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ESSENTIAL m-SECTORIALITY AND ESSENTIAL

SPECTRUM OF THE SCHRÖDINGER OPERATORS

WITH RAPIDLY OSCILLATING COMPLEX-VALUED

POTENTIALS

By

Yorimasa Oshime

Abstract. Schrödinger operators T0 ¼ �sþ qðxÞ with rapidly

oscillating complex-valued potentials qðxÞ are considered. Each of

such operators is sectorial and hence has Friedrichs extension. We

prove that T0 is essentially m-sectorial in the sense that the closure of

T0 coincides with its Friedrichs extension T . In particular, T0 is

essentially self-adjoint if the rapidly oscillating potential qðxÞ is real-

valued. Further, we prove sessðTÞ ¼ ½0;yÞ under somewhat stricter

condition on the potentials qðxÞ.

1 Introduction

It is well known (see Theorem X.38 and its corollary in Reed-Simon [4]) that

the Schrödinger operator �sþ qðxÞ ðx A RNÞ is essentially self-adjoint if the real

potential qðxÞ satisfies qðxÞb�cjxj2 for some positive constant c. However, there

are still many potentials for which the essential self-adjointness of the Schrödinger

operators have not been fully studied. Rapidly oscillating potentials are among

such ones and typical examples are

j
x

jxj

� �
jxj3 sinðjxj5Þ; ð1þ jxj2Þ�1

ejxj cosðejxjÞ:

Here jðoÞ is a bounded function on the unit sphere SN�1 ¼ fo A RN : joj ¼ 1g:
Skriganov [6] (see also Mateev and Skriganov [3]) studies such potentials and also
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provides su‰cient conditions for the essential self-adjointness of the operators.

However, he assumes that the potentials are continuous and satisfy some ad-

ditional properties. Removing the continuity conditions on the potentials, Sasaki

[5] proves that the essential spectrum of their Friedrichs extension is ½0;yÞ
though he does not consider their essential self-adjointness.

It should be noted that the above authors use argument applicable only to

the real potentials. In this paper, we study complex-valued rapidly oscillating

potentials. To mention our results, we define the essential m-sectoriality of

operators.

Let S0 be a densely defined sectorial operator in a Hilbert space. Then S0

has an m-sectorial extension S which is called its Friedrichs extension. (See Kato

[2, p325].) If this S coincides with the closure of S0, then S0 is called essentially

m-sectorial. In the special case where S0 is a symmetric operator bounded from

below, the essential m-sectoriality becomes the essential self-adjointness.

In Section 2, we prove the essential self-adjointness or rather the essential

m-sectoriality of the operators with complex-valued rapidly oscillating potentials,

avoiding continuity conditions. It is guaranteed that, for example, T0 ¼ �sþ qðxÞ,
DomðT0Þ ¼ Cy

0 with qðxÞ ¼ jxj3eijxj4 or ejxj expðiejxjÞ is essentially m-sectorial and

its closure coincides with its Friedrichs extension.

In Section 3, we prove that the essential spectrum of such operators equals

½0;yÞ under somewhat stricter condition on the potentials. It is guaranteed that,

for example, the Friedrichs extension T of T0 ¼ �sþ qðxÞ with qðxÞ ¼ jxj3eijxj5

or ð1þ jxj2Þ�1
ejxj expðiejxjÞ satisfies sessðTÞ ¼ ½0;yÞ:

Our main tools are sectorial sesquilinear forms and associated m-sectorial

operators. See Kato [2] for their definitions and basic properties.

Finally, the author sincerely thanks Professor I. Sasaki of Shinshu University

for many valuable advices and encouragement. He also thanks the referee for

many suggestions to improve the manuscript.

2 Essential m-Sectoriality

In this section, we consider the essential m-sectoriality of the operator

T0u ¼ �suþ qðxÞu; ðx A RNÞ

with domain DomðT0Þ ¼ Cy
0 ðRNÞ:

Throughout this section, we always assume

qðxÞ ¼ q1ðxÞ þ q2ðxÞ
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with q1ðxÞ A Ly
locðRNÞ, q2ðxÞ A LyðRNÞ and

sup
r>0;o ASN�1

ð r

0

q1ðroÞ dr
����

����< y:

Therefore, by setting

Q1ðroÞ ¼
ð r

0

q1ðroÞ dr;

q1ðxÞ A Ly
locðR

NÞ implies

jQ1ðroÞjaM minf1; rg;

sup
r>0;o ASN�1

jq2ðroÞjaM

for some constant M > 0 independent of o A SN�1.

