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A CHARACTERIZATION OF COMPLEX PROJECTIVE
SPACES BY LINEAR SUBSPACE SECTIONS

By

Mitsuhiro ITOH

1. Introduction

It is conjectured in [2] that a complex projective space will be characterized
from the standpoint of the positivity of sectional curvature. This conjecture is

partially supported. Namely, a compact K\"ahler manifold $(M, g)$ with positive curva-
ture is biholomorphically homeomorphic to a complex projective space, if, for ex-
amples, one of the following conditions is satisfied;

i) $\dim_{C}M=2$ ([2]),

ii) the K\"ahler metric $q$ is Einstein ([1]),

iii) the group of holomorphic transformations acts on $M$ transitively ([6]) and

iv) $\dim_{C}M=3$ or 4 and $H^{*}(M;Z)\cong H^{*}(P_{n}(C);Z),$ $n=\dim_{C}M([4])$ .
These conditions play essential role in each result.
In this connection, we are in a position to consider the following assertion.

ASSERTION If a compact complex manifold $M$ admits a closed complex sub-
manifold, in particular, a closed complex hypersurface which is biholomorphically

homeomorphic to a complex projective space, then $M$ itself is biholomorphically

homeomorphic to a complex projective space.
If this assertion is verified, the conjecture due to Frankel can be reduced to

the following conjecture.

CONJECTURE A compact K\"ahler manifold with positive curvature will admit
a closed complex submanifold endowed with a K\"ahler metric of positive curvature.

Of course, the submanifold of positive curvature may not be a K\"ahler submani-
fold of the ambient manifold.

In general, the assertion is false. For example, a product manifold $P_{n}(C)\times M$,

where $M$ is a compact complex manifold, has $P_{n}(C)$ as a closed complex submanifold,

but the total manifold can never be biholomorphically homeomorphic to a complex

projective space. Hence, the submanifold in the assertion must satisfy further as-
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sumptions.
A compact K\"ahler manifold with positive curvature has the positive definite

Ricci tensor, hence its first Chern class $c_{1}$ is positive. It is, then, an algebraic variety
of a complex projective space by the aid of Kodaira’s imbedding theorem. Therefore,
the compact complex manifold stated in the assertion is furthermore assumed to be
a closed submanifold of a complex projective space.

The assertion is held under the conditions that the submanifold is given as a
section by a linear subspace in an ambient projective space and that it is biholomor-
phically homeomorphic to a complex projective space. This fact is precisely stated
in Theorem 1.

The main purpose of this paper is to give a proof of Theorem 1. It is shown
by the aid of a generalized Lefschetz’s theorem ([5]) together with a characteriza-
tion theorem of a complex projective space in terms of Chern classes ([7]).

2. Theorem and Corollaries

The following theorem characterizes a complex projective space by a linear
subspace section in an ambient complex projective space.

THEOREM 1. Let $M$ be an n-dimensional closed complex submanifold in an N-
dimensional complex projective space $P_{N}(C)$ .

Assume that there is a linear subspace $V$ in $P_{N}(C)$ of codimension $r(\leqq n-2)$

such that a section $M\cap V$ of $M$ by $V$ is biholomorphically homeomorphic to $P_{n-r}(C)$ .
Then, $M$ itself is biholomorphically homeomorphic to $P_{n}(C)$ .

Note that $r\leqq n-2$ is necessary in proving Theorem 1, since the surjectivity of
$\vee*’:ff_{2}(M\cap V;Z)\rightarrow H_{2}(M;Z)$ is guaranteed under the requirement of $r$.

The following is an immediate conclusion from Theorem 1.

COROLLARY 2. Let $M$ be as in Theorem 1. If fhere is a sequence of linear
subspaces $\{V^{1}, \cdots, V^{k}\}$ of $P_{N}(C),$ $r=\sum_{t=\iota}^{n}r_{i}\leqq n-2,$ $r_{i}=co\dim_{C}V^{i}$ such that

i) $M^{(i)}$ is a closed complex submanifold of $M^{(i-1)},$ $i=1,$ $\cdots,$
$k$ ,

ii) $M^{(k)}$ is biholomorphically homeomorphic to $P_{n-r}(C)$ ,

where $1W^{i)}=M\cap V^{1}\cap\cdots\cap V^{i},$ $i=1,$ $\cdots,$
$k$ and $M^{(0)}=M$, then $M$ is biholomorphically

homeomorphic to $P_{n}(C)$ .
Since $1W^{k)}$ is biholomorphically homeomorphic to $P_{n-r}(C),$ $M^{(k-1)}$ is also biholo-

morphically homeomorphic to a complex projective space by the result of Theorem
1. Hence an inductive argument verifies Corollary 2.
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COROLLARY 3. Let $M$ be as in Theorem 1. If there is a closed complex hyper-

surface $S$ in $P_{N}(C)$ such that a section $M\cap S$ is biholomorphically homeomorphic to
$P_{n-1}(C)$ , then $M$ is also biholomorphically homeomorphic to $P_{n}(C)$ .

