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SPHERES, SYMMETRIC PRODUCTS, AND QUOTIENT

OF HYPERSPACES OF CONTINUA

By

Enrique Castañeda-Alvarado and Javier Sánchez-Martínez

Abstract. A continuum means a nonempty, compact and connected

metric space. Given a continuum X , the symbols FnðX Þ and C1ðX Þ
denotes the hyperspace of all subsets of X with at most n points and

the hyperspace of subcontinua of X , respectively. If n > 1, we con-

sider the quotient spaces SF n
1 ðXÞ ¼ FnðXÞ=F1ðX Þ and C1ðXÞ=F1ðX Þ

obtained by shrinking F1ðX Þ to a point in FnðX Þ and C1ðX Þ, re-

spectively. In this paper, we study the continua X such that SF n
1 ðX Þ

is homeomorphic to C1ðX Þ=F1ðXÞ and we analyze when the spaces

FnðX Þ and SF n
1 ðX Þ are homeomorphic to some sphere.

1. Introduction

A continuum means a nonempty, compact and connected metric space. The

symbols N and R will denote the set of all natural numbers and real numbers,

respectively. Also I will be the unit interval ½0; 1�. Consider the following hyper-

spaces of a continuum X :

2X ¼ fAHX : A is closed and nonemptyg; for n A N

CnðX Þ ¼ fA A 2X : A has at most n componentsg;

FnðX Þ ¼ fA A 2X : A has at most n pointsg:

These hyperspaces are considered with the Vietoris topology (see [16, Theorem

0.11, p. 9]). The hyperspace FnðX Þ is also known as the nth-symmetric product of

X . Symmetric products were introduced by K. Borsuk and S. Ulam in [2], they

proved that, if n ¼ 1; 2; 3, FnðIÞ is homeomorphic to I n, for nb 4, FnðIÞ is not
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homeomorphic to any subset of Rn and F2ðS1Þ is homeomorphic to Möbius

Strip, where S1 is the 1-sphere. In [14], R. Molski proved that F2ðI 2Þ is homeo-

morphic to the 4-cell and for nb 3 neither FnðI 2Þ nor F2ðI nÞ is homeomorphic to

any subset of R2n. In [3], R. Bott corrected Borsuk’s statement (see [1]) that

F3ðS1Þ is homeomorphic to S1 � S2 by showing that, actually F3ðS1Þ is homeo-

morphic to S3, where Sn denotes the n-sphere. In this direction, in this paper we

prove the following theorem:

Theorem 4.3. Let X be a continuum. The following statements are true:

(1) (Triviality) If n ¼ 1, then FnðX Þ is homeomorphic to Sm if and only if X is

homeomorphic to Sm,

(2) FnðXÞ is homeomorphic to Sm for some ma n if and only if either n ¼ 3

or n ¼ 1, and X ¼ S1.

Furthermore, in 1979 S. B. Nadler, Jr. introduced the hyperspace suspension

of a continuum X as the quotient space C1ðXÞ=F1ðXÞ, [17], in that paper the

author studied the fixed point property of this quotient spaces. For m; n A N

with m < n and a continuum X , we consider the quotient space FnðX Þ=FmðXÞ
that we will denote by SF n

mðXÞ obtained by shrinking FmðXÞ to a point in FnðX Þ,
with the quotient topology (see [6]). It is well known that C1ðIÞ=F1ðIÞ and SF 2

1 ðIÞ
are 2-cells (see [13, In proof of Corollary 3.10, p. 129] and [6, Example 3.1]),

C1ðS1Þ=F1ðS1Þ is homeomorphic to S2 (see [13, In proof of Corollary 3.10,

p. 129]), but SF 2
1 ðS1Þ is the Real Projective Plane (see [6, Example 3.1]). In view

of this, it is easily suspected that the spaces X for which C1ðXÞ=F1ðXÞ is home-

omorphic to FnðX Þ=F1ðXÞ are very limited. In fact, in this paper we show the

following results:

Theorem 3.4. Let X be a finite-dimensional and arcwise connected con-

tinuum. Then C1ðX Þ=F1ðX Þ is homeomorphic to SF 2
1 ðX Þ if and only if X is

homeomorphic to ½0; 1�.