Note that qðxÞ ¼ jxj3eijxj4 are ejxj expðiejxjÞ typical examples for the above

q1ðxÞ.

Lemma 1. For u A H 1ðRNÞ, v A Cy
0 ðRNÞ,

ð
RN

q1ðxÞuðxÞvðxÞ dx ¼ �ðN � 1Þ
ð
RN

ðQ1ðxÞ=jxjÞuðxÞvðxÞ dx

�
ð
RN

Q1ðxÞ
XN
j¼1

ðxj=jxjÞfuðqv=qxjÞ þ fðqu=qxjÞvg dx:

Proof. We may assume u A Cy
0 ðRNÞ. Using ðq=qrÞQ1ðroÞ ¼ q1ðroÞ and

integration by parts, we have

ð
RN

q1ðxÞuðxÞvðxÞ dx ¼
ð
SN�1

ðy
0

rN�1q1ðroÞuðroÞvðroÞ drdo

¼ �ðN � 1Þ
ð
RN

ðQ1ðxÞ=jxjÞuðxÞvðxÞ dx

�
ð
RN

Q1ðxÞ
XN
j¼1

ðxj=jxjÞfuðqv=qxjÞ þ ðqu=qxjÞvg dx: 9
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Lemma 2. Define the sesqulinear form s½u; v� by

s½u; v� ¼ �ðN � 1Þ
ð
RN

Q1ðxÞ
jxj uðxÞvðxÞ dx

�
ð
RN

Q1ðxÞ
XN
j¼1

xj

jxj
quðxÞ
qxj

vðxÞ þ uðxÞqvðxÞ
qxj

( )
dx

þ
ð
RN

q2ðxÞuðxÞvðxÞ dx

for u; v A H 1ðRNÞ. Then we have

js½u; v�jaMk‘ukL2kvkL2 þMkukL2k‘vkL2 þMNkukL2kvkL2

for all u; v A H 1ðRNÞ:

Proof. Recalling jQ1ðxÞjaM and using the Cauchy-Schwartz inequality,

we have

ð
RN

Q1ðxÞ
XN
j¼1

xj

jxj
quðxÞ
qxj

vðxÞ þ uðxÞqvðxÞ
qxj

( )
dx

�����
�����aMk‘uk kvk þMkuk k‘vk:

We apply jQ1ðxÞjaMjxj and jq2ðxÞjaM to the first and third terms of s½u; v� to
obtain

js½u; v�jaMk‘uk kvk þMkuk k‘vk þMNkuk kvk: 9

Remark. Combining Lemma 1 and Lemma 2 we know that the multi-

plication operator u ! ðq1ðxÞ þ q2ðxÞÞu can be extended to a bounded map from

H 1 to H�1.

Theorem 3.

t½u; v� ¼ ð‘u;‘vÞ þ s½u; v�

is a closed sectorial sesquilinear form with domain H 1. The associated m-sectorial

operator is

Tu ¼ �suþ qðxÞu

with domain

DomðTÞ ¼ fu A H 1 VH 2
loc : �suþ qðxÞu A L2g:
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Proof. From the previous Lemma 2, we have

js½u; u�ja ð1=2Þk‘uk2 þ ð8M 2 þMNÞkuk2:

Hence

Re t½u; u� ¼ k‘uk2 þRe s½u; u�b ð1=2Þk‘uk2 � ð8M 2 þMNÞkuk2:

We also have

jt½u; v�ja k‘uk k‘vk þMk‘uk kvk þMkuk k‘vk þMNkuk kvk:

Therefore t½u; v� is a closed sectorial sesquilinear form with domain H 1. Thus

the representation theorem (Theorem 2.1 of Kato, [2; p322]) ensures that there

exists a unique associated m-sectorial operator T such that for an arbitrary

u A DomðTÞ, t½u; v� ¼ ðTu; vÞ holds for all v A DomðtÞ.
Finally, considering the special case where v A Cy

0 , it is easy to prove

DomðTÞ ¼ fu A H 1 VH 2
loc : �suþ qðxÞu A L2g. 9

We have now proved the minimal operator T0u ¼ �suþ qðxÞu with domain

DomðT0Þ ¼ Cy
0 has an m-sectorial extension (i.e., Friedrichs extension). We

shall show this extension is unique by proving the closure of T0 is exaclty the

Friedrichs extension T we have just obtained. Let us begin with a lemma.