If, moreover, there is a sequence of closed complex hypersurfaces $\{S^{1}, \cdots, S^{k}\},$ $ k\leqq$

$n-2$ such that
i) $M^{(i)}$ is a hypersurface of $M^{(i-1)},$ $i=1,$ $\cdots,$

$k$ and
ii) $M^{(k)}$ is biholomorphically homeomorphic to $P_{n-k}(C)$ ,

where $M^{(i)}=M\cap S^{1}\cap\cdots\cap S^{i},$ $i=1,$ $\cdots,$
$k$ and $M^{(0)}=M$, then $M$ itself is biholomorphically

homeomorphic to $P_{n}(C)$ .
Corollary 3 is shown by the aid of Veronese mapping. Veronese mapping $v_{m}$ :

$P_{N}(C)\rightarrow P_{N^{}}(C),$ $N^{\prime}=\left(\begin{array}{l}N+m\\m\end{array}\right)-1$ , is defined as follows ([8]). Let $u_{i_{0}i_{1}\ldots i_{N}}s$ be homo-

geneous coordinates in $P_{N^{\prime}}(C)$ where $i_{0},$ $i_{1},$
$\cdots,$

$i_{N}$ are nonnegative integers such that
$i_{0}+i_{1}+\cdots+i_{N}=m$ . $v_{m}$ is defined by $u_{i_{0}i_{1}}$ . $i_{N^{\circ v_{m}=z_{0}^{i_{0}}\cdot z_{1}^{i_{1}}\cdots z_{N^{N}}^{i}}}$ , where $z_{0},$ $z_{1},$ $\cdots,$ $z_{N}$ are
the homogeneous coordinates in $P_{N}(C)$ . It follows from the definition that the
Veronese mapping is an imbedding.

Since the hypersurface $S$ of $P_{N}(C)$ in Corollary 3 is given as zero points of a
homogeneous polynomial of degree

$m,\sum_{io+i_{1}++i_{N}=m}a_{i_{0}i_{1}\ldots i_{N}}z_{0}^{i_{0}}\cdot z_{1}^{i_{1}}\cdots z_{N^{i_{N}}},$

$S$ is imbedded

onto $v_{m}(S)=H\cap v_{m}(P_{N}(C))$ , where $H$ is a hyperplane in $P_{N\prime}(C)$ defined by
$\Sigma a_{i_{0}i_{1}\cdots i_{N}}u_{i_{0}i_{1}\cdots i_{N}}=0$ . Thus, $M\cap S$ is imbedded onto $v_{m}(M)\cap v_{m}(S)=v_{m}(M)\cap H$ which
is biholomorphically homeomorphic to $P_{n-1}(C)$ by the assumption. From Theorem
1, $v_{m}(M)$ , hence, $M$ is biholomorphically homeomorphic to $P_{n}(C)$ . Hence we have
the first part of Corollary 3. The second part of the corollary is easily obtained.

3. Proof of Theorem 1

Let $\iota:M^{\prime}\rightarrow M$ and $j:M\rightarrow P_{N}(C)$ be the imbeddings, where $M^{\prime}=M\cap V$. Let $\tau_{M}$ ,
$\tau_{M}$ , and $\nu$ be the tangent bundle of $M$, the tangent bundle of $M^{\prime}$ and the normal
bundle of $M^{\prime}$ in $M$, respectively.

