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FUNDAMENTAL SOLUTION OF CAUCHY PROBLEM
FOR HYPERBOLIC SYSTEMS AND GEVREY CLASS

By
Kunihiko KAJITANI

§1. Introduction

We consider a first order partial differential operator Lt_z=—§t— + >3 Ay, .z')%%—

=t J

+B(t, 2) in 2=[0, T1x R", whose coefficients are m Xm-matrices. We call a funda-
mental solution corresponding to the operator L.., a distribution satisfying the

following, r€[0, T"), fixed,

L oK(t, x.7,4)=0, te(0,T)
(1.1) {

K(T: .Z', Ty y)=6<x—y)‘[’

here §(x) denotes the n-dimentional Dirac distribution and I the indentity matrix.
We require that the multiplicity of each characteristic remains constant in a region
2=[0,T]x R" and that the characteristic matrix A(¢, z,§)=3A,, x)§; is diagona-
lizable for (£,z) in £ and & in R™\0. Moreover we suppose that the coefficients
Aj(t,x) and B¢, z) are in Gevrey class ys(2)(s=>1).

Our aim is to construct globally in £ a fundamental solution for the operator
L: » of this type. When T is small, Lax treated this problem. In the case of
analytic coefficients, Leray and Mizohata analyzed locally a fundamental
solution of hyperbolic systems. When T is large, Ludwig [15] extended the interval
of existence for a fundamental solution by use of it’s semi-group property. We
shall give a more precise expression of a fundamental solution than these of Lud-
wig. It should be remarked that Duistermaat [3] has recently constructed globally
a fundamental solution of the Cauchy problem, applying the theory of Fourier
integral operators of Hormander and Duistermaat [4],

In the first step we shall construct asymptotically a fundamental solution and
in the second step we shall obtain successive estimates of it’s expansion by use of
the method of Mizohata [18], and Hamada [7], We shall determine the
wave front set in Gevrey class of a fundamental solution following the definition
of Hormander
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The work presented here leans heavily Mizohata’s results in and I thank
him sincerely.

I announce that we shall construct in the ultra distribution a fundamental solu-
tion for non diagonalizable hyperbolic systems in the forthcoming paper.

2. Results

We consider a operator L. ,=d/ot+23A¢t, x)d/ox;+ B(¢,x) under the following
assumptions;

(A.I) each eigen value of A(t, z,£&)=3A,¢ x)¢; is real for (¢, z,£)eRx R™\0
and it’s multiplicity is constant, that is, det(1+ A(Z, z, &)= Il] A+2P(, z,8))?, (Svp=
m), here v, (p=1---/) is constant. T

(A, II) there exists a positive constant ¢, such that

sup [0t 2, §)—AD(E, 2, §)| =
[€1=1

(A.IIl) the characteristic matrix A(¢,x, &) is diagonalizable.

A function feC~(2) is said to be of Gevrey class 7,(2) (s>1), if there exist
constants C, A such that for any (¢, z)ef2 and for any multi-index a=(a,, ay, -+, az),
the following inequality be true;

|D°f(¢, x)| SCA'|all*,
here we have set D*=(0/0t)*(0/0x,)"---(8/0xn)", |a| = % ;.
=0
We suppose that the coefficients A;(¢, x), B(¢, x) of L, . are in Gevrey class r,(f).
Then all eigen values AP(¢, z, &) are in (22X R*"\0).

We denote by /‘P(¢, z,7,y,6) the phase function associated to AP(¢, z, &), that

is, a solution satisfying the following non-linear equation;
LD+ 2P, 2, 1,P)=0
(2.1)

IPlie=Lz~9, &>,

n
here <{z,&>=2 x:&i. To solve this equation, we consider the Hamiltonian system,
i=1

d 5 d . 4
ADVF) = J(PI(F 2B B PP = — 3 (DX} 2D B
T EPO=ADE 2P, EP), L EP@=— 1, 2P, E)

FP()=2z, ED(r)=¢, (£+0).

We write (2®(@), E®@)=(2P(¢, 2,1, &), EP(t,2,7,6). We can solve globally this
system, for 1”(¢, x,¢) is a homogeneous function in & We note that (£®(¢), £®(2))
is in Gevrey class 7,2 x R"\0) with respect to (¢, z,£). We put 4P (¢)=D(2®(2))/D(z).



Fundamental Solution of Cauchy Problem 165

Then there exists a positive constant >0 such that 4®(#)#0 for |f—7|<d, because
of 4P(z)=1. Hence we can solve the equation z»(¢,z,7,£&)=x with respect to z
for |t—7|<d. We denote this solution by #?(¢,z,7,&). Then we can express the
solution of as follows,

(22) l”")(l‘,x,z-,y,f):(é(p)(t,x, 775>_yy5>'

We note that 2®(¢, z, ¢, &) and therefore [‘(¢, x, 7, v, &) are in yy{c—d,r+0]X R"
x R™\0) with respect to (¢,z,£). We denote

€ERM

AP 25 )= U (@D 0,78, 8P 0,7 O)

Now we analyze the fundamental solution of L;. As well known (c.f. [12],
and [19]), if 6 is small, for |f—¢|<d§ we can express the fundamental solution

K(t, xz,7r,y) as follows,
l
K(t! .’L’, T, y)': Z K(p)(t) .’L', T, 'y)+K(0)(t’ .’L', Ty y) ’
p=1

here
K(p)(t’ X, T, ?J) - S{exﬁ il(p)(ty X, T,Y, 5)}w(p)<t, T, T, 5)d$,P:11 "',l .
Then we obtain

THEOREM 2.1. Let (z,y) be fixed. For |t—1|<0d, we can compute the wave front
sets of KP(t, z,7,y) in Gevrey class as follows, (s=1),

WE(K P, -, 7, y) =4, 55 9)
WFzsi( KO, -5 7,9)=6¢ -

Here the definition of the wave front sets in Gevrey class followed from Hormander
[103.

REMARK. In the case of analytic cofficients (i,e,s=1), the propagation of the
analytic wave front sets is studied in [10] and [21]). When s>1, Friedman [23]
showed that the fundamental solution is in yss—. except the characteristic conoids.

We decompose the interval (0, T") such that O=t<thi<- - <tgn1=T,t;—t;-1=0.
Then it follows from the semi-group property of a fundamental solution that we
can write for |¢—¢;|<3,

K(t’ Z, tO’ y)‘__‘_K(ti Z, t]: ')K(tj’ "t]'—ly ')"'K(th '3t0’ '!/)

{
SK P, @, b, )+ K0, 2,10, )

=1
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where we put
K;P)(t, Z, tOy y>=K(p)<ty Z, tjr ')K(p)(t]', %y tj—ly ')"'K(p)<tly *y tO; ?/)

for j=1,--,d, |t—t;|<d and p=1, .., 1

THEOREM 2.2. For |t—t;|<d, we have
WE(KP(2, «, to, y)=AP(, ty; y),p=1, - [,
and
WFs (KO, -, b0, y))=¢,
Sfor j=1,2 --- d.