Lemma 4. For any u A H 1
loc and any constant Rb 1, the following holds.

ð
jxjaR

q1ðxÞjuðxÞj2 dx
�����

�����a ð1=2Þ
ð
jxjaR

j‘uj2 dxþ ð8M 2 þ 2MNÞ
ð
jxjaR

juj2 dx:

Proof. We may assume u A H 1
loc VCy. Note that

ð
jxjaR

q1ðxÞjuðxÞj2 dx ¼
ð
SN�1

Q1ðRoÞRN�1juðRoÞj2 do

�
ð
SN�1

ðR

0

ðN � 1ÞrN�2Q1ðroÞjuðroÞj2 drdo

�
ð
SN�1

ðR

0

rN�1Q1ðroÞ
q

qr
juðroÞj2 drdo:
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Recalling jQ1ðroÞjaM minfr; 1g, we further have

ð
jxjaR

q1ðxÞjuðxÞj2 dx
�����

�����aM

ð
SN�1

RN�1juðRoÞj2 doþMðN � 1Þ
ð
jxjaR

juðxÞj2 dx

þ 2M

ð
jxjaR

juðxÞj j‘uðxÞj dx

aM

ð
SN�1

RN�1juðRoÞj2 doþ ð1=4Þ
ð
jxjaR

j‘uðxÞj2 dx

þ ð4M 2 þMNÞ
ð
jxjaR

juðxÞj2 dx:

Now we have only to estimate
Ð
SN�1 R

N�1juðRoÞj2 do. Indeed,

ð
SN�1

RN�1juðRoÞj2 do

¼
ð
SN�1

ðR

1

q

qr
rN�1juðroÞj2 drdoþ

ð
SN�1

ð1

0

q

qr
rN juðroÞj2 drdo

¼
ð
SN�1

ðR

1

ðN � 1ÞrN�2juðroÞj2 drdo

þ
ð
SN�1

ðR

1

2rN�1 Re uðroÞðo � ‘uðroÞÞ drdo

þ
ð
SN�1

ð 1

0

NrN�1juðroÞj2 drdo

þ
ð
SN�1

ð 1

0

2rN Re uðroÞðo � ‘uðroÞÞ drdo

a

ð
1ajxjaR

ðN � 1Þjxj�1juðxÞj2 dxþ
ð
1ajxaR

2juðxÞj j‘uj dx

þ
ð
jxja1

NjuðxÞj2 dxþ
ð
jxja1

2juðxÞj j‘uj dx

aN

ð
jxjaR

juðxÞj2 dxþ 2

ð
jxjaR

juðxÞj j‘uj dx

a
1

4M

ð
jxjaR

j‘uj2 dxþ ðN þ 4MÞ
ð
jxjaR

juðxÞj2 dx: 9
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Proposition 5. Suppose u A L2 satisfies

�suþ ðqðxÞ � lÞu ¼ w A L2:

in the distributional sense, for some complex constant l. Then u A H 1 VH 2
loc.

Proof. First notice that

�su ¼ �ðqðxÞ � lÞuþ w A L2
loc

since qðxÞ ¼ q1ðxÞ þ q2ðxÞ is locally bounded. Hence u A H 2
loc.

Observe now that

ð
jxjaR

usu ¼ �
ð
jxjaR

j‘uj2 dxþ
ð
SN�1

RN�1uðRoÞ qu
qR

ðRoÞ do

since u A H 2
loc. Note that the integral on SN�1 converges. From this equation and

su ¼ ðq1ðxÞ þ q2ðxÞ � lÞu� w,

�
ð
jxjaR

j‘uj2 dxþ
ð
SN�1

RN�1juðRoÞj j‘uðRoÞj do

bRe

ð
jxjaR

usu dx

¼ Re

ð
jxjaR

fðq1ðxÞ þ q2ðxÞ � lÞjuðxÞj2 � uðxÞwðxÞg dx

b�
ð
jxjaR

q1ðxÞjuðxÞj2 dx
�����

������
ð
jxjaR

fjq2ðxÞ � lj juðxÞj2 þ juðxÞj jwðxÞjg dx:

