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Introduction.

Let L, be a first order language with the following primitive symbols: 1. Func-
tion symbol: /, +. 2. Individual constant: 0. 3. Predicate symbol: =. Let L be
the first order language obtained from L, by adding predicate symbols P, @Q, ---.

By N we denote the theory in L whose axioms and axiom schemata are:

Ny) Vz(0+z').

(N2) VaVyx'=y'dx=y),

(Ns) Vx(x+0=2x),

(No) VzVylz+y' =(=+v)),

(Ny) VxP(x,0,0),

(Ne) VaVyV2{P(x,vy,2)DP(x,y,2+z)},
(N7) VaVyV2Vuw{(P(z,y,2) APz, y,w))Dz=w},
(Ns) Vz(z=x),

(Ny) VaV ylz=yDWz) DA},
(Ni1o) {AOAY 2(Wx) DWW N} DY 2A(x) ,
(Ny1) s=t, where s=¢ is valid.

We define b(#), b(N) inductively as follows: 1. If #=0 or ¢ is a free variable,
then b(z)=0. 2. If ¢ is a bound variable, then b(#)=1. 3. b{#)=b{#). 4. bls+#)=
b(s)+b(¢). 5. b(Qt, -, t,))=max(b(t), ---, bz,)). 6. b(=A)=bA). 7. b(AAB)=max
(b(N), b(B)). 8. b(V zA(x))=b(A(x)).

The purpose of this paper is to prove the following theorem.

For any formula Wa) of L; if there is a number m such that, for any natural
number n, theve exists a proof P of W#) in N with the following properties (1) and
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(2), then Y 2W(x) is provable in N.
(1) The length of B is less than m.
(2) For any induction schema B in B which is not a formula of L,, b(B)<m.
We consider the system N* obtained from N by omitting the axioms (N;)-(Ns),
and by replacing the axiom schemata (N,)-(N,;) by the following inference rules:

*) As), '—4  I'—d,%(s)
N, T—4 T—4,%0)

where s=t¢ is valid.

(**) (induction inference)
NOAY 2(N(z) DW= N} DV 2W(x), "4
I'—4

where the formula {A(0)A V 2(A(x)DU(x’))}DV 2A(x) is called induction formula of
the inference.

(r*) I—4,s=t Ws), I3  T'—d,s=t Wt), >3
@), 1—4,% IU(s), 14,2

I'—d,s=t [I-3,U(s) I'—d,s=t II-X,U(¢)
r,iI—4,%,%¢) I, [I—4,%,%s)

Because we can consider (N;)A---A(Ng)DN(@) in place of (a), it is sufficient
for our purpose to prove:

THEOREM. For any formula Wa) of L; if there is a number m such that, for
each natural number n, there exists a proof P of W(n) in N* with the following pro-
perties (1) and (2), then Y xU(x) is provable in N.

(1) The length of P is less than m.

(2) For any induction formula B of induction inference in B, if B is not a
Sformula of L., thern b(B)<m.

The proof of the theorem consists of three parts §1, §2 and §3. Section 2 is
the main part of it.

§1.

To prove the theorem, we assume that, for each natural number %, there exists
a proof B, of A(#) with the properties in the theorem. In this section, we divide
the set {{.|7ew} into finite groups. '

An equivalence relation A~WB between formulas is defined, by induction, as
follows:

1. If A and B are atomic formulas with the same predicate symbol, then U
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~B.

2-3. If A~B and E~D, then -1 A~=1B and AAC~BAD.

4. If A~B, then VA~V yB.

The above relation ~ is extended for proofs in N* as follows:

1. If P=A-A and Q=B—->B, then P~L.

2. If P=Po/I'—4, Q=0/II—-3, Po~Qy, and the last inference rules of P,
are the same type, then P~Q.

3. If P=P,Po/I—4, Q=0,0:/I[>3, Pi~D;, P>~0», and the last inference
rules of P, are the same type, then P~L.

The proofs of the following two lemmas are easy and so we omit them.

LemMa 1.1. If B~Q, and P and Q are proofs of Wy, -, U,~By, -, B, and of
G, -, 6,—>Dy, -, D, vespectively, then p=r and v=_2.

LeMMA 1.2. The number of equivalence classes by ~ of proofs with length< m
are finite.

The first division: We divide the set {Pnlnew} by the equivalence relation~.
Note that, by these classes are finite.

A function F,T) (A is a formula and T is a set of formulas) is defined
inductively as follows:

1. If % and elements of ¥ are all atomic formulas with the same predicate
symbol, then F(A, T)=N.

2. If A=W, AU, and T={B,*AB,?|1e 4}, then

T, T)=FWs, {Bi*|2€ AN AT U, {Bo*|2€4}) .

3. If A==, and T={—1B;|ie4}, then FQOA T)="1FWo, {B.l2e4}).
4., If A=V 2, and T={V z,B,|1e 4}, then

T, T)=V 2F(Wo, {Ba|2e 4}) .