ReEMARK. For example, when j=1, Theorem 2.2 implies that the singularity of
the summation 3, K P(t, x,t,, - )K P(ty, -, to,y) disappears in the Gevrey class ya,-,.

p¥q

§ 3. Preliminaries

Let (¢, x,&) be a function in 72X R™\0) and homogeneous degree one in &.

We consider the following equation ;
lt+2(t, X, la;)—_—o y
(3.1)
leee=<x—y,8,6+0.

To solve this nonlinear equation, we consider

aet) .., .. dE®) .
T =, 2,¢), = (L, %, &)
&)=z, £@)=¢.

We write the solution (2(2), &(#))=(2(, 2, 7, &), &¢, z, =, &)).
Then we have,

LemMmaA 3.1. Let r be fixed in |0, T'). For ze R" and £ R*\0, (3.2) has a unique
solution (£(t), &(t)) which is in 12X R™\0) with respect to ¢,z,68).

Since the Jacobian D(#)/D(z)=1 at ¢=r, there exists a positive number & such
that D(x)/D(2)#0 for |t—z|<d. Hence we can solve an equation #(¢, z, 7, &)=x with
respect to z by an implicit function theorem. We denote this by (¢, x,r,£&). Then

we obtain,

LemMma 3.2. [2]. For |t—7|<d, we can express a solution of (3.1),

(3.3) Ut x,7,y, &) =<2t 2,7,8)—v,&,
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(3'4) lﬂ:é(t) g([, :I"y T) 5),“"‘ é) .

We denote the Jacobian D(#(¢))/D(z) by 4(¢). Then we have as well known,
(c.f. [5)),

LemMA 3.3. For |t—<|<d, we have

(3.5) 4 yny=a0) | S ket 2, Lo+ 30 Ayt 0, L)
dt i e i o x =30
0
O\ G Gt ]

herve [ is a solution of (3.1)

Let A(¢, x,8)=2% A,(¢, x)&; be a matrix and (¢, x, £) be an eigenvalue of A(¢, x, &).
We denote the right eigenvectors and the left eigenvectors by 7%, -, &, and ¢, -, g,
respectively. We write H=(4,, -+, 2,) and G=%g,,---,9.). Then simple calculations
imply

Lemma 34. For j=1,--- n, we have

(1) GA: H=12: GH,GA, H=1,GH

( 2 ) Z GAngngijZ Z ZgiGHg,‘Zij"f— ”%— 215i5jz¢jGH for 2= &5
4,4 i,

(3) Ge;Aa;H—G o A H=GA; ,H,,—GA, Hs,

(4) GAuH:;—Go;As H=GH; 2o, +GH, e .

§4. Asymptotic construction of fundamental solution

We shall construct asymptotically a fundamental solution K(¢, xz,z,y). We note
that the distribution d(x—y) is represented by

Sw—y)= '(2715%“8”? o —y, E>dt .

Let w(t, z,z,y,&) be a function satisfying following equation,

4.1 1 .
w(t,z,7,y,&)=—n—— {expie—y, D} .

{Lzutw(t’ .’L‘, T’ y, E)-_:O
(271_)71

Then we have a fundamental solution K (¢, z,r,y) as follows,

K(t, x, 7, y)=SRnw(t, x,t,y,8)ds .
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We can construct asymptotically w(¢, x, 7, y, &) with respect to &, provided that
the system L, ., satisfies the algebraic conditions (A.I), (A.II) and (A.III) in §2.
We seek w as the following form;
o 3
(4.2) w(t, x,t,y,&)= Z Z {exp il®(t, x, 7, y, m)plo7wP(t, x, t, ),

here
IOz, oy, 0)=E® z 7, 0)—y, w), 0=£/|£] and p=]|{|.

Applying L, , to w, we obtain

Lo, fw] :i; kz' (exp il p)(i(LP + At, , 12w + Ly, s208,)
=0.
Hence we have
4.3); QAP =z, IP)—Al, x, IPNWP +iL., (wPF,)=0 ;=0,12 -, (w*=0).
We put
H®@, x,&)=(hPE,x,§), -, hEE x,8),
G®(, x,&)="9P®, -, 9%,

here A{P(t, x, &) (resp. ¢f) is a right (resp. left) eigenvector of A(Z,x,&) correspond-
ing to A®(¢, x, &).
For j=0, we obtain

(4.4) w®(t, z, w)=H ®(t, z, [P)e¥P(t, z,0),

where ¢{®(¢, x, w) is a vy Xm matrix which is determined later on. In general, to
solve (4.3); (7=1), it is necessary that

(4.5)-1 G2, z, 1) Ls. H(wP:)=0 .

Then we obtain as a solution of (4.3);
4.6) wP(t, z, w)= Z HP z PP, r, o)

where ¢"®(¢, x, ) is a v, Xm matrix, and for p+k,
(4'7) Ggp’k)-_—'{i(l(k) 2(1’)) lG(p)lé L(k)}Lt w(w(k) )

We can rewrite (4.5); as an equation of ¢%¥®, that is,

b A TAE IO |0

(4.8) TR R

x .

—iG®(t, 2, IP)Ls, (WFP)=0,
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here we used and G®PH® =], (v, Xvg-identity matrix),

. n 1
4.9) O, S)ZG(k)LL':cH(Ic)_]; <G(k)H5(f)2&{C} — 5 lg{yzst(k)H(k)) ,
(4.10) WP = Z HP(, 2, lP)fP(, o).

We note that j® is invariant under the transformation of variables. For we can
rewrite, by virtue of Lemma 3.4, (for simplicity, abbreviating an index k),

1
j=5 (Ge,As;H— G, As H+GHa i~ GH i)

+2GH,— % _% GA,;.;H+GBH ,
here we put L=¢&J+A, f=&+1% and ¢=wx,. Then we have

.1z
J :*2“]§0 {ijLz'j—ijLEi)H+G(ijf€j—HEjfzj)}

+GBH— - Z} GLa st H.

which is evidently invariant under the transformation of variables.
Now we return to the equation We transform the variables x into #%
(¢,2,7,w). Then by use of Lemma 3.3, we can rewrite as following,

@10 (g AR+ oot 29, )G L s -t
=0

We denote by J®(¢)=]®(¢, ) a solution of the following equation

d .
_t_ ](k)(t)_: —](k)(t)](k);](k)<7>:1vk .
We put
0.-(7](:)<t) O'(k)(t (l)) A(lc)(t)l/zf(k)(t)o.(k Ic)(t- ‘i.(k)(t), (U) .
Then we obtain from (4.11)

d

(4.12) =

(k)(t)_i(G(k)Lt wW(m)x x(k>(t)'—M(k){(w(k)).r=z(")(t)}

here M ® is a first order differential operator in (¢, z) and W% is given by
and As an initial condition of we obtain from

I

A
H g —
Z AP =
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and
!
L@P+H®eP)=0, (j=1)
k1
for t=«, that is
aP()=G®(z, z, w)

and

!
oP()=—=G®(z, z,w) S WP(r, 2z, w), (j=1).