By Lemma 4 and jq2ðxÞ � ljaM þ jlj, this is estimated from below by

�ð1=2Þ
ð
jxjaR

j‘uj2 dx� ð8M 2 þ 2MN þM þ jljÞkuk2 � kuk kwk:

Therefore, we have

ð1=2Þ
ð
jxjaR

j‘uj2 dx� ð8M 2 þ 2MN þM þ jljÞkuk2 � kuk kwk

a

ð
SN�1

RN�1juðRoÞj j‘uðRoÞj do:
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Let us now prove u A H 1 by contradiction, assuming to the contrary that

lim
R!y

ð
jxjaR

j‘uj2 dx ¼ y:

Thus

ð1=4Þ
ð
jxjaR

j‘uj2 dxa
ð
SN�1

RN�1juðRoÞj j‘uðRoÞj do

for RbR0 with su‰ciently large R0. Putting

GðRÞ ¼
ð
jxjaR

j‘uj2 dx

and integrating the last inequality over ½R0;R�, we have

ð1=4Þ
ðR

R0

GðrÞ dra
ðR

R0

ð
SN�1

rN�1juðroÞj j‘uðroÞj dodr

a

ð
R0ajxjaR

juðxÞj j‘uðxÞj dx

a kukðGðRÞÞ1=2:

Hence we have

kuk�2

16
a

GðRÞ�Ð R

R0
GðrÞ dr

�2 ðRbR0Þ:

Integrating this inequality over ½2R0;R�, we have

ðR� 2R0Þkuk�2

16
a

ð2R0

R0

GðrÞ dr
� ��1

�
ðR

R0

GðrÞ dr
� ��1

< y:

If R ! y, the left side goes to y while the right side remains bounded.

A contradiction. 9

Now we are ready to prove the main theorem of this section.

Theorem 6. Let

T0u ¼ �suþ qðxÞu; DomðT0Þ ¼ Cy
0 ðRNÞ:
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Assume

qðxÞ ¼ q1ðxÞ þ q2ðxÞ; q1ðxÞ A Ly
locðRNÞ; q2ðxÞ A LyðRNÞ

and

sup
r>0;o ASN�1

ð r

0

q1ðroÞ dr
����

����< y:

Then the closure T0 of T0 coincides with its Friedrichs extension T.

Proof. Let l be outside the sectorial regions (which are larger than the

numerical ranges) of the sesquilinear forms t½u; v� and t�½u; v� ¼ t½v; u�. Note that

l A rðTÞV rðT �Þ. Suppose there exists v A L2nf0g such that

ðv; ðT0 � lÞuÞ ¼ 0

for all u A Cy
0 . This means v A L2 is the distributional solution of

�svþ ðqðxÞ � lÞv ¼ 0:

Therefore, the previous Proposition 5 implies that v A H 1 ¼ Domðt�Þ ¼ DomðtÞ.
Hence

ðt� � lÞ½v; v� ¼ ðt� lÞ½v; v� ¼ ð�svþ ðqðxÞ � lÞv; vÞ ¼ 0:

Recalling that l is outside the sectorial region of the sesquilinear form t½u; v�, we
obtain v ¼ 0. Thus we have proved that

RanðT0 � lÞ ¼ RanðT0 � lÞ ¼ L2:

Since ðT0 � lÞJ ðT � lÞ and ðT � lÞ�1 is bounded, so is ðT0 � lÞ�1 on its

domain RanðT0 � lÞ. Recalling that T0 � l is a closed operator, we obtain

RanðT0 � lÞ ¼ RanðT0 � lÞ ¼ L2 ¼ RanðT � lÞ:

This implies ðT0 � lÞ ¼ ðT � lÞ and T0 ¼ T . 9

Remark. If, in addition, q1ðxÞ and q2ðxÞ in qðxÞ ¼ q1ðxÞ þ q2ðxÞ are both

real-valued, then Theorem 6 ensures that T0u ¼ �suþ qðxÞu is essentially self-

adjoint.
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3 Essential Spectrum

In this section, imposing somewhat stricter conditions on the potential qðxÞ ¼
q1ðxÞ þ q2ðxÞ, we study the essential spectrum of the Friedrichs extension T of