5. Otherwise U, T)=0=0.
We define:

%(%Ily Sty 521:,u_>%1y Ty %v: {@11: Tty (‘gpl—*@lx’ RS} SD,,IIZGA})
=F W, {€:%|2e4}), - —>F( By, {(Di?[2e4}), - .

The above function  is extended for proofs as follows:
1. If P=U->A and O,=B,—B;(1€4), then

FA-Y, {Qa]2e 4}) =F, {B; 2 A)—>FA, {Bal2e4}) .
2. If P=Po/I'—>4, Q.= I1,—3;(1e ), and the last inference rules of P and
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L, are all the same type, then

F(Po, {L0%|2€ 4})

T (B, {Qalred)) = F—A4,{II,—>2;|2e A})

3. If BP=PiP/I'—4, Q,=0,Q,%/I1,—~23;, and the last inference rules of B and
£, are all the same type, then

_ TP, (247 2ed)) F(Be, {De?|aed})
TCB, {Qal2ed)) = ST, (1> 3 2e 1) .

4. Otherwise (P, {V:l1e4})=0=0—0=0.

LEmmA 1.3.

(1) deg(FXN, {B;|2e4}))<min (deg (A), {deg (B,)|Ae}), where deg(N) denotes the
number of occurrences of logical symbols in .

(2) FAM®), (A(m.)|ae A}) =U(R).

(3) T, (Bulx)|2eA)=FN, {B:(t)|2€ A}), where t,(ie ) are terms.

(4) (=), Bilre) (f ):%@x(n, (B,12¢ 1)), where ¢ is a term.

Lemma 14, If A={BO)AY 2(B(z)D>B(z")} DV 2B(x),
C.={DOYAY 2:(D:(2) DDz N} D VY 2Dy (),
and FU, {€,|2eA})=E€, then
E={FOA VY 2(F(@)DF(x" ) DV 2F(x)

Sfor some F(x).

Lemma 15. If P~0,(ed), and I'>4 and 11,—3, are end-sequents of B and
Qs, respectively, then F(P,{QulreM)~P and the end-sequent of F(PB,Q;lied}) is
= d, 11,2 ,| e A}).

By replacing PB. by F(Pa, {Ril2€4}), where {PB,lieA} is the equivalence class
which contains P,, we can assume that given proofs P.(new) have, in addition to
the properties in the theorem, the following properties: (1) There exists a number
my, such that, for any natural number #, deg (8) <, for any formula 8 which occurs
in P.. (2) There exists a finite set of predicate symbols which, for each natural
number #, contains all predicate symbols occurring in B,.

Hence we can assume, without loss of generality, that formulas in beginning
sequents in P, are all atomic formulas.

Further we can also assume, without loss of generality, that P, is cut-free, by
the following lemma. Its proof is routine, and so we omit it.



A Theorem on the Formalized Arithmetic 199

LEMMA 1.6. There exists a function D(m,n) such that: if we have a proof P
of I'—4d in N* with length<m and degN)<n for any formula N in P, then we
can find a cut-free proof of I'—>4 in N* with length<D(m,n).

§ 2.

In this section, for each new, we define a formula ¢s of the language L, for
each sequent & in the proof PB,. For the definition we must make some prepara-
tions.

Functions a(¢), d(¢), e, x), (N, ) and g(A) are defined inductively as follows:

1.1 If ¢t=0, or ¢ is a free variable, then a(¢)=t.

1.2 If ¢ is a bound variable, then a(¢)=0.

1.3 a()=(a@)).

1.4 a(s+t)=a(s)+a®).

2.1 d(P{,, -, 2t))=r.

2.2 d(mA)=d).

2.3 dAAB)=d(N)+d(B).

2.4 d(V 2U)=dN).

3.1 e(Pty, -, t),x)=<1, -, ).

3.2 e(UAADB, x)=e N, x)*+m, -, v+m,),
where e(ﬂé, xz)=<{my, -, m,y and v=d(A).

3.3 e(mY, x)=e(N, x).

3.4 e(Vy¥, x)=eN, x).

3.5 e(ValN, z)=< ).

4.1 f(P(ty, -, t,), 2)=< .

4.2 fQANB, 2) =N, 2)*+my, -, v+m,D,
where (B, x)={m,, ---,m,> and y=dN).

4.3 £(—U, 2)=£, ).

4.4 (VU 2)=1£, x).

4.5 (V2N x)=<41, v, where v=d(q).

5.1 g(MN) is a finite sequence of terms with length d().
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5.2 g(P, -, L)@ =t

5.3 g(mW)y=g®N).
g(A)(@) if i<d(),

5.4 g(‘llA%)(i):{
g®B)(y) if i=j+dW).
5.5 g(V2A)=g®N).