p=1

Summarizing, we have obtained,

(4.13), o, 2z, w)= -(éj—n)n— G®(z, 2z, m)
and for j>1 and k=1, --- [,

_c—z’d? oP(t)=M ®pP
(4.13); WP =N, ®gP + N, O,

l
o) =GP (z, 2, ) X\ WP -
p=1

here M N,® and N,® are first order differential operators in (¢, 2).
Then we have the following theorem which will be proved in the next section,
THEOREM 4.1. Let t be fixed in [0, T). For |t—7|<d and for xeR", we have
| D . Do 10 -1 SC AL (la| + | B0
and
| D; . DEDP | 0o SC LA 1P (| + | B])1eg12e -1
here C, and A, are positive constants independent of a, and j.
Therfore we obtain
THEOREM 4.2. w®(t, x,t, ) the terms of the expantion (4.2) are homogeneous
Sfunctions of degree zervo with vespect to w and are estimated by,
| D5, e DI ] 10y -1 S Co Ao P14 9(| B + | g1, 7 =0, 1, 2, -+,

for k=1, --- I, and for (¢, x)e[t—d,z+3]X R".
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§ 5. Successive estimate in Gevrey class

We start with a lemma which will be often used in our reasonning (c.f. [6],

[18D-

LeMMA 5.1. Let p, and p, be non negative integers and a=(ai, -+, an) @ multi
integer. For any k>1 and s=>1, we have

5.1) > (j, ) B (ol |+ p)(la’ | +po)tt

a’+a’=a

< Gal+piotp (20E22)

Proor. Noting that ﬁ (t+1D)"=(¢+1)",
i=1

we have
Ial> .
’ :())17 Tt .
m'l—]( ) (] J l

<a1>(a'2><<a1+ag>
B B2 = Bitpe )

In paticular for m=2,

Hence
< y )k—wum o’ | +po)?
W e \ X

la]

5 (& Vaipal =i+t

iZ0 1a'T=)
al \ (10l 51552 ’
<Zk J( ] )( ]+1'71 > (!a’|+P1+pz).
< T K illad o+t (P0FP)

which implies [(5.1)
Let G be an open set in R™ and G a closure of G.
Lemma 5.2. Let P(x, D)= Z} aﬁ(x)Dﬁ be a differential operator, p,, p» non nega-
tive integers and k a positive number>1 Assume
| D*as(x)i <Co(k'A)(la] +p0), | Bl <d,
IDu(x)| KCA"“'(Ja| + p2)!®
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for any multi integer a and for xeG. Then

(5.2) |D*P(z, D)u(x)| CoC ma A% (la| +p1 +pe+d )®

for xeG, where mg=(m*'—1)(m—1)"(k—1)"k.

Proor. Leibniz formula implies

DPi<y T (5 )IDvalD

|18l<d a’t+a”’=a

<C,CA e 3 Z(f >k*"’"(la’| (| +patd o

18l<d a’

which implies with where we used that

d
2 1< Y mi=(mt  —1)(m—1)"".
18l<d Jj=0

LemMa 5.3. Let Xz, D):é aji(x)—a%Jram(x), (j=1, -, N) be first order dif-
ferential operators. Assume
|D%a;(x)| <Co(k'A) |all®, j=1,-+, N,i=0, - m,
1D u(z)| KCA™'(|a| +p)¥*,
for xeG. Then
(5,3) | D" X3, X, Xj,ul SC(Coty ) A1 (e +-14-p)1¢
Sfor xeG and for (ji,---,j0)c(l, -+, N), wheve m,=(m+1) k—1)"'k, k>1.

Proor. We shall prove our statement by induction with respect to /. For /=1
it follows from lemma 5.2. In general

-~

DX, (X X0 < 5 (& )17 @il D (X X

i=1 a’ 81;1

+ Z,: ( ;r’ )IDmajlol | D" Xy Xy
<CATCComI DT ( 5 Yoo e +14)1
which implies (5.3) with

LemMmA 54. Let G, and G, be an open set in R™ and in R™: respectively and
© be a mapping from G, to G, satisfying
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| Dy ()| K CoAi | |®
for yeGs. Then for any w(x) satisfying for xeG,,
| Ds"wu(x)| SCA™(la] +9)1°,
if A> Ay, we have
(5.4) | Dy (o) ()| KC(2°Com Ao)' ' A (|| +p)1°
for yeGs, here My—=(mi+1\k—1)"k, k=AJAs>1.

Proor. Denote ¢(y)=(¢1(v), ", ¢m,(v)). Then we have

o da (0
D))= 52 52 (5 w ) o)

ey @
(Z oy o

* 3ayj >u<x)

Z=p(Y)

We put

mi 0 0 0
X; —k;ajk(w —a;k—'f‘ B Qjr= 397 oY) -

Nothing that
| D a(y)| (2°CoAo)(kA)al|l¥, k=A]A>1,
Dy*(wop)(y) =(Xi"1 X" Xoiou(2)) | wep oy »

we obtain by virtue of Lemma 5.3

COROLLARY 5.5. Let ¢ be given by Lemma 54. Then if uey{G,), uop€ysGs).

Proor. It is obious from [(5.4)
Let G=(r—d,7+6)X R™! be a band in R™, P(x,D)= |mZ agx)D? and Q(z, D)=
<d

3. by(x)D?, of which coefficients are m, Xm, matrices and satisfy
lpl<d—1

|Day(@)| <Colk~ A) ||, |51 <d,
|Dby(z)| <Co(k— A=, |8l <d—1,

(5.5)

for zeG, where k>1.
We consider the following equations

D,F;=P(x, D)F;_, in G
(5.6);

Fj[m1=r=Q(x, D)Fj“llxﬁf ’

for 7=0,1,2, .-, where F;(x) are m,Xms matrices.
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ProposiTION 5.6. Let P(z, D) and Q(x, D) be differential operators of ovder d
and d—1 respectively, of which coefficients satisfy (5.5). Assume that Fyx) is es-
timated by

(5.7 |D*Fo(x)| KCA'"|a|, zeG .
Then for every j, Fyx) satisfying (5.6);, can be estimated by

J n—t|A) .
(5.7); |DF {x)| <C(Cormg)l Al +@-0J li:) (—B—l—l‘,ﬂ)‘ (lal +5(d—=1)+1)s

for xeG, where me=(m* ' —1)(m—1)""k—1)'k, k>1.

Proor. We shall prove (5.7); by induction. For j=0 it is trivial. Assume that
(0.7)i-1 is valid. For a=(ay, -, am)=(ay, @), a;#0, we have from (5.6);,
D'F;=Dyp-'D*PF; =D PF;_,,y =(a,—1,&).