Theorem 3.6. If Y is an arcwise connected continuum and nb 3, then

C1ðYÞ=F1ðYÞ is not homeomorphic to SF n
1 ðXÞ, for every finite dimensional con-

tinuum X.

Since SF 2
1 ðS1Þ is the Real Projective Plane (see [6, Example 3.1]), SF 2

1 ðTmÞ is
homeomorphic to F2ðTmÞ (see [6, Example 3.3]) and SF n

1 ðQÞ is homeomorphic to
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Q for each n A N (see [6, Example 3.1]), where Tm is a simple m-od and Q is the

Hilbert Cube. As a consequence of the results obtained in this paper, we obtain

the following

Corollary 4.8. If X is a continuum and nb 2, then SF n
1 ðXÞ is not homeo-

morphic to Sm, for each 2ama n.

Finally, the following questions remain open.

Question 3.7. Can we omit the arcwise connectedness hypothesis in Theorems

3.4 and 3.6?

Question 4.9. Does there exist a continuum X and nb 2 such that FnðXÞ is

homeomorphic to Sm for some mb 4?

Question 4.10. Does there exist a continuum X and m; nb 2 such that

SF n
mðXÞ is homeomorphic to Sm for some m A N?

2. Definitions and Preliminaries

Given a continuum Z and a subset A of Z, clZðAÞ, intZðAÞ, BdðAÞ denotes

the closure, interior and boundary of A in Z, respectively. A subcontinuum of a

space Z is a continuum contained in Z. The symbol jAj denotes the cardinality of

A and coneðZÞ denotes the quotient space Z � ½0; 1�=Z � f1g. Let z A Z and b be

a cardinal number, we say that z has order less than or equal to b in Z, written

ordðz;ZÞa b, provided that for each open subset U HZ such that z A U , there

exists V an open subset of Z such that z A V HU and jBdðVÞja b.

An n-od (n A N and nb 3) is a continuum X which contains a subcontinuum

Y such that the complement of Y in X is the union of n nonempty mutually

separated sets (if Y is a singleton and the components of XnY are arcs, we say

that X is a simple n-od ). A simple 3-od, will be called a simple triod. An arc is

any space homeomorphic to I . A free arc in a continuum X is an arc aHX such

that intX ðaÞ0q.

Given a finite collection, U1; . . . ;Um, of subsets of X , hU1; . . . ;Umin, denote

the following subset of FnðXÞ

A A FnðXÞ : AH 6
m

i¼1

Ui and AVUi 0q for each i ¼ 1; . . . ;m

( )
:

77Spheres, symmetric products, and quotient of hyperspaces of continua



If each Ui is an open subset of X , it is known that the family of all subsets of

the form hU1; . . . ;Umin, is a basis for the topology of FnðXÞ called the Vietoris

topology (see [16, Theorem 0.11, p. 9]).

Given a continuum X , rX
m;n : FnðXÞ ! SF n

mðXÞ denotes the natural quotient

function. Also, let F n
mðXÞ denotes the point rX

m;nðFmðXÞÞ.

Remark 2.1. Using an appropriate restriction of rX
m;n, it is clear that

SF n
mðXÞnfF n

mðX Þg is homeomorphic to FnðXÞnFmðX Þ.

In this paper, dimension means inductive dimension as defined in [16, (0.44),

p. 21]. The symbol dim will be used to denote dimension. If dimðXÞ A NU f�1; 0g
we will writte dimðXÞ < y and dimðXÞ ¼ y in other case. By [9, p. 20], for

every continuum X , dimðX Þb 1.

The following result is a particular case of [9, Corollary 1, p. 32].

Theorem 2.2. Let X be a continuum and n A NU f0g. If X ¼ Y UZ, Y is

closed in X , dimðY Þa n and dimðZÞa n, then dimðX Þa n.

