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AN ASYMPTOTIC EXTENSION OF MORAN
CONSTRUCTION IN METRIC MEASURE SPACES

By
Daruhan Wu

Abstract. In this paper, we define asymptotically generalized Can-
tor sets in metric measure spaces by generalizing the notion of
A-similarity maps. We define the notion of (4, ¢, v)-similarity maps, and
extend the Moran theorem about the generalized Cantor set in R to
this general setting. As an example, we construct generalized Cantor
sets in Riemannian manifolds by using (4, ¢, v)-similarity maps.

1. Introduction

A bijective map f : RY — R? is called a A-similarity map if there exists a real
number A > 0, such that

d(f(x), f(y)) = 4d(x, y)

for every x,y e R?. Moran constructed general cantor sets in R by using the
notion of A-similarity maps, and determined the Hausdorff dimension of them as the
similarity dimension (see [6], for instance). However, in general, it is difficult to
construct a A-similarity map in metric spaces. Actually, A-similarity maps do not
always exist on curved metric spaces. In the present paper, we generalize the notion
of Z-similarity map to construct generalized Cantor sets in general metric measure
spaces. This is done by introducing the notion of (1, ¢, v)-similarity maps. Let X be a
metric space and 4, B < X. We call a bijective map f : 4 — B a (1, c,v)-similarity
map if there exist real number ¢ > 0 and 0 < 4 < 1 such that for every x, y € 4,

d(/(x), /()

(1) Ty A =
(2) B(f(x),Ar(1 — c|A])) = f(B(x,r))
3) 1B < v]4|
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whenever the ball B(x,r) = A, where |A| is the diameter of A. The set B is called
a (A, c,v)-similar set of the set A.

An asymptotically generalized Cantor set in X is defined as follows. First
assume the following:

(1) For a fixed integer k > 1, consider k subsets Aj,..., Ay = X, each of
which is bounded and closed, satisfying (A;)" = A;, A;N Ai = (i # j), where A°
and A denote the interior and the closure of A respectively. These sets are called

basic sets.
(2) Fix ratio coefficients 0 < A; <1 (i=1,2,...,k) and a constant ¢ > 0. For
any 1 <i,j<k, let Aj be (4;,c,v)-similar sets of A; such that:

(a) A,] c A,’
(b) AjNAy = (j#J) (U, €{l,2,....k})
(3) For any n>2 and wy,...,w, €{1,2,...,k}, construct (4,,,c,v)-similar

sets Ay, .., Of Ay, .., such that:
(@) Apyoy Doy
(0) Aviw, NAwy ) = D (00 # @) (0,0, €{1,2,...,k})

Then, define a set C as
0 k
CZ: m U A(ul--»w,l )

n=1 \wy,...,0,=1

which is called an asymptotically generalized Cantor set in X.

Although it is hard to construct generalized Cantor sets in curved spaces via
A-similarity maps, it is easy to construct asymptotically generalized Cantor sets in
curved spaces (see Example 3.2).

The main result in this paper is as follows.

MAIN THEOREM. Let X be a metric space with a regular Borel measure .
Suppose that (X, u) satisfies the following assumptions:

(a) Any closed ball B(x,r) in X is compact.

(b) For any xo€ X and 0 <r,0 <1,

#(B(xo,r))
#(B(xo,0r))

where C(0) > 0 is a constant independent of xo and r.

< C()

Let C be an asymptotically generalized Cantor set in X with ratio coefficients
M, .-,k defined above. Then the Hausdorff dimension of C is the same as the

k
similarity dimension. Namely it is equal to t such that Y A/ = 1.
i=1
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In general, generalized Cantor sets containing well-known examples were also
defined by a family of similarity contractions {fi,..., f,} on a metric space as
the unique nonempty compact set K satisfying K = | )", f;(K). Hutchinson [4]
(cf. Kigami [7], Schief [9]) introduced the notion of the open set condition and
extended Moran’s result for generalized Cantor sets in RY satisfying the open set
condition.

Balogh and Rohner extended Hutchinson’s result to doubling metric spaces
([11]). The assumption (b) of our Main Theorem is essentially the same as
considering doubling metric spaces. Since analysis on doubling metric measure
spaces is now very active (see for instance Assouad [1], Heinonen [3]), it is
meaningful to consider generalized Cantor sets in such metric measure spaces.
Recently we have obtained an asymptotic extension of Balogh and Rohner’s
result. This will appear in a forthcoming paper.