Hence

|IDF;< 20 2. ( )ID“'a@HDﬁ‘“”Fj_J

;
/
18T<d o’ ¥ar=y\ &

<G T Z( v )k"""A‘“"la'|!sC(Cgﬁ’l¢)j“l

jpl<d of \ KX

J-1 L — T | & t .
X Al T+ =D G-1) IZ(:) (|711'17/1)“ (fa”| _{_(]_1)(01_1)_*_[_‘_“3})!5
— j — S 14 as
< (Coiitg)’ (le)Alnl (d=1)j Jo1 ngJé)_ < /’ )kwin'lialus(‘a//l
1==0 l- a’ [24

FHd—1)—1 40
which implies (5.7); with [5.1)

For a=(0, &), we have

DF,=D"F(z, ')+ S” (D"PF)(¢, 2')dt

here z’=(x., -+, xm). Hence

1

_7]
\D*F(z)| < |D*QF;_i(z, )] +S \D*PF,_\(t+7, a')|dt .

|
Since it follows from (5.7);-, that
|[DF;_i(z, 2")| KC(Cofg)! T A" G=D@=D(| | + (7 —1)d —1))I3,

we obtain by use of
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(5.8) |ID'QF (7, )| KCCofrg-(Coirg)! P A" @D (|a| +5(d— 1))

On the other hand, we have by Leibniz’ formula

D PRyt a0l < 3 (5 )ID alt+ e, )| DF st e, o)

18i<d
—— = l
<C (k__}> (Comd)ijaw(d—nj—lj 1_91&2( a, )k"“"la'”’(la"l
k (=0 1! a’ 44

+i(d—1)+I+1)ls
T tl‘l 12

S C(Cormg)’ A= (d*UJ'lZ (———l—é’ (Jal+7(d—1)+1I )¢

of which integration with respect to ¢ implies (5.7); with [5.8)
Now we can prove and 4.2. Let G=(r—d,7+8) X R"X V, where V
is a neigbourhood of a sphere S"-!. We put in (4.13);,

W ... LD

\ { G575 50

Fj: 1 W
WP, -, Wi

P “M(l)Nl(l)’ M(I)Nz(l)’ - M(L)NI(L), M(L)Nz(L):|
L DN, DN,V -+ DN P, DN,

Q —G(I)Nl(l), G(I)Nz(l)’ T G(l)Nl(l), G(l)NZ(D}
L M(l)’ NZ(”, el Nl(l)’ Nz(l)

Then we obtain by virtue of [Proposition 5.6 with d=2,

L, (Ad)
=4

| D22 Do Fi| SC(Cofra)t Al 17149 (la| + 1Bl +7 4L

Noting that
(al+18l+7+DOI< 214 (o + | BN (74D,

we have

o
| Dt Do Fy| < CAComad A2 Ay (] + g1 5 DY pposjy
2

= 5
gC‘,AlalHﬁlv«j({al+|ﬁl)!sj!zs_1 ’
where

A, =max{8C,m.0A2, 2°A} .

is an immediate result of and For, it
follows from that the mapping (¢, x, 0)— (¢, 2P(¢, z, 7, ®), ®) is in the class
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75(G).

REMARK. Friadman (23] showed that when s>1, the fundamental solution be-
longs to yss-1 except the characteristic conoids. Our theorem implies that it belongs
to 151 excepl the characteristic conoids.

§6. Wave front sets of fundamental solution in Gevrey class

In the term of [(4.2), we denote |&|~7w; (¢, x, 7, w) by w;P(¢, x,7,&). [Lheore
4.2 implies

(6.1) | D5, 2 Defw;P(¢, z, 7, §)| SCA' "1 H5([a + | BV g 7711,

for (¢,x)e[t—0d,7+0]X R™, e R"™\0,7=0,1,---. Then it follows from the article of
Boutet de Monvel and Kree that there exist w® (¢, z, ¢, §)eC([t—6, t+0d]X R" X
(R™"N|&é]|=1)) such that

N
J=0

—1
6.2) | D2 DA(wt, 2,5, 00~ T i t,2,5,0)|
SCLAIH 1N (|a + BN ]~ -
for any positive integer N, (¢, x)e[r—é,t+d]X R", and &eR", |&£|>1,p=1, - L
We define distributions W (¢, x, r,y) by
(6.3) WPt x,t,y)= S(exp UP(t, x, T, y, ENOE WP (L, x, 7, 8)dE,

where 6(&) is a C~ function in R™, which is equal to zero for |£|<1 and 1 for |&§|>2.
In this section our aim is to examine the wave front sets of W (¢, x, z,y) as
a distribution in z or (z, y).
We shall describe the definition of the wave frount sets in Gevrey class, given
by Hormander We start with

LeMmma 6.1, [10). Let K be a compact set in R"*, >0 and N a positive integer.
Then there exists a function y5(x)eCy(R™) equal to 1 on K such that supp y%« is
contained in K., an e-neigborhood of K, and satisfies

(6.4) | D**xKe(x)| < Cae™'*(CNe= )" |BIK N,
where C depends only on n and C, depends only on n and «.
ReMARK. It follows from Stirling’s formula that we have

(6.5) G+ <I<CI(j+1).
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Hence, noting that N'#|B[I-!< NVN!-1 |53]< N, we have
(6.6) | Dy ()| SCAN APBYL, [BISN .
It follows from that we obtain

LEMMA 6.2. Let X;=3, aji(x)a—ag—c-——l-ajo,j:l, -, n and aj(x) satisfy
=1 2

| D aji(x)| KCo(k~A) |a|1?
for xeK, k>1. Then we have
(6.7) | D* X, Xjpuhe(x)| SC(Corts )P AP A (|| +p)°
for |a|+p< N, where n,=n+1)(k—1)"1k.
DEeFINITION 6.3, [10]. Let xie R™ e R™N0 and ue O’(R™). Then we say that

(o, &0) is in the complement of the wave front sets WFyu) of u in the class ys, if
there exist a neigborhood U of x, and a conic neigborhood F of &, such that for £eF

(6.8) | FRu) &) <CAYNE|g|"Y, N=1,2, -,

are valid for some constants ¢,C and A independent of N. Here U. is an e-neigbor-
hood of the closure of U and F stands for the Fourier transform.

We note that we can replace ¥, ,(x) instead of y%(x). Then the constant A
must be replaced A’ dependent of p.

We denote by A r; y) the sets of Hamiltonian flows corresponding to
APt x, €), that is,

AP, 75 y)= reo (8P, y,7,6), 8P, v, 7, )

here (2 &™) is a solution of (3.2) with 1=1®(¢, x, &), p=1, -, L.
THEOREM 6.4. Let (t,7,y) be fixed, 6 a small coxstant>0, and regard W (¢,
x,t,y) defined in (6.3) as a distribution in R,". Then we have
WE(W®P(E, -, 7, y)=AP(, 75 y)
Sfor |t—7|<é8,p=1, -, L
Proor. We show at first that
WE(W ®(¢, - c,y)CAP(t, 75 9).