Corollary 2.3. If X is a continuum, n A N, Y is a subcontinuum of X ,

dimðXÞ ¼ n and dimðY Þ < n, then dimðXnY Þ ¼ n.

Proof. Is clear that dimðXnYÞa n. If dimðXnYÞ < n, then dimðXnY Þa
n� 1. By Theorem 2.2, dimðXÞa n� 1, this is a contradiction. r

3. SF n
1 ðXÞ Homeomorphic to C1ðXÞ=F1ðXÞ

Proposition 3.1. If X is a finite-dimensional continuum, then FnðX Þ and

SF n
mðXÞ are finite-dimensional continua.

Proof. By [8, proof of Lemma 3.1, p. 253], dimðFnðXÞÞa n � dimðXÞ,
thus FnðXÞ is a finite-dimensional continuum. On the other hand, since

dimðFnðXÞnFmðX ÞÞa dimðFnðXÞÞ and FnðXÞnFmðX Þ is homeomorphic to

SF n
mðXÞnfF n

mðX Þg, dimðSF n
mðX ÞnfF n

mðXÞgÞa n � dimðX Þ. Thus, by Corollary 2.3,

dimðSF n
mðXÞÞ is finite. r

Proposition 3.2. Let X be a 1-dimensional continuum and nb 2, then

dimðFnðXÞÞ ¼ dimðSF n
1 ðX ÞÞ and dimðC1ðXÞÞ ¼ dimðC1ðX Þ=F1ðX ÞÞ.
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Proof. Notice that dimðF1ðXÞÞ ¼ 1. By Corollary 2.3, dimðFnðX ÞÞ ¼
dimðFnðXÞnF1ðXÞÞ. We conclude

dimðSF n
1 ðX ÞnfF n

1 ðXÞgÞ ¼ dimðFnðXÞÞ:

By Theorem 2.2, dimðSF n
1 ðXÞÞ ¼ dimðFnðXÞÞ. In a similar method we can show

that dimðC1ðXÞÞ ¼ dimðC1ðXÞ=F1ðXÞÞ. r

Lemma 3.3. If an arcwise connected continuum X has hyperspace C1ðX Þ of

dimension at most 2, then X is homeomorphic to either S1 or I .

Proof. By [10, Theorem 70.1, p. 337] X does not contain simple triods.

Therefore, ordðx;XÞa 2 for every x A X because X is arcwise connected. Thus,

by [18, Proposition 9.5, p. 142], X is an arc or X is homeomorphic to S1.

r

Theorem 3.4. Let X be a finite-dimensional and arcwise connected con-

tinuum. Then C1ðX Þ=F1ðX Þ is homeomorphic to SF 2
1 ðX Þ if and only if X is

homeomorphic to ½0; 1�.

Proof. If X is an arc, both C1ðXÞ and SF 2
1 ðX Þ are 2-cells. Conversely,

suppose that C1ðXÞ=F1ðXÞ is homeomorphic to SF 2
1 ðX Þ. By Proposition 3.1,

dimðSF 2
1 ðXÞÞ < y, thus dimðC1ðXÞ=F1ðX ÞÞ < y. Hence, dimðC1ðXÞÞ < y. By

[11, Theorem 2.1], we have dimðXÞ ¼ 1. So, dimðSF 2
1 ðXÞÞa 2 and dimðC1ðX ÞÞa

2. By Lemma 3.3 X is an arc or X is homeomorphic to S1. But, C1ðS1Þ=F1ðS1Þ
is the 2-sphere and SF 2

1 ðS1Þ is homeomorphic to the real projective plane. We

conclude that X most be an arc. r

Lemma 3.5. If X is a continuum and nb 3, then FnðXÞ and SF n
1 ðXÞ does not

contains 2-dimesional subsets with nonempty interior.