�sþ qðxÞ. More specifically, we assume that q1ðxÞ A Ly
locðRNÞ, q2ðxÞ A LyðRNÞ

satisfy

lim
r1; r2!y

sup
o ASN�1

ð r2

r1

q1ðroÞ dr
����

����¼ 0

and

lim
r!y

sup
o ASN�1

jq2ðroÞj ¼ 0

throughout this section. In other words, for any o A SN�1 and r2 > r1 bR, we

assume

jQ1ðr2oÞ �Q1ðr1oÞj þ jq2ðr1oÞj < eðRÞ

with some eðRÞ such that limR!y eðRÞ ¼ 0:

Note that qðxÞ ¼ jxj3eijxj5 and ð1þ jxj2Þ�1
ejxj expðiejxjÞ are typical examples

for the aove q1ðxÞ.
From the result of the previous section, we already know that the multi-

plication operator u 7! ðq1ðxÞ þ q2ðxÞÞu is bounded from H 1 to H�1. We consider

its further property under the stricter assumption of this section.

Lemma 7. For any u A H 1, v A Cy
0 and any constant Rb 1, the following

holds.

ð
jxjbR

q1ðxÞuðxÞvðxÞ dx
�����

�����a eðRÞðkuk k‘vj þ k‘uk kvkÞ þ ðN � 1ÞeðRÞkuk kvk:

Proof. We may assume u A H 1 VCy. Notice that v A Cy
0 .

ð
jxjbR

q1ðxÞuðxÞvðxÞ dx ¼
ð
SN�1

ðy
R

q

qr
ðQ1ðroÞ �Q1ðRoÞÞ

� �
rN�1uðroÞvðroÞ drdo

¼ �
ð
SN�1

ðy
R

fQ1ðroÞ �Q1ðRoÞg
q

qr
rN�1uðroÞvðroÞ drdo

Since jQ1ðroÞ �Q1ðRoÞj < eðRÞ for rbRb 1,
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ð
jxjbR

q1ðxÞuðxÞvðxÞ dx
�����

�����
a eðRÞ

ð
SN�1

ðy
R

rN�1fðN � 1Þr�1juðroÞj jvðroÞj

þ jðq=qrÞuðroÞj jvðroÞj þ juðroÞj jðq=qrÞvðroÞjg drdo

a ðN � 1ÞR�1eðRÞ
ð
jxjbR

juðxÞj jvðxÞj dx

þ eðRÞ
ð
jxjbR

ðj‘uðxÞj jvðxÞj þ juðxÞj j‘vðxÞjÞ dx

a ðN � 1ÞeðRÞkuk kvk þ eðRÞðkuk k‘vj þ k‘uk kvkÞ: 9

Lemma 8. The multiplication operator

u 7! ð1� wRðxÞÞqðxÞu

defines a bounded map from H 1 to H�1 with norm not larger than 2NeðRÞ. Here

wRðxÞ is the characteristic function of the open ball BR ¼ fx A RN : jxj < Rg.

Proof. Since jq2ðroÞj < eðRÞ for rbR, we haveð
jxjbR

q2ðxÞuðxÞvðxÞ dx
�����

�����a eðRÞkuk kvk

for u; v A H 1. Using this inequality and the previous lemma,

ð
RN

ð1� wRðxÞÞqðxÞuðxÞvðxÞ dx
����

���� ¼
ð
jxjbR

ðq1ðxÞ þ q2ðxÞÞuðxÞvðxÞ dx
�����

�����
aNeðRÞkuk kvk þ eðRÞðkuk k‘vj þ k‘uk kvkÞ

a ðN þ 1ÞeðRÞðkuk2 þ k‘uj2Þ1=2ðkvk2 þ k‘vkÞ1=2:

This implies the claim. 9

Proposition 9. Let fungHH 1 be an arbitrary bounded sequence. Then

fqðxÞunðxÞgHH�1 has a converging subsequence. r

Remark. In other words, the multiplication operator u 7! qðxÞu from H 1 to

H�1 is compact. However, it is generally unbounded as a map from H 2 to L2.
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(e.g., qðxÞ ¼ jxj3 sinðjxj5Þ, uðxÞ ¼ ð1þ jxj2Þ�ðNþ1Þ=4). That is, it may be relatively

unbounded with respect to ð�4Þ in the usual framework.

Proof. The Rellich theorem and qðxÞ A Ly
loc imply u 7! wjðxÞqðxÞu is a

compact operator from H 1 to L2 JH�1 for each j ¼ 1; 2; . . . .