Let (2, &) be not in A®(¢, z; y). Then there exist a neigborhood U of # and a conic
neigborhood F of & such that

(6.9) (UXF)NAP(E, 75 y)=¢
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for some ¢>0. It is sufficient to prove that
12 =\ (exp 1P, 2,2, v, &)~ e, OWUO B (@0 (t, 2, 7, §)dlwd
satisfies for sufficiently large |{|,{eF. We can write
19 =p"{ext iop P yu(@)0(0w P, 2, 7, p)dd,

here, for simplicity we put yv=y%.. and o =[P(¢, x ¢, y, &)—<x, &>, E=L[|"Y, p=]C].
In order to anihilate the singularity of w®(¢ z, r; p£)0(p&) with respect to &, we
decompose

IPEC)=p" SSPIH - (exp ipo P ynOn(wP0)+yx(1 — 05 )w P 0}dEdx

=IO+ 17Q)

where Oy =yf.n(§), B={6eR"; |§|<e}. If ¢ and ¢, are sufficiently small, grad,¢o® =
[P —{ does not vanish for £eB.. For, [ is homogeneous degree one in & from
Lemma 3.2l and {=(|{|-'#0. Hence we may assume that ¢® #0 for ze U, and &¢B..
Then we obtain from an integration by part, for p>er,

1

a N+n
IPE)=p" S S(exngo(p’p)< (,,)) (uvw®)0 5 (&) pE)dedx .

3x1 po
Hence it follows from [Lemma 6.2 that I#({) satisfies Next we estimate I3 (%).
It follows from [(6.9) that gradx,ego“”;to for zeU,LeF and |¢]=1. Then we can find
a first order differential operator M such that o='M(exp ipp®)=exp ipp®, that is
1z 0 )
M=| 5 ieppie=+ ] % (16768 e 52)

Jj=1

of which coofficients are in Gevrey class y; for x€ U, and for |£|>¢,. Hence we obtain

IR@=e" __(expiog™) o™ M)¥ (1O )0»)dds .

[§1 =201

Applying we have for some C and A,
[*MY " (xw(L— 0w P (¢, 2, 7, p&)| SC(AE[~HV (N +n)*
SCAY™(|g|+1)"" NP

for xeU, and |&|>¢,>20~!. This implies [6.8) for I&(Z). The fact that A® (¢, z; y)
CWF(W®(t, - 7, v)) follows from the method of stationary phase. Let (#, &) be
in A®(¢, z; y), that is, there exists £¢ R"\0, such that 2 =2®(¢, y, ¢, ), E =EP (¢, y, <, &).
Then it follows from that grad, 0® =0 for x=#% and £=£. On the
other hand, the Hessian of ¢ with respect to (x,£) (denote by Q) is non singular,
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- (0 T i
for |t—7| <3, because of Q”’>|t=,:(1 O)' Hence we can apply the method of sta-
tionary phase to I{P() (c.f. [3]). It follows,

IP(o8)=(2n)"(exp —iplz, §))|detQP |~ 2wy P2, 2, 7, &)
+0(0™1), p——0c0.
By virtue of and (4.13), we have
woe (¢, 2,7, 8)=(2z)""HP(t, 2, )G (z,y, §) AP @) 2P (),

which does not vanish, because of GP(c,y, &) HP(r,y,&)=1. This completes the
proof of our theorem.

ReMARK. We can regard the integral form (6.3) as the kernel of Fourier integral
operator, (c.f. [9)). When s=1, K. Nishiwada [19] investigates the wave fromt sets
of Fourier integral operators in terms of boundary values of holomorphic functions.

As a corollary of we have

THEOREM 6.5. Let (¢,7) be fixed, a small constant 0>0, and regard W P, )
=W®P(t, x, 7, y) as a distribution in R;"X R,)". Then for |t—1]|<J,

WEF(W (¢, 7)) = U (@D, y,7,8),y, P, y,7,8), —6)

(¥, §)ERN X R\ 0

We next consider the remainder term L, ,W ® (¢, z, 7z, y)=R®(¢, z,7,y) as a dis-
trubution in R,". It follows evident from Theorem 6.3 that WFy(R®(¢, -, ,y))C
AP(¢ r; y). Moreover we can see from the asymptotic expanssion that WFy_(RP
(¢, +,7,v)) is empty. In fact, we can write

(6.10) R z, 7, y) =S{exp iUP(t, z, 7, y, WP, @, 7, §)dé

where
O, @, 7, )= (i + Alt, 3, 1P)w™ + Le. s0P}0(E)
satisfies

(6.11) | Dz . Defr®(¢, 2, 7, £)| SCA!= 18+ (|| 4+ | BN 1281 g | -V - 181

for (t,z)e[r—0,7+6]X R", £eR", |&|>2, and for any positive integer N.
Thus we have proved

THEOREM 6.6. Let R®(t, x,t,y) be the remainder terms defined by (6.10). Then
WFE(RD(¢t, -, 7, y)TAP(t, 7;y), and WFys_(RP(¢t, -, z,y)=¢ for |t—7|<d,p=1, ---L

Now we turn to prove [Theorem 2.1. To anihilate the remainder terms R®(t,
x,7,y), we reduce our problem to an integral equation of Voltera’s type, following
the method of Kumano-go and Tsutsumi
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We denote
i
(6.12) Wkt x,z, )= WP x vy,
»=0
where W (¢ x 7, ¢) is defined by p=1,---,/, and

WO, 2,7, y) = Sexp i<z—2,6>w(, 2, 7, E)dE,

here
w, x,7,8)=2r)""1—0(&)[— Zl] wP(r, x, 7,8)—2x)"1 (&)
p=1

It follows evidently from that
(6.13) |Ds"Debw (¢, x, 7, §)| SCAl! 1P+ N N 1202 ||=N =181 | 4| B )1*

for |£]>2, and therefore

WFzs—l(W(o)(t, 7T, y))=¢ ’

and that we have
(6.14) W, 2, 9)=dc—y).
We shall seek a fundamental solution of L, , as the following form
(6.15) K(t, o7, 9)=W(, 2, y)+ Y do S W, z, 0, 2)F, 2, y)dz .
Then noting [6.14), we have
Lu.K(t, 2,5,9)=Les WHF (¢, 2,7,9)+ | do((Lu2 W)t 7,0, 20F 0, 2,7, v)dz

=0.
Hence we obtain an integral equation
(6.16) F(t z,t,9)=R@, x,r, y)+Si SdaR(t, z,0,2)F (g, 2,7, y)dz
where we denote

(6.17) Rt z,z,y)=—L;, . W, z,7,y)

-3 Vexpit™t,,2,5, 012, 2,2, 015 {texp ica—v, 101, 2, <, 10
=1

t
=3 R®(t, z,7,v)
p=0

where from and we have
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(6.18) | D" Defr®(t, x, v, &)| K Co Al 1N N 1261 ||~V =1l
for |£>2,p=0,1, ---L
PROPOSITION 6.7. Let R(t,z,t,y) be the remainder term given by (6.17). There
exist positive constants Cy and A, such that
(6.19) ID,"DfR(2, x, 7, y)| SC A, 18 | 1251 g|12° 1
for (x,y)eR"X R", |t —7|<0.

