2 if B<k/2(k+1),
K.n2(logn)~2 if B<(k—1/2(k+1).
Proor. If we put
(2.5) 2i=Uni—Dn,
then z;,---, z» satisfy (2.1). From Lemma 2.1,

n
(2.6) E( z:lz,-)mw S K, 115+, 0< Ky 1< 00,
1=

and hence, by the Markov inequality

@.7) P(n‘lﬁ“lUni—Pn>Kn"slog )
<K| _"zlzil > Kn'-flog n)
1=

_S_ (Knl—ﬂlog n)—2(k+1) E(%zi)Z(k*‘l)
=1

S K *+DA-28 (Jog ) ~2k+D)

Hence, (2.4) follows from [2.7).

LeMMA 2.3. Suppose that (1.4) holds for some 0<6<(2k+1)/2(k+1), and
that Kin~P'logn<p.<Kon Flogn(0< K;, K;<0) for some 3/[2{(k+2)—(k+1)5}]1<
B<B'<1. Then, for every positive K, there exist positive K, (<o) such that

2.8) P(nt il Uni—bn> Kn-Ylog n) < K,n-1-7+8(log n)~2,

Jor all n sufficiently large, where
2.9 r=Lk+ {(B+2)—(k+1)0}8]/(2k+3).

Further, if B>5/[2{(k+2)—(k+1)0}] and 0<6<(2k—1)/2(k+1), then for all n
sufficiently large,

(2.10) LHS2.8) = Kn 2 7B(log n)~2,
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where
(2.11) r=[k—1)+ {(k+2)—(k+1)3}B][(2k+3).
We note that each 7 given by (2.9) and (2.11) satisfies
(2.12) 1/2<r<3/4.

Proor. By assumption on p», for all n sufficiently large,
(2.13) n{Pn(1—Dn)}1¥=1.
Hence, it follows from that for all n sufficiently large

n
(2.14) E(_lei)z(kﬂ) < Ko 1151 {pn(1— )} 4D A-0)
1'=
< K, on+D{1~-0-08} (Jog p) k+D A8

Then, (2.8) and (2.10) follow from (2.14) and the Markov inequality.
In the sequel, we shall consider k2, 8 and ¢ in one of the following three cases.

(2.15) (1) k=2, 0<6<k—1D/(k+1),
3/[2{(k+2)—(k+1)d}]1<B<1/2,

(2.16) (i) k=3, 0<o<(k2—k—3)/k(k+1),
3/[2{(k+2)—(k+1)0}]<BZR/2(k+1),

@.17D (iii) k=6, 0<o<(B2—4k—T)[(R2—1),

5/[2{(k+2)—(k+1)0}1<B<(k—1)/2(k+1).

3. The Bahadur representation of sample quantiles for strong mixing
sequences.
Let the stationary sequence {Xn} satisfy (1.3). We assume that F(?) is abso-

lutely continuous in some neighborhood of its p-quantile §, and has a continuous
density function f(#), such that

3.1 0< f(§) < c0.

Let

(3.2) =vp+ 2308
h=1

vp=E{c(§—X)c(6—X14n)} — D2, h=0.

We note that Jla(n)<oo implies v<oco. Further, let
@3.3) o=v[f(£),



On the Bahadur representation of sample quantiles for mixing processes 79

and assume that

3.4) >0

For 8 (0<B£1/2), we define

3.5 I.(B)={t:6—nPlog n<t<&+nBlog n}

Then, we have the following.

THEOREM 3.1. If (1.4) holds for some k and 0 in (2.15), and if (3.1) holds,

then as n— oo,
(3.6) sup{|[ Fx($) — F(8)]—[Fn(&)— F(&))]|: tel (8D}
=0 "logn) a.s.,

wheve v and B are given by (2.9) and (2.15), respectively. If, in addition to

3. 1),
3.7 f'(t) is bounded in some neighborhood of &,
and if
(3.8) holds for some k and 0 in (2.16),

then as n—oo
(3.9) |02 {[Zn—E] f(E) + LFn(&) =P}
=0(n"logn) a.s.,

where 11=7—1/2 and 7 is given by (2.9) corresponding to B in (2.16).
Under (3.1), (3.4) and (8.8),

(3.10) LN Zn—E&]]o)— (0, 1).