If any bound variable which occurs in a term ¢ occurs in x,--,x,,
c(t, a,{xy, --+, x,>) denotes
m, m,
— —TT—
a+ (x4 +x) 4+ e+ ),

where m; is the number of occurrences of x; in £

For a formula B, a finite sequence a of free variables with length d(®B), and a
finite sequence & of bound variables; if any bound variable which occurs free in B
occurs in &, then we define c(B, «, &), by induction on B, in the following manner:

(P, -, 1), <ay, -+, a0, §)=P(clty, ay, §), -+, c(t,, ., §)).

c(mMB, a, &) ==1c(B, a, &).

C(BAG, axB, £)=c(B, a, &) Ac(C, 5, &), where the length of « is d(®B).
If x does not occur in &, then

c(V 2B(z), &, §) =V z(c(B(x), a, {x>*E)) .

-~ w =

5. If x occurs in &, then
c(V 2B(x), a, &)=V 2(c(B(x), a, £)) -

We define a relation ~ between formulas as follows:

1. If A and B are atomic formulas with the same predicate symbol, then A=B.
2-3. If A=V and €=D, then A==V and AAC=BAD.

4. If A~=B, then VA=V £B.

LemmMma 2.1
(1) For any term t,

>V, Va,t=ct a, <z, -, 2)) (a?ﬂ)l

is provable in N, where x,,---,x, ave all the bound variables which occur in t.
(I1) For any term t(x),a(t(x))=a(#(0)).
(II) For any term i(x),

—a(H(z")) =(a(t(x)) +m)

is provable in N, where m is the number of occurrences of x in t(x).
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(IV) For any formula Blx), if s=g(B(x))i) and t=g(B0))3), then a(s)=a(t).
(V) For any formula B(zx), if s=g(B(x))i@) and t=g(Blx"))1), and i occurs in
e(B(x), x), then

—a(t)=a(s)+m

1S provable in N, wheve m is the number of occurrences of x in s.
(VL) For any formula B(x), if s=g(B(x))i) and t=g(B(x'))), and i occurs in
f(B(x), x), then a(t)=a(s).

LEMmA 2.2

(1) a=b>Vy{(clt@) a,8)( ) ) =clt(0), b, )

is provable in N, where vy, --- are all the bound variables except x which occurs in
tHx).

() a=btm—sVaV | et b, 7, ) =elta) a,0)]
is provable in N, where m is the number of occurrences of x in t(x).
(D) @b A Ay =b,—cB0),a, )=(c(B(2), 5 ) § )

is provable in N, where
a=<a1$ Ty av> and ‘8=<b1’ T bu>
with v=d(B(x)).
(IV) If e(®B(x), x) =, =+, ixy and £(B(x), x)=<j1, =, 1>
then
bil=ai1+m1/\---/\bz-xzai‘—l—mx/\bh:ajl/\-~-/\bj1=a,-1
Vo), 5, = (8w, 0 (5 )|
is provable in N, where a={a,, -, a,y and B=<b, -+, b,> with v=d(B(x)), and my is
the number of occurrences of x in g(B(x)) i) k=1, -, k).
For each sequent I'—4 in the proof ., we define the following elements with
the properties mentioned :
(a) Divisions I,I", and 4,,4, of I’ and 4, respectively: Formulas in I, 4,
are formulas of L,.

(b) Free variables a,, ---,a, and corresponding terms #,---,¢,: Free variables
which occur in ¢, ---,#, do not occur as eigen-variable in §, above the sequent I"'—4.
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(c) Finite sequences of formulas //(a,, ---,a,) and Y(a,, ---,a,) corresponding to
I’y and 4,, respectively: For each formula B(a,, ---,,) in [l(a,, -, a,), X(a, -, a,)
corresponding to a formula ¢ in /7, 4,, Bla,, -+, a,)=EC.

(d) A set ¢ of equalities ,=s,, ---: For each formula B(a,, ---,a,) in lI(a,, -, a.),
XM(a, -+, a,) corresponding to a formula € in Iy, 4,, if w(a,, -, a,)=g(Ba,, -, a.))i)
and v=g(€)(), then

¥y =S, ""—’Vxl"'(u(tl) tty tv):v)

is provable in N, where x,, --- are all the bound variables which occur in #(a,, ---, @,),
v. Free variables which occur in equalities in ¢ do not occur as eigen-variable in
B, above I'—>4.

The above elements are defined by induction, from end-sequent up to beginn-
ing sequents, in the following manner :

1. For the end-sequent —(%);

(@) 4=Um), I''=1"y=4,=4¢.

(b) @ and =.
() HH(a)=¢, J(a)=Wa).
d) 0=¢.
o I'—4,8
-8, —4

2.1 If I') defined for the lower sequent is of the form =B, "5, then we define
for the upper one:

(@) I''=Is, 4i=4,,B; I's=I"y and 4,=4,, where [I'y'==B,1"s, [':=I",, 4,=4,
and 4,=4, are elements in (a) defined for the lower sequent.

(b) Elements in (b) are the same as for the lower sequent.