Proor. We have

[}
D,"D/fR(t, x,7,y)=2, S Dy Dyf{(exp il PP (t, x, 7, §)}dE .
1§21

p=0
It follows from that we have

(_[%r Dx)a (l_it‘_l Dy)ﬂ{(exp il(?))r(b)}glltxlﬂﬁl}

gc’Allal—HﬂlIa,!ZS—II‘BIIZS—llsl—‘n—l s

which implies
We define

R(t, T)u(x)= SR(t, z, 7, y)u(y)dy.
Then we have

PROPOSITION 6.8. Let R(t,z,t,y) be the remainder term, A, >2A, given in (6.18)
and u(x) satisfy
(6.20) | D u(x)| < C A a1,

for x€R". Then there exists a positive constant C such that
(6.21) | DR (¢, D)u(x)| SCiCA,*|a|1**1,
for xeR", |t—<| <o.
Proor. We note that
[P, x,7,y,6)=EP(, 2,7,8),5—<Y,&
=(x =y, +loP ¢, 2,7,8), &

>

Then we have
(6.22) | D, "D | < |t —7|Co A"+ #(Ja| 418D, B0,

for zeR", |&|>1. We write
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;.
R, Dyu(z)=— 3, SS(exP UPr®(t, 2, v, Eu(y)dyde
»=0

=-2 S S(exp Kx—y, EO)rPu(eoP +y)dyde .
Hence we have

DR, ou@)=— ({5 ( “ )D;xexp ia—y, )DL (rPulp® +y))dyds

~Z\\em ico—u,) £ 5 ) Dx @y roue® +yyude
P a’ [44
-2\ atie—um e ico—y, e
p 13121
x 2 ( & Ja= D3 @ rPute™ + s

It follows from Lemma 5.4, [6.20) and [(6.22) that we have
D3 Defu(p® + y)| SCL A 18(2°Co |t — 2| R AY 1+ 18| ae] + | 8] )20

where we have put £=A,/A, i=(n+1)k—1)"1k.

Hence

(6.23) |D2"Defu(p® + )| SCL AT (2n)** - Al || 122, | B < 2n

if |t—7|<d6 is sufficiently small, that is,
28-1C0(n+1k(k—1)"AL2¥Coo(n+1)<1,

here we used £>2. Moreover we have from [6.18),

(6.24) |D2"Def(i)°r | < Co’(k~* Ar)' '+ ! |1’ 101 g "2

for |8/<2n,|¢|>1,k=A,/A. Hence we obtain from [6.23) and [(6.24),

2( & )@= a0y reue® +o)

a

144
QZ( « ) > Z( a, )lDSDeﬂ(i&‘)n'r(ng;’Dﬁ'u(So(p)+y)l
[8+p’|<2n 7y’

o \a 7

o
7

<cale (% )( ) OB a1 A e

<cGilelar T( & Jeretaims 34 e e

a’ 7’ [

SCGCEIT" Al a2, (by ,
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which implies ,
Now we shall construct a solution F' of the integral equation [6.16). We define
inductively

Foit,z,z,y)=R(t, x,,v)

t
y ©y by
T

Fit, =, ;@:5 SR(t, 2,0, )F;i(0, z, 7, y)dedz

=S” R(t,0)F;-:(0, <)do .

Then we can estimate

(6.25), |D"DfFi(t, x, 7, y)| <C.C? V_}'ﬁi Ajel 181 120-1) g 121,

for |t—7|<4, (x, y)e R" X R". (6.25), follows from [Proposition 6.7. Assume that (6.25);_,
is valid. Then we have from [Proposition 6.8

lo—z|""

IDa" DRt 0)F (o, D SCCY 1,

Allal-i»lﬁ!]arlzs_lmllzs_l .
Integrating this with respect to ¢, we obtain (6.25);, We difine

Ft, z,c,0)=% Fit,@,,v)
i=o
which is a solution of [6.16) and satisfies
(6.26) |Dy"DfF (¢, z, 7, y)| <Ci (exp |t —c|C) A +1# | a]12°-2| B|128-1
ProPoSITION 6.9. Let W(t, x,t,y) be given by (6.12), and u(x) satisfied with

(6.27) | D u(x)| <C Al a|!®, ze R™ .
If si>s, then there exist positive constants C, and A: such that
(6.28) | D, W (t, 7)u(x)| SC,C Al |1
for [t—z|<0,xeR".

Proor. We have

W, ula)= 3 SS(exp IEP —y, NP, 7, Euly)dedy

p=

(=4

Il

% (e —icu, rmruz +y)deay

Hence we have
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DSW, )= ¥ S S(exp iy, £ D (W Pu(EP +y))dedy

»
=2 S S WZI(MP — iy, )L+ ]y )" A+ &) "1 - 4"
X (1= 4:)" D (w Pwu(2P +y)dédy
From [6.2), and we obtain
(1= 4y)"(1 = 4e)" Do (w P (2P + y))| KC:C A |a| I

which implies

Thus it follows from [Proposition 6.8 and 6.9 that we can obtain a fundamental

solution such that, |¢#—7| <3,

t
T

K(t, z,c,y)=W(t, 27,9 +S SW(t, 2,7, DF (o, 2,7, y)dadz ,

of which second term belogs to yss-1(R2X Ry'). Thus we have proved [Theorem 2.1

§7. Global construction of fundamental solution

In the previous section we have construct the fundamental solution K(¢, x, , v)
for |t—7|<d, if 6 is sufficiently small. In the present section we shall give an ex-
pression of the fundamental solution for any interval [0, 7], 7>0.

We decompose the interval {0, 7] such that 0=¢<#tH < - <tg1=T,¢;j—t;-1=0.
Then it follows from semigroup property that we obtain

K(t, x, to, y)=K(t, x, t;, - )K(tj, +, tj-1, <) K, +, Lo, ¥)
for |t—t;/<é. We put
K™, x, te, ) =WP(t, z,ty, YW P, - tja, ) WP(, -, to,y)
for |t—t;/<06,7=0,1,---,d, and p=1, .-/, where WP (¢, x,r,vy) is given by for
|t—7|<od. Then we can express

[
(7.1) K(t, z, b, )= 1 K, @, t0, y) + K, , %0, ¥)
p=1

for |t—t;/|<d. Our purpose is to prove that
(7'2) WFS(K}p)(t) *y tO’ y)):A(p)(t’ tO; Z/),P=1, "')l ’
(7.3) WF28—1(K_1(0)(t) St Y)=¢

for |t—t;/<d. j=O0,---,d.
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We define AP(¢,7) by
AP, o)y, £)=(2 P, y,7,8), 6P, y,7,8).
Let F be a set in R*x R™\0. We write
AP, )F={2P(, y,7,8), 8Py, 7,8)) (,6)eF )},
where (2%, &™) is a solution of (3.2) with 2=2®,p=1,---,/. Then we have
AP, )AP(z,0)=AP(¢, 0)
AP, ) AP (z, t)=1
for any (¢, 7z, 0).
THEOREM 7.1. Let u be in S'(R™) and s’>s. Then
WF (W P(t, o)u) AP(t, ©) WFs(u) .
Sfor |t—7|<éd,p=1, -, L
Since W®(¢t, z,7,y) is in S/(R") with respect to x for |[f—7|<d, we obtain
COROLLARY 7.2.
WE(K; P, -, to, Y)) TAP(L, to; v)
Jor |t—14<4,7=0,1,.--,d,p=1, -+, L

Proor or THEOREM 7.1. Let K be a neigborhood of z, and y~(x)=x¥(x). Put

In(C, v)= S(exp — i, Yy (@ P, 7, 7, y)dae

= S S{exp(—i<x, O+iZPE, z,7,8)—y, )n(w)wP(t, =, 7, §)dédx .
Then there exists a positive constant » such that for any positive integer m and
for |y|=7
(7.4) lalénll)y“lzv(C, yI<cm(l+|y)™A¥|{|"VN!, N=1,2, -,
where ¢, depends only on m. For, grad.{(Z®(¢, »,7,8)—vy, E)=2P(, z,7,&)—y+0

and zesupp y~(zx), if 7 is sufficiently large. Let y\(v)=yx%"(y), where B,={y, |y|<27}.
- Then we have

F(w(@) W (2, 1)) =<In(E, *), yvter +<In (&, +), A —xm)u> .