If we denote by [V] the vector bundle over $P_{N}(C)$ defined by $V$, then the normal
bundle of $V$ in $P_{N}(C)$ is the pullback of [V]. Moreover, it is well-known that $\nu$

is isomorphic to the pullback of the normal bundle of $V$ in $P_{N}(C)$ . Therefore we
have

$\iota^{*}\tau_{M}=\tau_{M^{l}}\oplus c^{*}j^{*}[V]$ .
Since $V$ is a linear subspace of codimension $r$, there is a hvperplane $H$ in $P_{N}(C)$

such that $[V]=r[H]$ , where $[H]$ is the line bundle over $P_{N}(C)$ defined by $H$ Hence
we have

(1) $\iota^{*}c_{1}(M)=c_{1}(M^{\prime})+r\iota^{*}j^{*}c_{1}([H])$ ,
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where $c_{1}\prime s$ denote the first Chern classes.
Since [V] is positive in the sense of Griffiths ([5]) and $M^{\prime}=M\cap V$ is a non-

singular zero locus of a non-trivial global section of $\mathcal{O}(I^{*}[V])$ , by the aid of a
generalized Lefschetz’s theorem (see Theorem $H$ in [5]), we obtain the following two
exact sequences under the condition $r\leqq n-2$ ;

$\iota_{*}$

$H_{2}(M^{\prime} ; Z)\rightarrow H_{2}(M;Z)\rightarrow 0$

and
$\iota_{*}$

$0\rightarrow H_{1}(M^{\prime};Z)\rightarrow H_{1}(M;Z)\rightarrow 0$ .
Since $M^{\prime}$ is homeomorphic to a complex projective space, we have $ H_{2}(M^{\prime};Z)\cong$

$Z$ and $H_{1}(M^{\prime};Z)=0$ . Hence we obtain the following exact sequence;

$0\rightarrow H_{2}(M^{\prime};Z)\rightarrow^{\iota_{*}}H_{2}(M;Z)\rightarrow 0$

which, together with $H_{1}(M^{\prime};Z)=H_{1}(M;Z)=0$ , implies that $\iota^{*}:H^{2}(M;Z)\rightarrow H^{2}(M^{\prime};Z)$

is an isomorphism.
If $\alpha$ is a positive generator of $H^{2}(M;Z)\cong Z$, then $ c^{*}\alpha$ is also a positive genera-

tor of $H^{2}(M;Z)$ . Thus we have $\iota^{*}j^{*}c_{1}([H])\geqq\iota^{*}\alpha$ , and hence, $\iota^{*}c_{1}(M)\geqq c_{1}(M^{\prime})+r\iota^{*}\alpha$ .
Since $ c_{1}(M^{\prime})=(n-r+1)\iota^{*}\alpha$ , which is derived from the fact that $M^{\prime}$ is biholomor-
phically homeomorphic to an $(n-r)$-dimensional complex projective space, we have
$ c_{1}(M)\geqq(n-r+1)\alpha+r\alpha=(n+1)\alpha$ by the injectivity of $\iota^{*};H^{2}(M;Z)\rightarrow H^{2}(M^{\prime};Z)$ .

Therefore, Theorem 1 follows from a result of [7].

4. Further Remarks

1) A linear subspace of a complex projective space is also a complex projective
space. And its section by another linear subspace gives a linear subspace again.
This is a trivial example which supports Theorem 1. We have a non-trivial example

for Theorem 1 as follows. Recall the Veronese mapping $v_{m}:P_{n}(C)\rightarrow P_{N}(C),$ $N=$

$\left(\begin{array}{l}n+m\\m\end{array}\right)-1$ . The section of $v_{m}(P_{n}(C))$ by the hyperplane of a form; $u_{m0\cdots 0}=0$ , in

$P_{N}(C)$ gives a hyperplane $z_{0}=0$ in $P_{n}(C)$ . On the contrary, the section by the hyper-
plane of a form; $u_{m0\cdots 0}+u_{0m0\cdots 0}+\cdots+u_{0\cdots om}=0$ , gives the hypersurface of degree $m$ ;

$\sum_{j=0}^{n}z_{j^{m}}=0$ in $P_{n}(C)$ .
2) In [3], a pair (V, $L$ ) of a compact variety $V$ and a line bundle $L$ is called

a polarized variety, if $L$ is ample. If a compact complex manifold $M$ is imbedded
in a complex projective space, then a hyperplane section $M\cap H$ of $M$ induces a
polarized variety $(M, [M\cap H])$ , since $[M\cap H]$ is very ample. Theorem 1 is, if es-
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pecially $r=1$ , implicated with Theorem 6.1 in [3].

3) With respect to Conjecture stated in Introduction, we have the following
consideration.

Let $(M_{\mathcal{G}})$ be a compact K\"ahler manifold with positive curvature. Then, $M$ is
a closed complex submanifold of a complex projective space. A hyperplane section
$M^{\prime}$ of $M$ gives a hypersurface which is defined by a certain holomorphic function,

which we denote by $f$ , locally. A relation between the holomorphic bisectional
curvature $H^{\prime}\sigma,$

$\tau$ of $M^{\prime}$ with respect to the induced metric and $H\sigma,$ $\tau$ of $(M, g)$ is
given as follows;

(2) $H^{\prime}\sigma,$ $\tau=H\sigma,$ $\tau-\frac{|H_{J}(Z,W)|^{2}}{||df||^{2}||Z||^{2}||W||^{2}}$ .