The organization of the present paper is as follows. In section 2, we prove
Main Theorem. In the proof of Main Theorem, the proof of dimy C > ¢ is the
most essential part. In particular, the assumption (b) on the Borel measure is
needed in this part, to obtain a uniform bound on the number of small ball
contained in a larger ball. Therefore the assumption (b) can be replaced by
doubling conditions on metric spaces.

In section 3, we give an example of generalized Cantor sets on non-flat
Riemannian manifold.

The author would like to thank the referee for valuable comments.

2. Proof of Main Theorem

DeFmNiTION 2.1, Let X be a metric space, Z < X and o be a nonnegative
real number. An ¢-cover {U;} of Z is a finite or countable collection of sets U;
with |U;| < ¢ covering Z.

For an ¢ > 0 define m(Z,a,¢) by

m(Z, o, &) = inf{z |Ui|* | {U;} : e-cover of Z}.
i=1

The a-dimensional Hausdorff measure of Z is defined by the formula

m(Z,a) =lim m(Z,o,¢).

£—



170 Daruhan Wu

The Hausdorff dimension dimy Z of Z is defined as
dimy Z :=sup{a = 0|m(Z,0) = 0} = inf{o > 0|m(Z, ) = 0}.

To prove Main Theorem, first we show that dimy C < 1.

We call n the depth of the basic set Agy,..,-

Let ¢ be the constant in the definition of a (4,c,v)-similarity map in In-
troduction. By the construction of C, we have |Ay,..,| < |Aw -0, |v. Obviously
there exists a number ny (n9 > 1) such that

|Apye,, | <1,

For any ¢ > 0, let n be sufficiently large such that % = {A,,.., |1 < w; <k,
1 <j<n} is an e¢cover of C. By the definition of (4,c,v)-similarity map
f i Au 0, — Aw 0, We have

[Aw 0, < Ao, (1 + c|Ab, 0, D Bor 0, |-
Let n=ny + m, then
Ap ey ] < c|A(A,,1A..wn0|vm’1 <yl
Thus

m(C, e < Y NAuo,l'

(CU] ,...,wn)

- Z (1A, 11 |l + -t Aoo, k] [)

((1)1 PR wn—l)

< S (Ut Do D) Ao |G+ 4 2L)
(w].”.,wn,[)
< N ") Ay,

(wl,“uw,,,l)

Il
—~
—
_|_
<
3
NI

Y. oo

(@1 0ey 0p—1)

S“.<(1_"_‘};11—1)f,..(1_|_v)’2r Z ‘Awl»--wno‘l'

Here when m — oo the sequence a,, = (1 +v"~1)"--. (14 )2’ converges. Hence
m(C,t) < K for some constant K, and therefore dimy C < . ]
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To prove dimy C > ¢, we show Lemmas 2.2 and 2.6.

LemMmA 2.2. There exists a constant K, chosen independently of any cover,
such that if U = {U;} is any cover of C such that each U; is a basic set, then
SU|" = K > 0 holds.

i

Proor. Let % = {U;} be any cover of C by basic sets. # is called minimal
if no proper subcollection of % covers C. Because C is compact, it suffices to
establish 3" |U;|' > K > 0 when % is finite and minimal.

i

Let n be the maximum of the depths of all basic sets in %, and let A,,...,, be
a basic set of maximal depth in %. Since % is minimal, it does not contain the
basic set A, ..., ,. It follows that each of the basic set A,,,..., ,; for j=1,...,k
is contained in %.
Thus the sum Y |Uj|" contains the partial sum
i

Ao 1| [ Aoy k]
By the definition of (/,c,v)-similarity map and z, we see

Aoy 1]+ Do, k] = A1 = | Aisy o ) Aoy, |
FA € I V.V | M V. W
=+ + 200 = clApo, ) Ao, |
=(1—=clAv v ) Aoer, |

>(1=v""YA0 0, "

We replace {A,, .., |/ ;‘:1 by Ay,..w, ,- In this way we replace all the basic sets in
4 of depth n by the corresponding sets of depth n — 1, to obtain a new covering
%' by basic sets. We may assume that %’ is minimal. Then we can repeat the
previous argument, and obtain

DU = (=" (1 =) (1 = clAuyiy, ) Aoy, |

But in the last expression, a,, = (1 —v"~1)"...(1 —v)" converges to a positive

number and (1 — C|Aw1~~~w,,0|)t|Awl~~-w,,0|t is uniformly bounded from below.