Finally, under (3.1), (3.4), (38.7) and (3.8),

(3.1 lim sup #n'2(Zn—&)/[0(2log log n)!?]=1 a.s,,
3.12) lim inf #'2(Zx—&)/[0(2 log log n)12]=—1 a.s.
n—oo

4. Proof of Theorem 3.1l

The proof follows on the same line as in [Theorem 3.1 of Sen [10].

sider a set of real numbers
4.1 nrn=6+rn"logn for r=0, x£1,---, =bn;

n=[n""B]+1.

We con-
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Then we have

(4.2) sup{| Fu(#) — F(t) — Fa(§) + | : teln(B))
< max ]Fn(’]r’n) - F(vr,n) - Fn(E) +p|
—~bpSr=bn
+ max |F(7)r+1,n)—F(77r,n)l-
= =r<bp—1

By (3.1) and the continuity of f(#) in some neighborhood of &, if we choose n
sufficiently large, the second term on the RHS of (4.2) is O(n~"logn). To com-
plete the proof of (3.6), it suffices to show that the first term on the RHS of (4.2) is
also O(n~" log n), with probability one, as n—oo. Let

(4. 3) U(Ji)=0(77r,n—Xi)—C($‘—Xi)’

i"—'l,"', n; r:l, e bn

Then U¢} are zero-one-valued random variables, for which

4.4 PUR=1)=F(r,n) — F() =prn;

(4.5) KinVlogn=p,n=KmPBlogn 0<K;, K;<0,
where K; and K, depend on f(§), and

(4.6) Fu(7r,n) — Fu(&) =n‘1§',1 U,

From Lemma 2.3, it follows that
P(an(?r,n) - F(ﬂr,n) - Fn(&) +pl>Kn"’ log n)

(4.7) S K n1"7*B(log n)2
for all » sufficiently large and all r=1,---, bx. The same inequality holds for
y=—bn,---,—1. Hence,
P bm<abe |Fn(vr, n)— F(vr’ n)— Fn(&) +Pl >Kn™" lOg n)
(4.8) < 2K, ban1""B(log n) 2= 0(n"1(log n)~2),

and the proof of (3.6) follows from (4.2), (4.8) and the Borel-Cantelli lemma.
To prove (3.9), we note that
4.9 P(Zn<&—n"Rlogn)

=P([n‘1.-__§;c(5—n“‘3 log n—X;)— F(é—n""log n)]

=7/n—F(E—n"Rlogn)),
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where by (3.1), as n—o0

(4.10) rin—F(éE—n"Blog n)=f(&)n B logn(l+o(l)).
Hence, by (2.4), (4.9) and (4.10), we have

(4.11) Zn>&—nPRlogn a.s., as n—oo0,

In a similar way, we have

(4.12) Zn<é+nBlogn a.s., as n—oo,

From (3.6), (3.7), (4.11) and (4.12), (3.9) follows.
The proofs of (3.10)—(8.12) are the same as those of Sen and so are
omitted.

REMARK. We remark that
(4.13) L PLFn(&)—p][0)—_#"(0, 1)
holds under Jla(n)<oo(cf. [3]), and that

(4.14) lirrlosoup nRLFa(&)—p]/[v(2log log n)12]=1 a.s.,
(4.15) lim inf #! [ Fu(&) —p]/[v(2 log log n)2]=—1 a.s.

hold under a(n)=0(x"1-€) for some €>0 (cf. [8]).

5. The Bahadur representation for absolutety regular processes.

In this section, we consider Bahadur’s representation of sample quantiles for
stationary sequence satisfying (1.2).

Let {Y., #=1} be a sequence of zero-one-valued random variables satisfying
(1.2), and

G.1D P(Yi=1)=1—-P(Y;=0)=p; 0<Hp<1.
Let
Sn=Y1+"'+Yn, n=1.

Then, we have the following.

LEMMA 5.1. For 6: 0<d6<1, and all s>0,

(5.2) P(|Sn—np|>s) 2w +1) {exp(— h) +n=08(nd)},
whevre
(5.3) h=h(n, b, s)

=2/[2(n-5p(1—p) + (¢/3)max {p, 1—1p})]
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and

(5.4) t=tn=s/(n+1).

Rroor. Choose an integer k=k.=[n’]+1, and write

(5.5) Sn=U;+ -+ Uy,
where
(5.6) U=Yi+ Y+ -+ Yiempx, 12575k

and mj=mn; is the largest positive integer for which j+m;ik<n. We note that
B.7D mi<m;<n'"%—1, for j=1,--+, k and k<n.