(©) ay, -, a)=I1*a,,- ,a,) and X(a,, -, a,)=2*a,, -+, a,),&a,, -, a,), where
(a,, -, a)="1Ca,, -, a), l[*a, ,a,) and X(a,, -+, a,)=2*(a,, ---,a,) for the lower
sequent.

(d) Elements in (d) are the same as for the lower sequent.

2.2 If I', defined for the lower sequent is of the form =B, /", then we define
for the upper one:

@) I''=r, I's=T"y, dy=4sand 4,=4,,'8, where I"',=1";5, ' ==8, I'y; 4,=4, and
4 =4, are elements in (a) defined for the lower sequent.

(b)-(d) Elements in (b)-(d) are the same as for the lower sequent.

B, —d
VY 28(x), —4

31 If Iy defined for the lower sequent is of the form V xB(x),I’s, then we
define for the upper one:

3.



A Theorem on the Formalized Arithmetic 203

(@) I''=B),['s; I's=I,, 4,=4sand 4,=4,, where I''=VY xB(x), I's; I's=1"y, d:=
ds and 4,=4, are the elements in (a) defined for the lower sequent.

(b) a,a, -,a, and t,t,--,t, where a,, -, a, and ¢, -, ¢, are the elements in
(b) defined for the lower sequent (¢ is a new free variable).

©) Ha, a,- - a)=8a,a, - a), [I*¥a, -, a) and X(a,a, -, a,)=2¥a, -, a),
where II(a,, -, a)=V28(z, ai, ---, a,), 1*ai, -+-,a,) and X(ay, -+, a,)=23*a, -+, a,) are
the elements in (c) defined for the lower sequent.

(d) Elements in (d) are the same as for the lower sequent.

3.2 If I', defined for the lower sequent is of the form Va®B(x), I';, then we
define for the upper one:

@ I''=I5s, '=B@),y; di=4s and dx=4,.

(b)-(d) Elements in (b)-(d) are the same as for the lower sequent.
I'—4,%8(a)
I'—4,VxB(x)

4.1 If 4, defined for the lower sequent is of the form 4s, Va¥B(x), then we
define for the upper one:

(@) =0, I's=I., 4,=4s,B(@) and 4d.=4,, where [I'1=1"s, I's=1"s, di=4s,
ViB(x) and 4,=4, are the elements in (a) defined for the lower sequent.

4.

(b) a,ai,--,a, and a,t,, -, t, where ai, -+, a, and £, -, ¢, are the elements in
(b) defined for the lower sequent (@ is the eigen-variable of the inference).

(c) H(a,ay, -, a)=I*a, ,a) and 3(a,a, -, a)=2%a, -, a),Ca,a, -, a,),
where I1(ai, -, a,)=I*a, -, a,) and (ai, -, a.)=3%a,, -+, a,), Vab&(z, a1, ---, a,) are
the elements in (c) defined for the lower sequent.

(d) Elements in (d) are the same as for the lower sequent.

4.2 1If 4, defined for the lower sequent is of the form 4,, VaB(zx), then we
define for the upper one:

(@) I'i=I, I's=I,, 4,=4; and 4,=4,,B(a).

(b)-(d) Elements in (b)~(d) are the same as for the lower sequent.

F'—4,r=s 5—0,8B(r)

I, E2—9,%8(s)

5.1 Assume that I'y=1"s,1"y; I'2=1"5,1"; 4:=45,4,,B(s) and d,=4;, 4 are the
elements in (a) defined for the lower sequent, where [, [’s; ['4,[’s; 43, 45 and 4,,

5.

4ds are divisions of I', £, 4 and £, respectively.

5.1.1 We define for the left upper sequent:

(@) I''=Is, I's=I5, 4,=4s and 4d,=4;,r=s.

(b) Elements in (b) are the same as for the lower sequent.

(c) Iay, -, a)=I(a, ,a) and X(ai, ,a,)=2(a., ,a,), where Il(a,, -, a,)
=Il\(a,, -, a), I (a, -, a)and Y(a,, -, a,)=3(a,, -+, a.), X:(a,, -+, a,), &a,, -+, a,) are
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the elements in (c) defined for the lower sequent, and //,(ai, -+, @,) and 3y(ay, ---, a,)
correspond to /'3 and 4;, respectively.

(d) Elements in (d) are the same as for the lower sequent.

5.1.2 We define for the right upper sequent:

(@ I''=I'y, I's=Is, 4,=4,,8(r) and 4,=4,.

(b) Elements in (b) are the same as for the lower sequent.

() H(ay,-,a)=Ila,,,a,) and 2(ai, -, a,)=2%ai, -, a,),8a,, -+, a,), where
a, -, a,)=1(ai, -, a),la, ,a) and (a,, -, a) =2(a, -, a,), 2ia,, -, a,),
6(a,, ---,a,) are the elements in (c) defined for the lower sequent, and I7y(ay, -, a,)
and 2X:(ay, -+, a.), 8(a,y, .-+, a,) correspond to I’y and 4,,B(s), respectively.

