A CHARACTERIZATION OF COMPLEX PROJECTIVE SPACES BY LINEAR SUBSPACE SECTIONS

By
Mitsuhiro ITOH

1. Introduction

It is conjectured in [2] that a complex projective space will be characterized from the standpoint of the positivity of sectional curvature. This conjecture is partially supported. Namely, a compact Kähler manifold (M, g) with positive curvature is biholomorphically homeomorphic to a complex projective space, if, for examples, one of the following conditions is satisfied;
i) $\operatorname{dim}_{\mathbf{C}} M=2([2])$,
ii) the Kähler metric g is Einstein ([1]),
iii) the group of holomorphic transformations acts on M transitively ([6]) and
iv) $\operatorname{dim}_{\mathbf{C}} M=3$ or 4 and $H^{*}(M ; \boldsymbol{Z}) \cong H^{*}\left(\mathbf{P}_{n}(\mathbf{C}) ; \boldsymbol{Z}\right), n=\operatorname{dim}_{\mathbf{C}} M$ ([4]).

These conditions play essential role in each result.
In this connection, we are in a position to consider the following assertion.

Assertion If a compact complex manifold M admits a closed complex submanifold, in particular, a closed complex hypersurface which is biholomorphically homeomorphic to a complex projective space, then M itself is biholomorphically homeomorphic to a complex projective space.

If this assertion is verified, the conjecture due to Frankel can be reduced to the following conjecture.

Conjecture A compact Kähler manifold with positive curvature will admit a closed complex submanifold endowed with a Kähler metric of positive curvature.

Of course, the submanifold of positive curvature may not be a Kähler submanifold of the ambient manifold.

In general, the assertion is false. For example, a product manifold $\mathbf{P}_{n}(\mathbf{C}) \times M$, where M is a compact complex manifold, has $\mathbf{P}_{n}(\mathbf{C})$ as a closed complex submanifold, but the total manifold can never be biholomorphically homeomorphic to a complex projective space. Hence, the submanifold in the assertion must satisfy further as-
sumptions.
A compact Kähler manifold with positive curvature has the positive definite Ricci tensor, hence its first Chern class c_{1} is positive. It is, then, an algebraic variety of a complex projective space by the aid of Kodaira's imbedding theorem. Therefore, the compact complex manifold stated in the assertion is furthermore assumed to be a closed submanifold of a complex projective space.

The assertion is held under the conditions that the submanifold is given as a section by a linear subspace in an ambient projective space and that it is biholomorphically homeomorphic to a complex projective space. This fact is precisely stated in Theorem 1.

The main purpose of this paper is to give a proof of Theorem 1. It is shown by the aid of a generalized Lefschetz's theorem ([5]) together with a characterization theorem of a complex projective space in terms of Chern classes ([7]).

2. Theorem and Corollaries

The following theorem characterizes a complex projective space by a linear subspace section in an ambient complex projective space.

Theorem 1. Let M be an n-dimensional closed complex submanifold in an N dimensional complex projective space $\mathbf{P}_{N}(\mathbf{C})$.

Assume that there is a linear subspace V in $\mathbf{P}_{N}(\mathbf{C})$ of codimension $r(\leqq n-2)$ such that a section $M \cap V$ of M by V is biholomorphically homeomorphic to $\mathbf{P}_{n-r}(\mathbf{C})$. Then, M itself is biholomorphically homeomorphic to $\mathbf{P}_{n}(\mathbf{C})$.

Note that $r \leqq n-2$ is necessary in proving Theorem 1 , since the surjectivity of $\iota_{*}: H_{2}(M \cap V ; \boldsymbol{Z}) \rightarrow H_{2}(M ; \boldsymbol{Z})$ is guaranteed under the requirement of r.