Here $\sigma$ and $\tau$ are holomorphic planes tangent to $M^{\prime},$ $\sigma=X\wedge IX,$ $\tau=Y\wedge IY$ and $Z=$

$X-\sqrt{-1}IX,$ $W=Y-\sqrt{-1}IY$. $H_{f}$ denotes the complex Hessian of $f$ , i.e., $H_{f}=$

$(\nabla_{i}\nabla_{j}f)$ and $||df||^{2}=\Sigma g^{\overline{j}i}\frac{\partial f}{\partial z^{i}}\overline{\frac{\partial f}{\partial z^{j}}}$ .
(2) is obtained by the similar argument as that in [9].

From (2), we have the following statement which locally supports Conjecture
with respect to the holomorphic bisectional curvature.

For any point $p$ of $M$ and an arbitrary positive number $\epsilon$ , there are a neigh-
borhood $U$ of $p$ and a holomorphic function $f$ defined on $U$ which satisfy the fol-
lowing;

i) $\{q\in U;f(q)=0\}$ is a hypersurface of $M$ which contains $p$

and
ii) on the hypersurface endowed with the induced metric,

$|H^{\prime}\sigma,$ $\tau-H\sigma,$ $\tau|<\epsilon$ for any pair of holomorphic planes $\sigma$ and $\tau$ tangent to the
hypersurface.

This statement is observed as follows. Among all charts around $p$ we can
choose a certain normal chart $(U^{\prime}, x^{i}),$ $x^{i}(p)=0$ , with respect to which the components
$g_{i_{\overline{j}}}s$ of the metric $g$ satify

(3) $g_{i_{\overline{j}}}(x^{i})=\delta_{ij}+\sum_{s,l}R_{i\overline{j}s\overline{\iota}}(p)x^{s}x^{\overline{t}}+o(r^{3})$ ,

where $r=(\sum_{l}|x^{l}|^{2})^{1/2}$ , and $R_{i\overline{j}s\overline{t}}s$ are the components of the curvature tensor $R$.
Assume that a holomorphic function $f$ on $U^{\prime}$ is of the form, $f(x^{i})=\sum_{i}a^{i}x^{i}+$

$o(r^{4}),$ $(a^{i})\neq 0$ , of course, such an $f$ exists indeed. Then, $\nabla_{i}\nabla_{j}f(p)=\partial^{2}f/\partial x^{i}\partial x^{j}(p)-$

$\sum_{k}\Gamma_{ij}^{k}(p)\partial f/\partial x^{k}(p)=0$ , where $\Gamma_{ij}^{k}\prime s$ are the Christoffel’s symbols, that is, $\Gamma_{ij}^{k}=$

$\sum_{u}g^{\overline{u}k}\partial g_{i\overline{u}}/\partial x^{j}$ . Hence, the complex Hessian $H_{f}=(\nabla_{i}\nabla_{j}f)$ vanishes at $p$. Therefore
we can choose a sufficiently small neighborhood $U$ around $p$ such that
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$|H^{\prime}\sigma,$ $\tau-H\sigma,$ $\tau|=\frac{1}{||df}\frac{H_{f}(Z,W)|^{2}}{||^{2}||Z||^{2}||W||^{2}}<\epsilon$

for any pair of holomorphic planes $\sigma$ and $\tau$ tangent to $\{q\in U;f(q)=0\}$ .
Since $p$ is arbitrary, $M$ is covered with such a system $\{(U_{p},f_{p})\}_{p\in M}$ which gives

local hypersurfaces. In order for the system to define a global hypersurface in $M$,

it must satisfy the property that there is a subsystem $\{(U_{\alpha},f_{\alpha})\}_{\alpha\in A}$ , which covers $M$

and $f_{\alpha}/f_{\beta}$ gives a non-vanishing holomorphic function on $U_{\alpha}\cap U_{\beta}(\neq\phi)$ , that is, the
subsystem induces a non-singular holomorphic devisor.

It should be noticed that if this is verified, Conjecture can be supported with
respect to the holomorphic bisectional curvature, since we only need to set $\epsilon=$

$1/2\cdot\min H\sigma,$ $\tau$ over all pairs of holomorphic planes of $M$
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