Let us choose R ¼ 1; 2; . . . ; j; . . . in Lemma 8. Then we have

kð1� wjðxÞÞqðxÞunkH�1 a 2Neð jÞkunk; lim
j!y

2Neð jÞ ¼ 0:

Let us assume from now on that kunkH 1 a 1 for simplicity.

By the compactness of u 7! w1ðxÞqðxÞu, we can choose a subsequence fuð1Þj gj
of fungn such that w1ðxÞqðxÞu

ð1Þ
j converges in L2 HH�1 and

lim sup
j;k!y

kqðxÞuð1Þj � qðxÞuð1Þk kH�1 a lim sup
j;k!y

kð1� w1ðxÞÞðqðxÞu
ð1Þ
j � qðxÞuð1Þk ÞkH�1

a 4Neð1Þ:

In the same way, we choose a subsequence fuð2Þj gj of fuð1Þj gj such that

w2ðxÞqðxÞu
ð2Þ
j converges in L2 HH�1 and

lim sup
j;k!y

kqðxÞuð2Þj � qðxÞuð2Þk kH�1 a 4Neð2Þ:

Repeating the same procedure, we finally have fuðlÞj g (l; j ¼ 1; 2; . . .) such that

lim sup
j;k!y

kqðxÞuðlÞj � qðxÞuðlÞk kH�1 a 4NeðlÞ:

Using the diagonal process, we have

lim sup
j;k!y

kqðxÞuð jÞj � qðxÞuðkÞk kH�1 ¼ 0

since limj!y 4Neð jÞ ¼ 0. In other words, the subsequence fqðxÞuð jÞj g converges

in H�1. 9

Theorem 10. Let

T0u ¼ �suþ qðxÞu; DomðT0Þ ¼ Cy
0 ðRNÞ:

Assume

qðxÞ ¼ q1ðxÞ þ q2ðxÞ; q1ðxÞ A Ly
locðRNÞ; q2ðxÞ A LyðRNÞ;

lim
r1; r2!y

sup
o ASN�1

ð r2

r1

q1ðroÞ dr
����

����¼ 0

218 Yorimasa Oshime



and

lim
r!y

sup
o ASN�1

jq2ðroÞj ¼ 0:

Then the Friedrichs extension T of T0 satisfies

sessðTÞ ¼ ½0;yÞ:

Proof. Let m > 0 be su‰ciently large. Then �m A rðTÞV rð�4Þ holds and

T þ m, �sþ m are isomorphic maps from H 1 to H�1. (Strictly speaking, consider

both of closed sectorial forms with domain H 1 which are associated with T þ m

and �sþ m.)

Let us prove ðT þ mÞ�1 � ð�sþ mÞ�1 is a compact operator in L2. Suppose

that fungHL2 is an arbitrary bounded sequence. Note that

ðT þ mÞ�1 � ð�sþ mÞ�1

¼ ðT þ mÞ�1ð�sþ mÞð�sþ mÞ�1 � ðT þ mÞ�1ðT þ mÞð�sþ mÞ�1

¼ ðT þ mÞ�1f�qðxÞgð�sþ mÞ�1:

Note also that fð�sþ mÞ�1
ung is a bounded sequence in H 2 HH 1. By Lemma 9,

there exists a subsequence funjg of fung such that qðxÞð�sþ mÞ�1
unj converges in

H�1, hence

fðT þ mÞ�1 � ð�sþ mÞ�1gunj ¼ �ðT þ mÞ�1
qðxÞð�sþ mÞ�1

unj

converges in H 1 HL2. Since fungHL2 is an arbitrary bounded sequence in L2,

this implies ðT þ mÞ�1 � ð�sþ mÞ�1 is a compact operator from L2 into itself.

Therefore

sessðTÞ ¼ sessð�4Þ ¼ ½0;yÞ: 9

Remark. The present theorem can be extended as follows by the result of

F. Gesztesy et al. [1] and a rather lengthy argument, although the minimal

operator has not yet been proved essentially m-sectorial.

Let q1ðxÞ, q2ðxÞ in qðxÞ ¼ q1ðxÞ þ q2ðxÞ belong to L2
loc, q2ðxÞ be ð�4Þ-

compact and wRðxÞq1ðxÞ be ð�4Þ-compact for all R > 0. Let the other as-

sumption be the same. Then the result remain the same.
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