Then the second term can be estimated by ¢,||"YA¥N!¥ by use of where m
is the order of the distribution #. Let K, be the intersection of B, and a neigbor-
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hood of the projection of WFy(%) into R% and ¢i(y)=x%(y). Then we have
|F (A= xhavu)§)| <CIE|VAYNI'N=1,2, ---,
for any £#0. Hence we have
IKIn(G, +), A= yidavar| SCIZ-VAVN LY
Moreover for (y, £)¢ WF,.(u), yesupp xx, we have
| F (ranee)§) <ClE[-YAVN Y

and for (y,&)e WEF(u) and (z,/|L))&AP (¢, ©) WF(u),

dez. oy(KEP —y, & —<z, {/IC1D)#0.
Hence we obtain

IKIn(C, ), v | SCIC| VAN NI

Thus we have proved our theorem.
Denote by WF(u) the wave front sets with respect to C* functions. Then it
holds that (c.f. [10]),

WF (u)c WFs(u).
Hence to prove that
WF(KP(t, -, to, ¥)) D AP, to; y)
it suffices to indicate
(74) WEF (KP(t, -, to, y)) DAP(L, to; y)
for |t—t,|<8,j=1,---,d,p=1, -, L
LemMA 7.3. [3]. Let u be in @'(R™). Then (xo, &) WF(u) if and only if for

any real valued C~ function J(x) with d.p(x.)=E, there exists an open neigborhood
Uo of xo such that for any y(x)eCy(U,) we have

L(exp —ip)y, u> =0(p~") for p—oo
uniformly with respect to (.
We can express
Kj(p)(ty Z, tO) y)= S(exﬁ iGD.(jp)(ty x,Y, tO) 0))a_(1p)(t9 X, tﬂ, 0)d0 ’

where
O=((D, yh, U= yU=-1 ... 4 £O)e REj+DA

e P(t, x, b0, 0, ) =<ZP(t, 2,15, V) —y P, D)
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J
+ kgz <€(p)(tk’ y(k), tk—l, ,,::(k—l))__y(lc~l)’ E(k*l)>

+<§(1’)(tl, 2/(1), iO, S(O))___y, E(O)>

and @, (t, @, to,0) = WP, @, 1, EPWD (L5, Y0, 11, §972) WP, Y, 1, 6) Tt s

obious that (z, dz¢;P)e AP (¢, ty; y) if and only if dep;=0. Hence we have
(7.5) APt to; v)={(x, dop;P); dop;P =0} .
We note that the rank of d, ndsp;=25+1)n. For,

da, 0)d09°j(p) = AJ‘—: 1

-1

b

where A;.1=d 2P, x,t;, ), Ax=dyw ZP (s, y*®, tp_y, £% D) (k=1,---,7) and [ the
nXn identity matrix, all are non singular.

We shall prove by use of the method of stationary phase. To do so, we
need

LEMMA 7.4. [3]. Let ¢(x) be a real valued function with (&,&)e AP (¢, to,y),E=
d:(2). Then the matvix d®.o(0;? —¢) is non singular at (&, &), if and only if

( i ) the rank 0f d(z,g)dﬂ@j(p):<2j+1)n
(ii) the graph (x,dz¢p) and {(x, dz0;P), dop; P =0}

intersect transversally at (%, &).

LeMMA 7.5. Let (&) be in APt ty;y). There exists a non symmetvix matvix
R such that ¢(x)={x—2,&) +1/2AR(x—2), x— &) and d*.o(0;P —¢) is non singular
when d,o(p;P —¢)=0.

Proor. It follows from [Lemma 7.4 and that d%. s (¢;? —¢) is non singular
if and only if the graph (x,d,¢) and A(¢, ¢, y) intersect transversally at (z, ).
The transversality means that

Tz o(w,dop) N Tz o(AP (8, t05 ) =10},

where

T (e, d.LSL,)) ={(0z, Ros); 6,€ R"},
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T(Q.?)(A(p)(t) tO ’ y)) ={(d5£‘(p)(tr Y, tOr 5)5& dfé(p)(t’ Y, tO) 5)5&')’ 5€GRH} .

Hence the transversality implies that Rd.x® —d.£® is non singular. Since the rank
of (£:%,&:?) is equal to n, we can find R such that det (Rd;z‘® —d,E®)=0.

Now we prove Denote by @;> the matrix d?u. e(p;® —¢). Let (£,&)=
(ZD(L, y, to, w), EP(¢,y, t,, w)) and x(x)eCy™, it’s support contained in a neigborhood
of 2. Then by virtue of the method of stationary phase, we obtain

<(exp —ZPGD)X, Kj(p)(t) Yy tOv y>>

~\(tesp itosmt, 2, 0,0, )= og@V@ras® 0,2, 0, 0dza
=7 (Vtenp it — ob@ra, ™t 2, 10, 059, 4P, o, p)dndo

=pUtDn [ (3’5)2(”1)”/2 |detQ ;P |~ *(exp i(x|4)sgn€d;P)a ;P
0 / ’ d(x. 0)(90j(p)_¢)=0

+0(o7") .

For (x,6) such that dcs.e(p;® —$) =0, that is, (z, ¢z) =AP(E, t,)(y, ©), (y*) = AP (¢, t,)
(y, ) k=1, --,j) and & =@, we have from and (4.13),,

-1/2

;P ={exp i(r/4)sgn Q;P}

det Q;P APty {1 4P (t,)
k=1

R 1 G+Dn
XH P, 2, 1P 106t v,0)( )

+0.
Hence (2, &)e WF(K;*P(¢, -, t,,y)). Thus we have proved

LEMMA 7.6. Let y be fixed in R" and 6>0, small. Then for p+q and 0<|oc—1|
<94, we have

(7.6) AP (o, 1; )N AD(a,7;y)=¢
and
(7.7) A®(e, )AC(z, 0; ¥) N {(y, R"\0)} =¢ .