From (5.5), it follows that

P(|Sn—np|>s)
k
(5.8) gP(Jg1 |Ui—(mji+1)p|>s)

k
_S_%P( |Uj— (mj+1)p|>ks).

For fixed j (1<j<k), let A; be the Borel subset of the (mj+1)-dimensional
Euclidean space R”/*! defined by

(5.9) Ai={(yor- Im): [,’:20’<yi—p>l>k-ls}

and define the Borel function g by
1 if (yo -y ym,)EA;]
(5.10) F(Yoreess Ym))= [ .
0 otherwise.
Using Lemma 1 of Yoshihara repeatedly, we have

(5.11) P Uj—(mj+1)P|>k71s)
=Eg( ij"" Y:i+m,)

éS .o Sg(yo’..-’ ym,)dGCyO)“'dG(ym;) + zmlﬁ(k)
RMJ+1

=P<|:§O< Vi — )| >k1s) +2miBCk),

where {Y»'} are independent and identically distributed random variables with same
df G as that of Y;. By the Bernstein inequality
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(5.12) 2 lf:z;m' —D)[>ks) <2exp(—h),

where % is given by (5.3). Since (5.11) holds for each j (1<j<k), the proof of
(5. 2) follows from (5.8), (5.11) and (5.12).

THEOREM 5.1. Under (3.1) and

(5.13) SnsHB(n3'-1< oo for some 1/2<y<3/4,
as n—oo
(5.14) sup{|[ Fa(#) — F($)]1—[Fu(&) — F(&)]| : teln(r—1/4)}

=0(n""logn) a.s.
If, in addition to (3.1), (38.7) holds, as n—oo

(5.15) In12{(Zn—8) f(&) + [Fn(&)—11}|
=0(n""12logn) a.s.

Further, under (3.1), (8.4) and (5.13), (8.10) holds, and under (3.1), (3.4),
(3.7) and (5.13), (3.11) and (3.12) both hold.

ProoF. We have only to prove that the first term on the RHS of (4.2) is
O(n~" log n) and that (4.11) and (4. 12) both hold for 8=y —1/4. Define b» in (4.1) by
(5.16) n=[nV4]+1.

Then, prn in (4.4) satisfies
(5. 17) pr’n_i;Kln—7+l/4 log n (0<K1<00).

From Lemma 5.1, we have
P( max IFn(ﬂr,n) - F(ﬂr,n) —Fu(&) +pl>Kn_7 log n)

~bpn<r<h,

(5.18) <4bn(n8 +1) {exp(—hn) + n1-3p(nd)},

where hn=h(n, prn, Kn=7logn). Since h(n,p,s)=s*4(n'*p+nls), if we put o=
3/4—7, for all n sufficiently large,

(.19 hn= K2 log n/4( K, + Kn~1/%)
=A4An say,
and then,
(5.20) log {ban® exp(—2x)}/log n—(1—7)— (K24 K).

If, given K;, K is chosen suficiently large, the limit in (5.20) is less than —1,
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then by (5.19),

(.21 > band exp(— hn) <00,
and hence follows. By (4.9), (4.10) and Lemma 5.1, as n—o0
(5.22) P(Zn<E—n"""1]og n)

<28 + 1) {exp(—h»n') + n1798(n?)},
where h.'=h(n, p, f(E)n*4Ylogn). If we put 6=3/2—27, for sufficiently large #,

(5.23) k' 2 12(8)(log n)?/p(1—P).

Since f2(&)/p(1—p)>0, it follows from (5.23) that >n® exp(—hxn')<{co. It is clear
that S\nB(n%)< oo, and hence

(5.24) Zn >E—n"""]logn a.s. as n—o0.
It also follows that
(5.25) Znl+n"4]logn a.s. as u—00.
REMARK. Recently, Yoshihara proved that under the condition B(n)=0(e™*")
for some £>0,
sup{|[ Fn(®) — F($)]—[Fn(&)— F(&)]| : telx(1/2)}
=0(n"¥4(log n)?) a.s.

6. Functional central limit theorems for sample quantiles.

Let D=D[0, 1] be the space of functions on I that are right-continuous and
have left-hand limit, with uniform topology

(6.1) acf, 9)=stueglf(t)—g(t)l for f, geD.

Let {X»} satisfy (1.3), and assume that F is twice differentiable on I, and

(6.2) itnlff(t)>0 and stu?f'(t)<oo (f=F").