The following is an immediate conclusion from Theorem 1.
Corollary 2. Let M be as in Theorem 1. If there is a sequence of linear subspaces $\left\{V^{1}, \cdots, V^{k}\right\}$ of $\mathbf{P}_{N}(\mathbf{C}), r=\sum_{i=1}^{n} r_{i} \leqq n-2, r_{i}=\operatorname{codim}_{\mathbf{C}} V^{i}$ such that
i) $M^{(i)}$ is a closed complex submanifold of $M^{(i-1)}, i=1, \cdots, k$,
ii) $M^{(k)}$ is biholomorphically homeomorphic to $\mathbf{P}_{n-r}(\mathbf{C})$, where $M^{(i)}=M \cap V^{1} \cap \cdots \cap V^{i}, i=1, \cdots, k$ and $M^{(0)}=M$, then M is biholomorphically homeomorphic to $\mathbf{P}_{n}(\mathbf{C})$.

Since $M^{(k)}$ is biholomorphically homeomorphic to $\mathbf{P}_{n-r}(\mathbf{C}), M^{(k-1)}$ is also biholomorphically homeomorphic to a complex projective space by the result of Theorem 1. Hence an inductive argument verifies Corollary 2.

Corollary 3. Let M be as in Theorem 1. If there is a closed complex hypersurface S in $\mathbf{P}_{N}(\mathbf{C})$ such that a section $M \cap S$ is biholomorphically homeomorphic to $\mathbf{P}_{n-1}(\mathbf{C})$, then M is also biholomorphically homeomorphic to $\mathbf{P}_{n}(\mathbf{C})$.

If, moreover, there is a sequence of closed complex hypersurfaces $\left\{S^{1}, \ldots, S^{k}\right\}, k \leqq$ $n-2$ such that
i) $M^{(i)}$ is a hypersurface of $M^{(i-1)}, i=1, \cdots, k$ and
ii) $M^{(k)}$ is biholomorphically homeomorphic to $\mathbf{P}_{n-k}(\mathbf{C})$, where $M^{(i)}=M \cap S^{1} \cap \cdots \cap S^{i}, i=1, \cdots, k$ and $M^{(0)}=M$, then M itself is biholomorphically homeomorphic to $\mathbf{P}_{n}(\mathbf{C})$.

Corollary 3 is shown by the aid of Veronese mapping. Veronese mapping v_{m} : $\mathbf{P}_{N}(\mathbf{C}) \rightarrow \mathbf{P}_{N^{\prime}}(\mathbf{C}), N^{\prime}=\binom{N+m}{m}-1$, is defined as follows ([8]). Let $u_{i_{0} i_{1} \ldots i_{N}}$'s be homogeneous coordinates in $\mathbf{P}_{N}(\mathbf{C})$ where $i_{0}, i_{1}, \cdots, i_{N}$ are nonnegative integers such that $i_{0}+i_{1}+\cdots+i_{N}=m . v_{m}$ is defined by $u_{i_{0} i_{1} \ldots i_{N}} \circ v_{m}=z_{0}^{i_{0}} \cdot z_{1}^{i_{1} \ldots} z_{N}^{i}$, where $z_{0}, z_{1}, \cdots, z_{N}$ are the homogeneous coordinates in $\mathbf{P}_{N}(\mathbf{C})$. It follows from the definition that the Veronese mapping is an imbedding.

Since the hypersurface S of $\mathbf{P}_{N}(\mathbf{C})$ in Corollary 3 is given as zero points of a homogeneous polynomial of degree $m, \sum_{i_{0}+i_{1}+\cdots i_{N}=m} a_{i_{0} i_{1} \ldots i_{N}} z_{0}^{i_{0}} z_{1}^{i_{1} \ldots z_{N}^{i N}, S}$ is imbedded onto $v_{m}(S)=H \cap v_{m}\left(\mathbf{P}_{N}(\mathbf{C})\right)$, where H is a hyperplane in $\mathbf{P}_{N}(\mathbf{C})$ defined by $\sum a_{i_{0} i_{1} \cdots i_{N}} u_{i_{0} i_{1} \cdots i_{N}}=0$. Thus, $M \cap S$ is imbedded onto $v_{m}(M) \cap v_{m}(S)=v_{m}(M) \cap H$ which is biholomorphically homeomorphic to $\mathbf{P}_{n-1}(\mathbf{C})$ by the assumption. From Theorem $1, v_{m}(M)$, hence, M is biholomorphically homeomorphic to $\mathbf{P}_{n}(\mathbf{C})$. Hence we have the first part of Corollary 3. The second part of the corollary is easily obtained.