Therefore > |U;|' = K >0 for a uniform positive number K. O
i
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LemMA 2.3. Let Amin = min{Ay,..., A }. For each r >0, set

v (r) :{Awr..wn i < 1Ay, | < — }

}vmin

and given x € X, define Vy(r)={VeV(r)|xeV}. Let N be the number of
elements of Vi(r). Then N < M, where M is independent of x and r.

Proor. First we consider the case x € C. We can write given x € C as

{x} = ﬂ Aoy,
n>1
For the infinite sequence w,wy,...,w,,..., define the set E as

E = {n|r/1min < |Awo,| < r }

lmin

Then the number of elements of E is equal to the number N of elements of V,(r).
Now let n/ = min E, n” = max E, and let n” = n’ +m, n” > ny, n’ > ny. Beacause

1Ayl = 1Aay s | < 1Ay, V™
by the definition of n’, n”, we have
;
Fhmin < Aoy | <Aoo, V" < 7 v,
min

Therefore, rAmin < 7—v". Hence, m < 2%: M. ie, N<M.

Next, we consider the general case xe€ X. For any xe€ X, define E as
E={Av 0, | X€EAy 0} If n=1, there exits unique w; such that x e A,,; if
n =2, there exits unique w, such that x e A, ,; similarly there exits unique
wy such that x € A,..,. If E is an infinite set, then x € C. Because there exits
unique infinite sequence w;,wy,...,®y,... such that x €Ay, ., and {x} =

ﬂ Ay, .., for any n (n>1). Therefore, xe C. If E is a finite set, i.e.,

n>1

E={Au,,Av095 -1 Aerye0, }> then Vi(r) = {Awl‘“wr107'"7Awl“'wn0—m} for suitable
ny and m. Thus by an argument similar to Lemma 2.3, the number of elements
of V,(r) is bounded above by a constant M (which is independent of x and r).

[

LemMA 2.4. If by, .., = max{r| B(x,r) = Ay, ..c0, }, then

R B S By S )}
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Proor. Let x be the center point of a largest ball included in A,,..o, ,- By
the definition of (/,,, ¢, v)-similarity map f : Ay ..r, , — Aw;-c0,, WE have

B(f (%), A, by, (1 = €| Ay, ) = [(B(X, booy00,-1))
Thus, B(f(x), Aw,bw-w,; (1 = c|Awpw,,]) S Aw,.w,, therefore
bosyaoy = Aeoybioyio,, (1 = €|Apy 0,y |)- O
LEMMA 2.5. If by, ..o, = max{r| B(x,r) € Ay,..w, }, then there exists a con-
stant ko such that

Awy--o,]

bory-mo,

< k07
for any n and any wi,w,,. .., w,.

PrOOF. By the definition of (4,, ¢, v)-similarity map f : Ay,..c0,_, — Doycops
we have

Aoy -0, < 2o, (1 + €|Aiy 0, D Aoy 0, |

Therefore we obtain

Ao, < (I + cAv -0, DA 0,
boyewy, (L= clApyw, 1 )boyoy

There exists ny such that for any n > ny

1 + ClAwlmw —1 |
el < 14 3¢ Aw e |
1- C|ALUI“'wn—1| I l |
Thus we have
|Aw "‘wu| |A‘” W |
ba)ll...a)n = ba)]lu.a)n—ll (1 + 3C|A(1)1---(1)r,71 |)

By the construction of C, we have |Ay,..0,| < |Aw -0, |v- Hence, there exists
ny; > no such that

3C|Awl.4.wnl‘ <1.
Now let n =n; +m, then we get

i < By V"
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Therefore we obtain

3¢c|Awy | < 3clAoyo, ynl < ym-l

and hence
1+3cApy, | < 1+v"

Thus we have

|Aw, -, ] |Aw, -, | 1
n S n (1 + vm ).
Doy, b,y
Therefore we obtain
|Aw1-~-w |Aw1‘“w —1| -1
n S n 1_|_vm
by, by, ( )
Ay ...
< | W] wn—2| (1 4 vm72)(1 + vmfl)
Doy
|A(,01~'(J)“l | m—2 m—1
1+,