(d) #0=r=s,0, where §=0, is the element in (d) defined for the lower sequent.

5.2 Assume that Iy =1"5,1"y; I'e=1"5,I"s; d1=4,,4, and 4d,=4;, 46,B(s) are the
elements in (a) defined for the lower sequent, and that I's,17s; I'y,[s; 43, 45 and
4,, 4¢ are divisions of 17, 5, 4 and £, respectively.

5.21 We define for the left upper sequent:

(@) I''=Is, I's=1"s, 4,=4s and 4:=4d;, r=s.

(b) Elements in (b) are the same as for the lower sequent.

() Hay,--,a,)=I(a, -, a) and (&, -+, a,)=2(ay, -+, a,), where Il(a,, -, a,)

=[II<aI’ Sty (l,,), IIZ(aly ctty av) and 27(0'11 %y au) = ‘\:l(aly "',Cl,,), 2"2(‘111 ) av) are the ele'
ments in (c) defined for the lower sequent, and //,(a, -, ,) and Y(a,, ---,a,) cor-

respond to I's and 4., respectively.
(d) Elements in (d) are the same as for the lower sequent.
5.2.2 We define for the right upper sequent:
(@) I''=Iy, I's=Is, 4d,=4, and d,=4ds, B(r).
(b) Elements in (b) are same as for the lower sequent.
(c) Ilay, -,a,)=I(a,, -, a)and X(a,, -, a,)=2a,, -, a,), where Il(a,, ---,a,)=

I (ay, -, a), ll{a,, -, a) and Xa,, -+, a,)=2(a,, -+, a,), T:(a,, ---,a,) are the elements
in (c) defined for the lower sequent, and [/y(a,, -, a,) and Y:(a,, -+, @,) correspond

to I'y and 4,, respectively.
(d) 6=r=s, 0, where 0=0, is the element in (d) defined for the lower sequent.
{BOYAVZ(B(x) B2 DVxB(x), [—4
I'—4
6.1 If the induction formula of the inference is a formula of L,, then we de-

6.

fine for the upper sequent:
(@) I''=I3, IN'={BO)AVz(B(x)DB(x")} DVxB(x), s, 4,=45 and 4d,=4,, where
I''=TIs, I';=I"y, 4,=4; and 4,=4, are the elements in (a) defined for the lower sequent.
(b)-(d) Elements in (b)-(d) are the same as for the lower sequent.
6.2 If the induction formula is not a formula of L, then we define for the



A Theorem on the Formalized Arithmetic 205

upper sequent:

(@) I'i={BO)AVz(B(x)DB(2 ) DVaB(x), s, [':=1"y, 41=45 and 4,=4,, where
I=Is, I'y=I, 4,=4; and 4,=4, are the elements in (a) defined for the lower
sequent.

(b) by, o, by €1y vy Cuy iy oy Ay @y -y @, and  a(sy), -, a(s,), a(#1), -++, a(w,), a(v1),
-,a(v,), ty, -+, t,, Where ay, -+, @, and ¢, -+, ¢, are elements in (b) defined for the lower
sequent, by, -+, by C1, -+, Cpy dy, -+, d, are new distinct free variables with p=d(V2B(x)),
and s;=g(B(0))(2), u: =g(B(x))(@) and vi=g(B(="))(@).

(©) II(By, -+, by, C1y =+ Cpy Gy oy Aoy @ay oy @) =GBy, o, by €1y oo, Coy iy -0, d),
I*ay, -, a,) and (b, -, by Ciy oty Cuydiy ooy duy @1,y -+, @) =3*(ay, -+, @,), where
I(ay, -, a)=M*a, ,a,) and 3(ai,--,a)=3*a, -, a,) are the elements in (c)
defined for the lower sequent, and &(b, -+, b,, €1, =+, Cuy iy -+, d) =CUBO) AV 2(B(x) D
B(x))} DVrB(x), a, < ») with a=<{by, -+, by €1, o+, Cuy diy =2y dpy €1y 500y €

(d) Elements in (d) are the same as for the lower sequent.

7. We omit the definitions for the remaining cases. It can easily be understood
how to treat them.

For each sequent & in P, we define a formula ¢e of L, by induction from
beginning sequents down to the end-sequent, as follows:

1. For a beginning sequent P(f1, -+, t,)—> P, -+, t.):

1.2 If I'y=P(t, -, t,) and 4,=P(t, -+, t,) for the sequent, then

gb@(al’ B au)=ul<a1) Tty av)=vl(al7 Tty av)/\"'/\uﬂ<a1’ ) av)‘:v[t(dly ] au) ’

where H(ay, -, a)=Pwa, -, a), -, ula, -, a,)) and 2ay, -, a,)=
P@i(ay, -+, a), -, va, -+, a)) are the elements in (c) defined for the sequent.