We define for every s, tel,
(6.3 v(s, H=lim{n cov[ Fo(F1(s)), Fa(F ()]}

n—-00

where we note that Sa(n)< oo implies |v(s,2)|<oo for all s, tel. Let, under (6. 2),
(6.4) a(s, ) =v(s,D/f(F)f(FUE)), s, tel.

Finally, let Q. be the quantile process defined by (1.8), and let Z={Z(¢):tel} be
a Gaussian random function on I such that EZ(¢#)=0 and E{Z(s)Z(t)}=0(s, t) for
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all s, tel. Then we have the following.

THEOREM 6.1. Under (3.8) and (6.2),

7
(6.5) Qn—Z (in D).

Next, we consider the space C=C[0, 1] of all continuous functions on I with

uniform topology. Define a process Yn.={Y.(¢):tcl} by

(6.6) Yr(0)=0, Yu(i/n)=i[Z;—&]/(on'?), i=1,---, n, and linear interpolation
for te[(1—1)/n, i/n], i=1,---, n.

THEOREM 6.2. Under (3.4), (8.7) and (3.8),

7
6.7 Yo—W (n O

where W= {W(¢t):tel} is a Wiener process on I.
Let {N,} be a sequence of positive integer-valued random variables, such that
as 7—0o0

(6.8) r"INy—2Z, in probability,
where 24 is a positive random variable defined on the same probability space (2, &,

P). Then we have

THEOREM 6.3. Under (6.8) and the assumptions of Theorem 6.2,
9 .
(6.9 Yn,— W @Gn C)

7. Proofs of Theorems [6.1—6. 3.

The proofs of Theorems and are the same as those of Sen [10, Theorem
6.2], and so are omitted.

Rroor or THEOREM 6.1. On D, define another empirical process Vy*= {Va*(#):
tel} by
7.1 Va*(8) = Va(B/ f(F(D).
where V» is the empirical process defined by (1.7).
Since Z lies in C with probability one, Va.* converges weakly in the uniform topo-

logy on D to Z under the condition a(n)=0(n"52-¢) for some €>0 (cf. [13]). We
complete the proof of theorem by showing that

P
7.2 d(Qn, Va*¥)—0 as n—o0,
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We consider the case F(¢)=t. We shall prove (7.2) in three steps. Define another
quantile process Q»= {@n(¢):tel} by

(7.3) Qn(iln)= @u(i/n), i=0,-, n,

and by linear interpolation for te[(i—1)/n, i/n], i=1,---, n. Also define another
empirical process Va={Va(#): tel} in the same manner, i,e., Va(#) is the linear
interpolation of V.(#) between the points t=i/n for ¢=0,---, n.

Firstly, we show that

P
(7.4 d(Va, V2)—0 as n—oo.

Let Ini=[(i—1)/n, i/n] for i=1,---, n. Then we have
(7.5) sup| Va(t) — Va(d)|
<max sup| Va(t) — Va(d)|

15i<n teln

<2 max sup|Va(¥) — Va(i/n)|.
1<i<n teln;

Hence, from (2.8), (7.5) and the arguments of the proof of (3.6) as in (4.1)—
(4.8), for K>1 and all » sufficiently large, it follows that

(7.6) P(S:JPI Va(®) — Va(®)|>2Kn="*12 log n)

< I_Z:‘.lP(supl Fu(t) = Fu(iln) —t+iln|> Kn-Ylog n)

telyg

= 0((log n)72)

which implies (7. 4).
By repeating the method of the proof of (3.9) as in (4.9)—(4.12), we have,
as n—oo

7.7 P(onsrslSXIQn(i/n) — Va(i/n)|>Kn=7+1/2 log n)
= 0((log n)2).

From (7.3), (7.7) and the definition of Va», it follows that

. _ P
(7.8) d(Va, @Qn)—0 as n—co.
Finally, we show that

_ P
(7 9) d(Qn, Qn)'—"o as n— 00,
then (7.2) follows from [(7.4), (7.8) and (7.9). By (7.3)
(7 10) sup| Qn(t)— Qn(t)l gmax nI/ZIXn,i+1—Xn,i|y
tel 1Sign
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and, for i=1,---, n,
(7.11) 12 X iv1— Xn, il
= |@u(E/n) = Valiln)| +|@u((G—1)/n) — Va((E—1)/n)|
+|Va(ifn) — Va(G=1)/n)| + 532

From (7.5), (7.6), (7.7), (7.10) and (7.11), (7.9) follows. Thus, the proof is
completed in the case F(#)=t.