Here when m — oo the sequence a,, =2(1+v)---(1+v""!) converges. Thus

. 1A o
there exists a constant ki such that —“~ < k; for any n>n;. Let k; =
o | 1Ay, oo, | oo oy o
max{—bml orr T By | and ko = max{k,k,}. Then By o < ko for any n
and any w;,wy,...,w,. O

LemMMA 2.6. Let U be a bounded subset of X, and write r = |U|. Then U

intersects at most M' = C(0)M elements of V(r), where M is the constant given

#min

in Lemma 2.3 and 6 = ——=———.
deg+-8eg i +12

‘min

Proor. Fix an arbitrary point xpe€ U, and consider the ball
B(xo, (1+7-)r) = X. Then we have U < B(xo, (1 +;-)r), and choose maxi-
mal points {x;}; = B(xo, (1 +7-)r) such that d(x;,x;) > % for any i # j,
where ko is a constant defined in Lemma 2.5. We show that N < C (0), where

‘mn___ and C(0) is the constant given in the condition () in Main

= 4k0+4k0;L|nin+;L,nin . .
Theorem. Consider the ball B(x;, ’2',“(‘(‘]“), and the ball B(xo, (1 + inl],n)r + rzﬂ—]‘j;“) Then
we have

L FAmi 1 Fmi
B 1‘7 min B , 1 min .
U () = a(om (1 )+ 5)
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Since B(x,,'g‘,:‘“) ﬂB(x],rg}:‘“) = (i #j), we get

N
i 1 Fhmi
| fmin B 1 min
Sou(a(srge) ) <o (170 5 )

Take iy such that 11<n'i<nN ,u(B(x,,r;;(‘]")) = y(B(x,O,’gl"g‘")). Then we get

' Amin 1 FAmin
N,Ll B Xl‘(],TkO S,u B X0, 1+A r—+ Zk()

Thus we have

u(B(xo, (1+70)r+52)
u(B(xi, 52))

N <

Because B(x, (1 + }~nl]i )r+ r;,"c“") < B(x;,2(1+ /1:‘1“ )r+ r;,"c“"), we obtain

u(B(xi, 2(1+ 70 )r +55))

N <
w(B(xiy, 52))

< C(9),

;2

“min

Aho+4ko Amin+22

“min

Next we show that if Ve V(r) intersects U, it must contain one of {x;}.
Take a point y € VN U. Let x be the center point of a largest ball included in V.
Then we have

where 6 =

d(x,x0) < d(x,y) +d(y,x0)

£|V|+|U|s(ll' —I—l)r.

Therefore, we obtain x € B(xo, (1 +;)r). Furthermore, we have

1 N V}Lmin
B x;, .
B<XO’ (1 - Amin) V) “ iyl <X ko )

Thus there exists a point x; (i=1,2,...,N) such that xeB(xi,”,'(’“Oi"). Hence

xi € B(x M'“‘“). By Lemma 2.5, |(V‘ <ko Therefore, b(V) > ‘,:‘ > "),’(“(:i“. ie.,
V > B(x,b(V)) > B(x "’“‘“) Hence, x; € V. Because each of {x;} is contained in

at most M such sets V, it follows that the total number of elements V' of V(r)
which intersect U is bounded above by M’ = C(6)M. O
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THE PROOF OF dimy C >t. Let % = {U;} be any e-cover of C. For each U,
write 7; = |Uj|, and let Uj1,..., U; ;) be the basic sets in V'(r;) which intersect
U;. Tt follows from the above Lemma 2.6 that m(i) < M'. Furthermore, since
U, ;e V(r), we have

U,
vl < 194,
and
Z|U,,| DO M e
e = T
ie.

) irlnm m(i)
Uil" = ZIU,,l

Summing over all the elements of % yields

m(i)

SIS D SN

Since {U;;} is a cover of C by basic sets, we may apply Lemma 2.2 to
obtain

Z|U| m"11<>0

where K is the constant in Lemma 2.2. Hence dimy C > ¢, and Main Theorem
follows. O

3. Generalized Cantor Sets in Riemannian Manifold

Finally we construct a generalized Cantor set in a complete Riemannian
manifold.