1.2 If 'y=P(t, -, t,) and 4,=¢ for the sequent (in this case, from the fact
that formulas in 4, are those of L,, we can conclude that #=2 and P is the equa-
lity symbol), then

Qb@(al: "')av)‘:_'u(aly Tty au)’:v(al) ] av))

where 1(a,, -, a)=ula,, -, a,)=v(a, ---,a,) and X(a,,-,a,)=¢ are the elements in
(c) defined for the sequent.
1.3 If I''=¢ and 4,=P(t, -+, t,) for the sequent, then

delay, -, a,)=u(ay, -, a)=v(a, -, a,),

where I(a,, -, a,)=¢ and X(a, -, a,)=u(a, -, a,)=v(a, -, a,) are the elements in
(c) defined for the sequent.
1.4 If I''=4,=¢, then ¢g is not defined.
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2.1 If ¢es has been defined for the upper sequent, then ¢s=¢g for the lower
one.

2.2 If ¢e/ is not defined for the upper sequent, then ¢e is not defined also for
the lower one.

B(t), -4
VxB(x), —4

3.1 If the chief formula VzB(x) belongs to I", defined for the lower sequent,

3.

and ¢e-(a,a,, -+, a,) has been defined for the upper one, then

¢@(d], “tty av)=3x(/’@’(a7, Ay, -y av)

for the lower one.
3.2 If the chief formula VzB(x) belongs to I', defined for the lower sequent,
and ¢e-(ai, -+, a,) has been defined for the upper one, then

delay, -+, a,)=¢e (a1, -+, a,)

for the lower one.
3.3 If ¢ is not defined for the upper sequent, then ¢e is not defined also for
the lower one.
_I'—4,8(@)
I'—4,VxB(x)
4.1 If the chief formula Vz®(x) belongs to 4; defined for the lower sequent,

and ¢e(a,a,, ---,a,) has been defined for the upper one, then
Qb@(aly ) dv)=vx¢@'(x’ ay, vy av)

for the lower one.
4.2 If the chief formula Va®B(z) belongs to 4, defined for the lower sequent,
and ¢e/ (a1, -+, @) has been defined for the upper one, then

¢@(alv Tty av)zsb@'(al’ ttty av)

for the lower one.
4.3 If ¢  is not defined for the upper sequent, then ¢e is not defined also for
the lower one.
I'—4,r=s E—-0,Ur)
I, E—4,02,Us)
5.1 If ¢g,(ai, -+, a,) and ¢e,(ai, -+, a,) have been defined for the left and right
upper sequents, respectively, then

5.

S«’”G(al; Tt (l,)—’:sb@l(al, Y axJ)\/S«"')@z(aly ) au)
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for the lower one.
5.2 If ¢e,(as, -+, a) has been defined for the left upper sequent, but ¢s, is not
defined for the right upper one, then

de(as, -+, a,)=¢s, (a1, -, a,)
for the lower one.
5.3 If ¢e,lai, -+, a,) has been defined for the right upper sequent, but ¢g, is
not defined for the left upper one, then

ela, -, a,) =¢e,la1, -, a,)
for the lower one.
54 If ¢e, and ¢e, are not defined for the left and right upper sequents, re-
spectively, then ¢s is not defined also for the lower one.

{BO)AV2(B(z) DBz DVxB(x), [—4
I’'—4

6.1 If the induction formula of the inference is a formula of L, and
¢e(ai, -+, a,) has been defined for the upper sequent, then

6.

de(@s, -+, a,)=¢e(a, -+, a,)
for the lower one.
6.2 If ¢/ is not defined for the upper sequent, then ¢g is not defined also for
the lower one.
6.3 If the induction formula is not a formula of L, and ¢g/(by, -+, b, €1, **+, Cp
dy, -+, d,, a4, -+, a,) has been defined for the upper sequent, then

@y, -+, a,)=3x,---3z,3y,---y,3z,---32,
(D1, =0, Ty Y1, s Upy 21y 2 2y A1, o+ @)
NZjy =Y =2, /N NTj,=Yj5, =25,
Ny =Y N\ NZi, =Yi N2, =Yi, N\ N2 =y; +M}
for the lower one, where e(®B(x), x) =<4y, -+, iy, {(B(x), x)={J1, -*-, 72>, and my is the

number of occurrences of x in g(B(x))@x) k=1, -+, k).
'—4,8 I'->4,6
I’'—4,8N6
7.1 1f BAG belongs to 4, defined for the lower sequent, and ¢s (a, -+, @,) and
¢e,(ay, -+, @,) have been defined for the left and right upper ones, respectively, then

7.

de(ay, -, a)=¢s (@, -, @) Ndey(ay, -+, a,)
for the lower one.
7.2 If BAGC belongs to 4, and ¢e (@, -+, @,) and ¢e,(a1, -+, @,) have been defined
for the left and right upper sequents, respectively, then
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¢@(alt B av>=¢®1(al; Y av)v¢@2<aly ) (Z,,)

for the lower one.
7.3 If BAG belongs to 4,, and ¢s- has been defined for one of the upper sequ-
ents, but ¢s is not defined for another one, then

delay, -+, a.)=¢e(a, -, a,)

for the lower one.