3. Proof of Theorem 1

Let $\iota: M^{\prime} \rightarrow M$ and $j: M \rightarrow \mathbf{P}_{N}(\mathbf{C})$ be the imbeddings, where $M^{\prime}=M \cap V$. Let τ_{M}, τ_{M}, and ν be the tangent bundle of M, the tangent bundle of M^{\prime} and the normal bundle of M^{\prime} in M, respectively.

If we denote by $[V]$ the vector bundle over $\mathbf{P}_{N}(\mathbf{C})$ defined by V, then the normal bundle of V in $\mathbf{P}_{N}(\mathbf{C})$ is the pullback of [V]. Moreover, it is well-known that ν is isomorphic to the pullback of the normal bundle of V in $\mathbf{P}_{N}(\mathbf{C})$. Therefore we have

$$
\iota^{*} \tau_{M}=\tau_{M} \oplus \iota^{*} j^{*}[V]
$$

Since V is a linear subspace of codimension r, there is a hyperplane H in $\mathbf{P}_{N}(\mathbf{C})$ such that $[V]=r[H]$, where $[H]$ is the line bundle over $\mathbf{P}_{N}(\mathbf{C})$ defined by H. Hence we have

$$
\begin{equation*}
\iota^{*} c_{1}(M)=c_{1}\left(M^{\prime}\right)+r_{\iota}{ }^{*} j^{*} c_{1}([H]), \tag{1}
\end{equation*}
$$

where c_{1} 's denote the first Chern classes.
Since [V] is positive in the sense of Griffiths ([5]) and $M^{\prime}=M \cap V$ is a nonsingular zero locus of a non-trivial global section of $\mathcal{O}\left(j^{*}[V]\right)$, by the aid of a generalized Lefschetz's theorem (see Theorem H in [5]], we obtain the following two exact sequences under the condition $r \leqq n-2$;

$$
H_{2}\left(M^{\prime} ; \boldsymbol{Z}\right) \xrightarrow{\iota_{*}^{*}} H_{2}(M ; \boldsymbol{Z}) \longrightarrow 0
$$

and

$$
0 \longrightarrow H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right) \xrightarrow{\iota_{*}} H_{1}(M ; \boldsymbol{Z}) \longrightarrow 0 .
$$

Since M^{\prime} is homeomorphic to a complex projective space, we have $H_{2}\left(M^{\prime} ; \boldsymbol{Z}\right) \cong$ \boldsymbol{Z} and $H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right)=0$. Hence we obtain the following exact sequence;

$$
0 \longrightarrow H_{2}\left(M^{\prime} ; \boldsymbol{Z}\right) \xrightarrow{\iota^{*}} H_{2}(M ; \boldsymbol{Z}) \longrightarrow 0
$$

which, together with $H_{1}\left(M^{\prime} ; \boldsymbol{Z}\right)=H_{1}(M ; \boldsymbol{Z})=0$, implies that $\iota^{*}: H^{2}(M ; \boldsymbol{Z}) \rightarrow H^{2}\left(M^{\prime} ; \boldsymbol{Z}\right)$ is an isomorphism.

If α is a positive generator of $H^{2}(M ; \boldsymbol{Z}) \cong \boldsymbol{Z}$, then $\iota^{*} \alpha$ is also a positive generator of $H^{2}\left(M^{\prime} ; \boldsymbol{Z}\right)$. Thus we have $\iota^{*} j^{*} c_{1}([H]) \geqq \iota^{*} \alpha$, and hence, $\iota^{*} c_{1}(M) \geqq c_{1}\left(M^{\prime}\right)+r_{\iota}{ }^{*} \alpha$. Since $c_{1}\left(M^{\prime}\right)=(n-r+1) \iota^{*} \alpha$, which is derived from the fact that M^{\prime} is biholomorphically homeomorphic to an ($n-r$)-dimensional complex projective space, we have $c_{1}(M) \geqq(n-r+1) \alpha+r \alpha=(n+1) \alpha$ by the injectivity of $\iota^{*}: \boldsymbol{H}^{2}(M ; \boldsymbol{Z}) \rightarrow H^{2}\left(M^{\prime} ; \boldsymbol{Z}\right)$.