Let M be a complete Riemannian manifold. For a point pe M, let
B(0,r) ={ve T,M||jv|| <r}. If r is sufficiently small, then the exponential map
exp, : B(0,r) — M is a diffeomorphism onto B(p,r) ={qe M |d(p,q) <r}. For
any ve B(0,r), let y, be a geodesic such that y,(0) = p, 7,(0) =v. Then by
definition, exp,(v) = y,(1).
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Let K;; be the sectional curvature of M. Take a positive number A such that
—A? < Ky < A* on B(p,r). By Rauch Comparison Theorem (cf. [CHE]), for any
u,v e B(0,r),

sin Ar - d(expy(u), exp,(v)) < sinh Ar
Ar T |l — vl - Ar

ProposITION 3.1. For a constant A with 0 <A <1, let p; € B(p,r) = M
with d(py,p) < (1 —A)r. Let f, : Ty, M — T, M be the J-similarity map given by
v Av. Let Iy: T,M — T, M be a linear isometry. Let Ao := B(p,r), Ay =
expz;l(AO) = B(OIHr) cI,M, A~1 = 10(A~0) = B(O,,l,}’) cT,M, El ::f‘l(/II) =
B(0,,,/r), Ay := exp,, (B1) = B(py, Ar). Then fy := exp,, o fy 0o expp’1 : Ay — A
is a (A, c,v)-similarity map, where ¢ :’l\—g(lz +1).

Proor. For any x,y € Ay, by Rauch Comparison Theorem, we have

dle”!(x),e”!(y)) _ _Ar _d(h), () _ sinh AZr
d(x,7) C S AT d(fi (e (), fillo(eT (9))) T AM

and therefore

)

d(fo(x), fo()) < Ar sinh Adr
d(x,y) ~Tsin Ar AAr

1

where e~ = exp, .

When r « 1, by Taylor expansion we get
sinh AAr
AAr

Ar <1 +;A2r2,

1 2922
< = T,
sin Ar < laga

Thus, we have

AUo(x). foly)) _ , A sinh Adr
d(x,y) — sinAr  AAr

1 1
< (1 + 7A2r2) (1 + 7Azﬂﬂrz)

, 1 ooos Loas 1 40y
SA<1+7AAV +7Ar +EA}VV

1 1
< i(l —&-gAz/lzrz +§A2r2> (r<l)

1 1
<i+7 (gAWﬂ + gA2r2> .
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Furthermore, since |4g| = 2r, we obtain

d(ﬁ)d(zz7§())(y)) i< }“/8\2(,12 +1)rr (r<l)
< ;{1_62(124—1)27'
2
=2 ),

Similarly, we have M A= — '“\ (/12 + 1)|4o]. Letting ¢ = ¢ A (22 +1), we

obtain \ f‘; — 2| < 4c|4o], and hence fo is a (4,c,v)-similarity map. []

ExampLE 3.2. For 0 < /< %, let ky be a maximal number of disjoint closed
balls of radius A4 which is contained in the unit ball of R". Let M be an n-
dimensional complete Riemannian manifold of Ricci curvature > (n — 1)x and
p € M for a constant x. If r is sufficiently small, then B(p,r) is almost isometric
to B(0,r)c T,M. Let 1 <k <ko and r; = Ar. Then we can take k disjoint
balls {B(p,-,rl)}ik:l in B(p,r). By Proposition 3.1, B(p;,r1) is a (4, ¢, v)-similar set
of B(p,r) for some uniform constant c. let r, = Arj, then we can take k disjoint
balls {B(p,‘j,rz)}f:1 in each ball B(p;,r1), and B(p;,r2) is a (4,c,v)-similar set
of B(pi,r1). Repeating this procedure, we can construct basic sets B(pj,..i,,"n)
(ry = A"riy, ..., i = 1,2,...k), and we can define an asymptotically generalized
cantor set C in M as

0 k
C:= ﬂ < U B(pil,”,‘”,r,,)).

Let u be the Riemannian measure of M. We denote by V/(r) the volume of a
r-ball in the n-dimensional space form M) of constant curvature x. By Gromov-

Bishop Comparison Theorem, we have

n r 3
t(B(xo,1)) < V,’f (r) jg, sinh /x|t dt < Cul0),
1(B(xo,0r)) — Vi (or) sinh \/|x|¢ dt '
for any xp € M and 0 < J,r < 1, where C, .(d) is a positive constant depending

only on n, k and 9.
log k
log 4°

Hence by Main Theorem we have dimy C = —
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