74 If BAG belongs to 4;, and ¢ is not defined for one of the upper sequents,
then ¢s is not defined also for the lower one.

75 If ¢ is not defined for both of the upper sequents, then ¢ is not defined
also for the lower one.

8. We omit definitions for the remainig cases. It can easily be understood how
to treat them.

We can easily prove the following lemma, by induction from beginning sequents
down to the end-sequent. In the induction step of the proof, we use in
the case where we consider induction inferences.

Lemma 2.3 Let ¢ola, -, a,) be defined for a sequent & in B, and let
H(a,, -, a), X(a,, -, a,) be elements in (c) defined for ©. Then

gb@(alv "',d,,), ]](alx IR av)_)‘y(al’ M) av)

is provable in N.

The following lemma also is easy to prove by induction from beginning sequ-
ents down to the end-sequent. We use the fact that the elements in (b), (d) have
the properties mentioned in (b), (d) in the definition of elements (a), (b), (c), (A
Further in the induction step of the proof, we use in the case where
we consider induction inferences.

LEmMA 24 (1) Let ¢e(a, -+, a,) be defined for a sequent S in B, and let
I, do; t, -, 1., 0 be elements in (a), (b), (d), respectively, defined for ©. Then

0) IVZ_—)SIJ@(tl) Sty tv)y AZ

is provable in N.

(D) If ¢ is not defined for a sequent S in Py, and I'», 4, are elements in (a)
defined for ©, then I's—d, is provable in N.

From (II) and the consistency of N, we can conclude that ¢g(a) is
defined for the end-sequent of PB,. Hence, from Lemma 2.3, we can conclude that
gs(@)—>W(a) is provable in N. And, from (I), we can conclude that
—¢e(n) is provable in N,
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§ 3.

In this section, we divide each equivalence class defined in § 1 into finite groups.
The division is closely related to the definitions in § 2. The relation is made clear
by Lemmas and below.

A function G®) is defined inductively as follows:

1. If A is an atomic formula, then GA)=< >.

2. GUW=B). 3. GAAB)=<0, SAN), B(B)>.

4. S(VaW(x))=<1, a, &N(x))>, where a is a finite sequence of natural numbers
such that: (i) The length of a is dN(x)). (i) a(f) is the number of occurrences
of z in g(W(x))2).

An equivalence relation U; zi, -+, z,~*B; vy, -+, v, is defined inductively as
follows:

1. If %N and B are atomic formulas with the same predicate symbol, then
W5 21,0, 2,~*B5 y1, -, Uy

2. It ; xy, -, 2,~*B; y1, -+, 4, then =W, 2y, -+, 2, ~*=1B; y1, -+, Yoo

3. Wz, e, 2, ~*By; vy, oo, v.(2=1, 2), then W, AWy 4, -+, 2,~*B1 ABs; y1, -+,

4. If z and y do not occur in x;,---,x, and y, -+, v,, respectively, and A(x);
Xy L1y 0y B ~*B(Y); Yy Y1, 0y Yo then Val(x); o, -0, 2, ~*VyB(Y); y1, o, Yo

5. If Wxs); zy, -, 2.~*B(ye)s i, o+, ¥, then VaN(x); xi, -, 2.~*Vy:B(y:);
Y1, Yoo

A relation s; xy, -, x,=¢; y1, -+, ¥, is defined as follows:

1. If s=¢=0, or s and ¢ are the same free variable, then s; z,, ---, z,=¢; y1, -+, U..

2. If s=x; and ¢t=v;, then s; xy, -+, z. =t Y1, =, Y.

3. If s and ¢ are the same bound variable and do not occur in xy, «+-, 2., ¥1, ***, ¥.,
then s; x, -+, x,=t; y1, -+, Y-

4. If s; x, -, 2=t Y1, -+, Y., then 5 xy, -, 2=t Y1, -+, Yo

5 If si @1, -, mo=ti; vy, -+, v,(i=1,2), then s,+ 855 x4, -, 2, =t +12, Y1, -, Yse

The above relation is extended also for formulas in the following manner;

1. If s @y, oo, o=t yo, o, w(E=1, -+, 1), then P(sy, -+, S,); &1, =, 2y = Py, -+, L)}
Yiy s Yoo

2. It W a2y, 2.=B; vy, o0, ¥, then MU g, -, 2~ =B85 vy, -0, Y

3. If Wz, o, 2,=By; y1, -+, v,(1=1,2), then W, AWz} 1, -+, 2, =BLADBs; y1, -+, Yoe

4. If z and y do not occur in ,,--,2, and y, -+, ¥, respectively, and (x);
x, 21, 5 2= BY); Yy Y1, 05 Yo then Val(x); x4, -+, 2, = VyBY); v1, -+, Use