Therefore, Theorem 1 follows from a result of [7].

4. Further Remarks

1) A linear subspace of a complex projective space is also a complex projective space. And its section by another linear subspace gives a linear subspace again. This is a trivial example which supports Theorem 1 . We have a non-trivial example for Theorem 1 as follows. Recall the Veronese mapping $v_{m}: \mathbf{P}_{n}(\mathbf{C}) \rightarrow \mathbf{P}_{N}(\mathbf{C}), N=$ $\binom{n+m}{m}-1$. The section of $v_{m}\left(\mathbf{P}_{n}(\mathbf{C})\right)$ by the hyperplane of a form ; $u_{m 0 \ldots 0}=0$, in $\mathbf{P}_{N}(\mathbf{C})$ gives a hyperplane $z_{0}=0$ in $\mathbf{P}_{n}(\mathbf{C})$. On the contrary, the section by the hyperplane of a form ; $u_{m 0 \ldots 0}+u_{0 m 0 \ldots 0}+\cdots+u_{0 \ldots 0 m}=0$, gives the hypersurface of degree m; $\sum_{j=0}^{n} z_{j}^{m}=0$ in $\mathbf{P}_{n}(\mathbf{C})$.
2) In [3], a pair (V, L) of a compact variety V and a line bundle L is called a polarized variety, if L is ample. If a compact complex manifold M is imbedded in a complex projective space, then a hyperplane section $M \cap H$ of M induces a polarized variety $(M,[M \cap H])$, since $[M \cap H]$ is very ample. Theorem 1 is, if es-
pecially $r=1$, implicated with Theorem 6.1 in [3].
3) With respect to Conjecture stated in Introduction, we have the following consideration.

Let (M, g) be a compact Kähler manifold with positive curvature. Then, M is a closed complex submanifold of a complex projective space. A hyperplane section M^{\prime} of M gives a hypersurface which is defined by a certain holomorphic function, which we denote by f, locally. A relation between the holomorphic bisectional curvature $H^{\prime} \sigma, \tau$ of M^{\prime} with respect to the induced metric and $H \sigma, \tau$ of (M, g) is given as follows;

$$
\begin{equation*}
H^{\prime} \sigma, \tau=H \sigma, \tau-\frac{\left|H_{f}(Z, W)\right|^{2}}{\|d f\|^{2}\|Z\|^{2}\|W\|^{2}} . \tag{2}
\end{equation*}
$$

Here σ and τ are holomorphic planes tangent to $M^{\prime}, \sigma=X \wedge I X, \tau=Y \wedge I Y$ and $Z=$ $X-\sqrt{-1} I X, W=Y-\sqrt{-1} I \underline{\text {. }} H_{f}$ denotes the complex Hessian of f, i.e., $H_{f}=$ $\left(\nabla_{i} \nabla_{j} f\right)$ and $\|d f\|^{2}=\Sigma g^{j_{i}} \frac{\partial f}{\partial z^{i}} \frac{\overline{\partial f}}{\partial z^{j}}$.
(2) is obtained by the similar argument as that in [9].

From (2), we have the following statement which locally supports Conjecture with respect to the holomorphic bisectional curvature.

For any point p of M and an arbitrary positive number ε, there are a neighborhood U of p and a holomorphic function f defined on U which satisfy the following ;
i) $\{q \in U ; f(q)=0\}$ is a hypersurface of M which contains p
and
ii) on the hypersurface endowed with the induced metric,
$\left|H^{\prime} \sigma, \tau-H \sigma, \tau\right|<\varepsilon$ for any pair of holomorphic planes σ and τ tangent to the hypersurface.