For an arbitrary twice differentiable F, the proof of (7.2) follows from the
essentially same line as the above proof and so is omitted.

8. Almost sure representation of quantile processes.

Let {X.} satisfy (1.3), and let @. be quantile process and V. be empirical
process defined by (1.8) and (1.7), respectively.

THEOREM 8.1. If (1.4) holds for somd k and 6 in (2.17), and if (6.2) holds,
then as n—oo

(8.1) Stlglpl QB f(F )= Va(®)|=0n-"7logn) a.s,

where 1,=7—1/2 and y is given by (2.11) corresponding to B in (2.17).

ProorF. We use the notations and methods of previous section, and prove the
theorem for the case of uniform distribution as in [Theorem 6.1. If we use the
second inequality in (2.4), then (7.7) is replaced by

(8.2) P(orél’;gi | @n(i/n) — Vu(i/n)|>Kn~" log n)
= 0(n"1(log n)~2).

Further, applying the inequality (2.10) to (7.6), we have

(8.3) P(sup|(Va() = Va(£)|>Kn~" log n)
=0 1(log n)72).

By (8.2), (8.3) and the Borel-Cantelli lemma, as n—o0

(8.4) Sttllp! Qu(D) — Vu(t)|=0(n~" logn) a.s.,

and

(8.5) stulp]Vn(t)— Va(®)| =0 logn) a.s.
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Finally, from (7.5), (7.10), (7.11), (8.4), and (8.5), it follows that, as n—o0
(8.6) stquIQn(t)—Qn(t)|=0(n“"- logn) a.s.

and the proof of (8.1) follows from (8.4), (8.5) and [(8.6).

9. Concluding remarks.

(i) Quantile processes for ¢-mixing random variables.

For ¢-mixing random variables, Sen investigated the Bahadur representa-
tion of sample p-quantile and the weak convergence of quantile processes which are
different from ours. But his results are immediately applicable to our Section 6
and Section 8. Let {X»} satisfy (1.1) with

(9.1 #(n)=0(n"2),

and let each X; have a df F on I. We note that (9.1) is a sufficient condition for
weak convergence of empirical df’s to a Gaussian random function (cf. [12]). It is
easy to check that Lemmas 4.1, 4.3 and 4.4 of Sen hold under (9.1), and
hence, his holds under (9.1), instead of his (2.2), by using the central
limit theorem for bounded random variables (cf.[3]). From these remarks and
our methods, we have the following.

THEOREM 9.1. Under (6.2) and (9.1), as n—oo0
9.2) stulp]Qn(t)f(F‘l(t)) —Va®)|=0(n18logn) a.s.

Further, under (6.2) and

(9.3) o(n)=0Ce"t*) for some t>0,
as n—oo
9.4 LHS(9.2)=0n"1*logn) a.s.

(i1) Quantiles for multivariate distributions.
As in [10], we can consider quantiles for a strictly stationary strong mixing
sequence {X;)} of stochastic vectors. We assume that X; has a g-variate distribution

F(&), 7€R9, and {X;) satisfies (1.3). Let é€=(&;, -, &), be a point in R? and
(95) P(X1]§£])=p]: 0<ﬁ?<1y j=1’"': qy i=1’ 29"'

where X;; is the j-th variate of X;. Further, we assume that is some neighborhood
of & F(&) is strictly monotonic is each of its g coordinates and admits of a con-
tinuous density function f(&), such that
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(9.6) 0<f(&)<oo.

Define

9.7 LB ={&=(x1,, %g): lma_lxlxi—&l <n B log n}
Sisq

and put F(€)=p where we assume that 0<p<1. Finally, let
(9. 8) Fn(j>=n_1[ﬁ Of X‘i=(Xi1""y Xiq): X17§x7)
j=1,--+, q for i=1,--, n].

THEOREM 9.2. If (1.4) holds for some k and 6 in (2.15) and if (9.6) holds,
then as n— oo

[9.9] sup{|[Fu(&)— F(&)1—[Fa(®)— F(®)1| : z€ln(B)}
=0n"logn) a.s.

where v and B are given by (2.9) and (2.15), respectively.

The proof follows along the same line as in [Theorem 3.1 and so is omitted
(cf. Theorem 6.4 in [10]).

Analogous results to Theorems 6.5 and 6.6 in may also be proved, but
we shall not enter into details.
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