5. If Wwi); x1, -y 2o=B(Ys); y1, -+, ¥, then Ve A(x); 1, -+, 2.~ Yy:B(ys), y1+++, Y
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LemMA 3.1 The number of elements of the set { [W: xi, ---, x,] | deg(N)<m and
all predicate symbols in N are among Q. -+, Q. } is less than or equal to l(m,v, p),
where [W; x,,---, x,] is the equivalence class defined by ~* which contains W; x,, -+, .,
and \(m,v, 1) is the function defined by:

{1. 10, v, )=
2. lm+1,v, 0)=2-1m,v, 1) +(m, v, ))*+v-Wm, v, ) +Um, v +1, p).

LEMMA 3.2 The number of elements of the set
{SA) | degW)<m, dW)<v and bA)<p}
is less than or equal to k(m,v, ), where k(m, v, ) is the function defined as follows;

{1. k(0, v, p)=1.
2. k(m+1,v, )=2-k(m, v, 1)+ K(m, v, 11))* +(p+1)"-k(m, v, p).

LEmmMmA 3.3 If s, =t;, , then s=t.

LemMMmA 34 If U; xy, -, 2,~*B; y1, -+, ¥, and 1 <i<Ly, then e(A, x;) =e(B, vi) and
f@l, xi)=1(B, i)

LeEMMA 3.5 .Assume that all bound variables which occur free in U(B) occur

n xq, 2y, 0 Y), and that
QI; xly“"wi*‘\B; yI’ Tty yu .

Assume also that, for each i and j with i<dN) and 1<j<v, the number of occur-
rences of x; in g(N)i) and the number of occurrences of y; in g(B)() are the same.

If GN)=O(B), then
C(»L a, E); L1y "y .’L‘,,zC(sB, a, 77); Y1y Yo

where a={a,, ,a,y, =Lz, -+, 2,y and p=Ly1, -, ¥,y with p=d(A)=d(B).

is proved easily by induction on s, and Lemmas and are
proved also by induction on .

We define inductively an equivalence relation ~* between proofs in N* in the
following manner :

1. If P=B—-B, Q=6—-C, and B; ~*C;, then P~*LQ.

2. If P=Po/I'>4, Q=0/IT—3, Po~*Qo, and the last inference rules of P and
£ are the same type and not induction inference, or are induction inferences whose
induction formulas are those of L,, then P~*Q.

3. If P=P,P/I'—>4, Q=20:0:/l]-2, P.~*Q,, P.~*Q,, and the last inference
rules of P and QO are the same type, then P~*Q.
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_ BBOIAV(Blr) DB )} DV aB(w), I'~4
['—4’
{6(0) A Vy(6(y) D6y )} D Vo6 (w), 13
L= o I / A 2
{BO)AY 2(B(x) DB(x")} D VaB(x); ~*{E0)AVy(Cy)DCW N DVyE(); ,
SHBO) A V(B() DB(2"))) D YV 2B(2)) =G({E(0) A Vy(B(y) DC(y/ )} DVyE(y), and Po~*
£, then P~*Q.

Second division: We divide the set {B./new) by the above equialence velation~*.
Note that the set is divided into finite groups because of Lemmas B, B.2 and the
assumptions on P (new).

The following lemma is proved by induction from the end-sequent up to beginn-
ing sequents. In the induction step of the proof, we use in the case
where we consider induction inference.

4. If B

LEMMA 3.6 Assume that Pu~*Pn, and that a sequent & in P, corresponds to
a sequent & in Pn. Let ll(a,,--,a,),3a, -, a,) and II'(b, -, b,), 2 (b, <, b,) be
elements in (c) defined for & and &', respectively. Then v=p, a,=b,, w,a,=b,, and,
Jor any formula B in 11(a), 3(a), there exists a formula G in I1'(b), 37(b) correspond-
ing to B with B, =C; .

The following lemma is proved by induction from beginning sequents down
to the end-sequent. We use Lemmas and B.6 in the basis of the proof where
we consider beginning sequents. In the induction step of it, we use in
the case where we consider induction inference.

LeMMA 3.7 Assume that Po~*Pn, and that a sequent S in B, corrvesponds to
a sequent €' in Pn. If Ppslay, -, a,) is defined for S, then the same delay, -+, a,)
is defined also for &'.

Let ©,,---,2, be the finite groups of P.(necw) defined by the second division.
Let ¢.(@) denote the same formula ¢s(@) defined for the end-sequents of the proofs
in 2,. By the discussion in the end of §2,

V(g (2)V -V ¢u(2))
is valid, and
Va{(gu(@)V -V () D W)
is provable in N. Hence the desired theorem can be easily derived from the follow-

ing famous result.

LemMmA 3.8  Every valid formula of L, is provable in N.
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