This statement is observed as follows. Among all charts around p we can choose a certain normal chart $\left(U^{\prime}, x^{i}\right), x^{i}(p)=0$, with respect to which the components $g_{i j}$'s of the metric g satify

$$
\begin{equation*}
g_{i \bar{j}}\left(x^{i}\right)=\delta_{i j}+\sum_{s, t} R_{i \bar{j} \bar{s} \bar{i}}(p) x^{s} x^{\bar{t}}+o\left(r^{3}\right) \tag{3}
\end{equation*}
$$

where $r=\left(\sum_{t}\left|x^{t}\right|^{2}\right)^{1 / 2}$, and $R_{i \bar{j} s t}$'s are the components of the curvature tensor R.
Assume that a holomorphic function f on U^{\prime} is of the form, $f\left(x^{i}\right)=\sum_{i} a^{i} x^{i}+$ $o\left(r^{4}\right),\left(a^{i}\right) \neq 0$, of course, such an f exists indeed. Then, $\nabla_{i} \nabla_{j} f(p)=\partial^{2} f / \partial x^{i} \partial x^{j}(p)-$ $\sum \Gamma_{i j}^{k}(p) \partial f / \partial x^{k}(p)=0$, where $\Gamma_{i, j}^{k}$'s are the Christoffel's symbols, that is, $\Gamma_{i j}^{k}=$ $\sum_{u}^{k} g^{\bar{u} k} \partial g_{i \bar{u}} / \partial x^{j}$. Hence, the complex Hessian $H_{f}=\left(\nabla_{i} \nabla_{j} f\right)$ vanishes at p. Therefore we can choose a sufficiently small neighborhood U around p such that

$$
\left|H^{\prime} \sigma, \tau-H \sigma, \tau\right|=\frac{\left|H_{f}(Z, W)\right|^{2}}{\|d f\|^{2}\|Z\|^{2}\|W\|^{2}}<\varepsilon
$$

for any pair of holomorphic planes σ and τ tangent to $\{q \in U ; f(q)=0\}$.
Since p is arbitrary, M is covered with such a system $\left\{\left(U_{p}, f_{p}\right)\right\}_{p \in M}$ which gives local hypersurfaces. In order for the system to define a global hypersurface in M, it must satisfy the property that there is a subsystem $\left\{\left(U_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in A}$, which covers M and f_{α} / f_{β} gives a non-vanishing holomorphic function on $U_{\alpha} \cap U_{\beta}(\neq \phi)$, that is, the subsystem induces a non-singular holomorphic devisor.

It should be noticed that if this is verified, Conjecture can be supported with respect to the holomorphic bisectional curvature, since we only need to set $\varepsilon=$ $1 / 2 \cdot \min H \sigma, \tau$ over all pairs of holomorphic planes of M.

References

[1] Berger, M.: Sur les variétes d'Einstein compactes. C.R. IIIe Reunion Math. Expression latine, Namur (1965), 35-55.
[2] Frankel, T.T.: Manifolds with positive curvature. Pacific J. Math., 11 (1961), 165-174.
[3] Fujita, T.: Structures and classifications of polarized varieties. Sūgaku, Iwanami, Tokyo, 27 (1975), 316-326 (in Japanese).
[4] Howard, A.: A remark on Kählerian pinching. Tohoku Math. J. 24 (1972), 11-19.
[5] Griffiths, P.A.: Hermitian differential geometry, Chern classes and positive vector bundles. Global Analysis, in honor of K. Kodaira, Univ. of Tokyo and Princeton Univ. Press, 1969, 185-251.
[6] Kobayashi, S. and Ochiai, T.: Compact homogeneous complex manifolds with positive tangent bundle. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972 221-232.
[7] Kobayashi, S. and Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13 (1973), 31-47.
[8] Shafarevich, I.R.: Basic algebraic geometry. Springer-Verlag, New York, 1974.
[9] Vitter, A.: On the curvature of complex hypersurfaces. Ind. Univ. Math. J. 23 (1974), 813-826.

Institute of Mathematics The University of Tsukuba Sakura-mura Niihari Ibaraki JAPAN 300-31