Proor. Let (£, &) be in AP (0,7, y)NAL(g,,y), that is, 2=2P(a, ¥, 7, 0) =FP
(0,9,7,7) and £ =8P (g, y,7,w)=E9(a,y,7,7). On the other hand we have

-a‘?t— 2P =2, D¢, 5P(2), EP(2))

='{€(p)(ar z, é) +O<t_0>
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Hence #®(0)—y=2P(0, #, E)(0—7)+0(c —7)%. Similarly we have
2P(0)—y=2:9(0, %,&)o—1)+0(c—1)

Since :9(g, 2, &)# 2P (0, 2, ), we have 2P (g,y, 7, 0)#F2P(0,y, 7,7 for 0<|c—1| <3,
if ¢ is small. This is contradition. Put #9(c)=29(z,y,0, ) and ED(z)=ED(r, y,
o,w). Then we have
2P(g, 29(7), 7, é(q)(f))_y

=2P(g, 2P(2), 7, § O () — 2P (1) + 2V (7) —y

=(6—2)2:P(z, £9(z), E@(2)) + (=) D(0, Y, @)+ 0(z —0)?

=(0—7)(2 (0, ¥, ©) — 2:P(0,y, 0)) +0(c —7)*

#0,
for 0<|o—7|<d, if & is small. Thus we have proved

ProrosiTION 7.7, ((14), [17]). Let u, be is y2s—1(R™) and f(t,x) be is yis-1 with
respect to x and contineous with respect to t. Then a solution of the following equa-
tion IS in yas—1(R™) with respect to zx,

{Lt. a:u =f )

Uliee =y .
Proor. A solution # can be written

u(t, z)=K(, t)u,x)+ S t K(t, 0)f(o, z)do

which is in ys-,(R™) with respect to x, from [Proposition 6.8 and 6.9.

For |t—7|<é and |r—o|<d, we can write

(7.8) Kt , z,r,v)=K({t, z, 7, - )K(z, -, 0,¥) .

1

I
i~

i: K(p)(t) T, T, " )ch)(f, *y 0, y)
a=1
+K(t; T, T, ')K(0)<Ta *y 0, ?/)+K(O)(t» T, T, ')K(T) *» O, y)'

here K®(¢, 7)) =W (¢, 1), p=1, .-,/ and KO, 7)=W ©(t, r)+St W(t, o)F (o, t)ds. Since
K®(t, x,7,y) is in ya.; With respect to x and y, it follows fro;n [Proposition 6.8 and
6.9 that the wave front sets in yy., of K¢, x, 7, -)K(z, -,0,¥) and K(¢, z, 7, - )KO(z,
-,0,¥y) are empty. Hence we have

(7'9) K(t’ Xy 0, y)E zL: ZL K(p)(t) T, T, ')K(q)(f7 *y 0, y)7 (mOd 7’28—1)

p=1 q=1
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for [t—7|<é and |r—o|<0.
THEOREM 7.8. For |t—7|<6 and |r—o| <6, we have

(7'10) R‘l (0)(t) x, o, ’!/)-: Z K(p)(t) Ty Ty * )K(p)(ry *y 0, y)EO) (mOd 7‘28—1) .
P*#q

Proor. Since L; ,K®(t,z,7,y)=0 (mod ys-:), we have

Lo oK@, z,0,9)=0 (mod ys_,)

for |t—7|<é. Since |r—o|<d, we can put ¢=¢. By virtue of [Proposition 7.7 it suf-
fices to prove

K,9(g,z,0,5)=0 (mod 725 ,) .

Then we have from
N /
KI(O)(Uy x,o, y)Eﬁ(x—y)— Z K(p)(dy X, T, ')K(p)<7’ 'y 0, y) (mOd 7'23—1)
p=1

Hence it follows from [Corollary 7.2| that
WFZS—I(KI(O)(U; *y J, y))C{(:I/, 5); gGRn\O} .

On the other hand it follows from [Theorem 7.1, that the wave front set in ja,
of K®(g,z,0, )K9O(z, ., 0,y) is contained in AP (g, )A9(r,¢;y). Hence we have

WFss (K, (g, -, 0,9))C U 1P(g, 2)AD(z, 05 y) .
PFEQ

From it follows that
U AP (g, 0)AC(z, 0; y) N {(y, R*\0)}=¢ .

P#q

Hence we obtain (7.10).

COROLLARY 7.9. For 0<r—0<d and 6<t<rt, we have, p=1,---,[,

(711> K(P)(t, Ly Ty * )K(p)(fy *y 0, y)EK(p)<tv x, o, y)(mOd TZS—I) .
Proor. It suffices to prove for t=c. Then from [7.9) and (7.10) we obtain

L
T (KD(z, 2,7, VKD, - 0, )= 5 KD, 2,0,7).
q=1 q

=1
Hence
K(p)(z., Ty, Ty - )K’(Z))(T, *y 0, y)_K(p)(T, Z, o, ?/)

= Z K(Q)(T1 Z, T, ')K(Q)(fv *y T, y)—K(QJ<Ty Z,a, ?/) .

q#p
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It follows from that
AP(z,0;9) N { U ADC(z, 03 9)} =6,
q#p
which implies
We put, ¢<t<r,
SOt x,0,y)=KP(, x,7, ) KP(z, -,0,y)—KP(, x,0,v)
=([ftem icznt, 2, 7,62 8= 2> +icaP(, 2,0, —v, )

XwP(t, z, 7, E)wP(z, 2,0, n)dédzdy)

—em iz, 2,0, —y, WP, 2,0, 0048,

ProrosiTiON 7.10. Let u be in S'(R™). Then WFz «(SP(¢t, o)u)=¢,p=1, -, L
Proor. We put
In(, O =(exp —idar, Dpn(@SPE, 2,0, v)da
which satisfies
(7.12) IDy* In(y, Ol <Cam|l| ¥V AYN U1+ |y[)7™, |a| <m,

for any positive integer m. For, it is true for |y|<7, r is a positive constant. If 7
is suitablly large, for |y|># and for xesupp y~, we have

dew.e.2.0(KEP(E, 2,7, 6)—2,8) +{EP(z, 2,0, 9) —y, ny —<x, {)#0,
dea, (2P, =, 0,8)—y, & —<x, ) +#0,
where £={/|{|. So we obtain by part of integration. Hence
I[<Iw(+, 0, | <Cnm sup 1+ Iy])mla’Zslm |Dy* In(y, O
<Cull|"YANNE-L,

when m is the order of the distribution .
Now we turn to prove by induction with respect to j. It is true for j=1

from Assume that is valid for j—1. By virtue of
7.7 it suffices to prove that is valid for ¢=t¢;. For, L. .K;{,x,t, y)=0, for

t;j<t<t;,;. We have from [(7.I),

{
K5, t0) =Kty te)— 25 K;P(2, t,)
p=1
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l
=3 KB, t)—K;P(t5,8) (mod y2s-1)
=1
l
=— 2 (KD (), t ) KP (L4, tj—1) — KP4, £ 1)} K2t -1, Eo)
p=1

{
== 2 SP(¢j, t;-1)K Bt -1, Lo)
=1

of which wave front set in y,s—; is empty from [Proposition 7.10.
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