Proof. Suppose that there exist a 2-dimensional subset D of FnðX Þ with

nonempty interior. Let U ¼ hU1; . . . ;Unin be an open subset of FnðXÞ such that

UHD. By the denseness of fA A FnðXÞ : jAj ¼ ng in FnðX Þ (see [7, In the proof

of Lemma 3.1]) there is A A ðFnðX ÞnFn�1ðX ÞÞVU. Since jAj ¼ n we can assume

that Ui VUj ¼ q and AVUi 0q for every i; j A f1; 2; . . . ; ng. Under this con-

ditions we can take C1;C2; . . . ;Cn nondegenerate subcontinua of X such that

Ci HUi for each i. Notice that hC1; . . . ;Cnin is homeomorphic to C1 � � � � � Cn.
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So, U contains a homeomorphic subset to C1 � � � � � Cn. Hence dimðUÞb 3. This

is a contradiction. r

Theorem 3.6. If Y is an arcwise connected continuum and nb 3, then

C1ðYÞ=F1ðYÞ is not homeomorphic to SF n
1 ðXÞ, for every finite dimensional

continuum X.

Proof. Suppose that there is a finite dimensional continuum X , such

that C1ðYÞ=F1ðYÞ is homeomorphic to SF n
1 ðXÞ. By Proposition 3.1,

dimðC1ðYÞ=F1ðYÞÞ < y. Thus, dimðC1ðYÞÞ < y. By [11, Theorem 2.1],

dimðYÞ ¼ 1. Let m ¼ dimðC1ðY ÞÞ. By [10, Theorem 70.1, p. 337] and using

arcwise connectedness of Y , this continuum does not contain simple ðmþ 1Þ-ods.
By [12, Theorem 11, p. 179], Y must contain a free arc, which implies that

C1ðYÞ=F1ðYÞ contains a 2-dimensional subset with nonempty interior, but this

contradicts Lemma 3.5. So, the theorem is true. r

Question 3.7. Can we omit the arcwise connectedness hypothesis in Theorems

3.4 and 3.6?

4. Continua X such that FnðX Þ and/or SF n
1 ðXÞ are n-spheres

Theorem 4.1. If X is a continuum, then for each nb 2, neither FnðXÞ nor

SF n
1 ðXÞ is homeomorphic to S2.

Proof. Let X be a continuum such that FnðX Þ is homeomorphic to S2 for

some nb 2. Then, FnðX Þ is locally connected. By [8, Lemma 2.2, p. 252] X is

locally connected. Since, dimðS2Þ ¼ 2 then dimðX Þ ¼ 1 and n ¼ 2. By [6, Lemma

5.9], X cannot contain simple m-ods, for each mb 3. Therefore, by [18, Proposi-

tion 9.5, p. 142], X must be an arc or a simple closed curve. But, F2ðIÞ is a 2-cell

and F2ðS1Þ is a Möbius Strip, which contradicts the assumption FnðXÞ home-

omorphic to S2.

Now, to the case SF n
1 ðXÞ. Let X be a continuum and suppose that SF n

1 ðXÞ
is homeomorphic to S2. Thus, X is locally connected. Since C1ðS1Þ=F1ðS1Þ is

homoemorphic to S2 (see [13, In proof of Corollary 3.10, p. 129]), by Theorem

3.6, we have n ¼ 2. It is clear that dimðX Þ must be equal to 1. By [6, Example

3.3] and [6, Lemma 5.9], X cannot contain simple m-ods, for each mb 3. So, by

[18, Proposition 9.5, p. 142], X is an arc or a simple closed curve. By [6, Example

3.1], in both cases SF 2
1 ðXÞ is not homeomorphic to S2. r
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Theorem 4.2. Let X be a continuum. If nb 2 and n0 3, then neither FnðXÞ
nor SF n

1 ðX Þ is not homeomorphic to Sm, for each 2ama n.

Proof. The conclusion for n ¼ 2 follows from Theorem 4.1.

Let n > 3 and suppose that FnðXÞ (or SF n
1 ðXÞ) is homeomorphic to Sm for

some 2ama n. Then, FnðX Þ is locally connected. By [8, Lemma 2.2, p. 252] X

is locally connected. Thus, X is arcwise connected. Let a be an arc in X and

x; y A a, x0 y. So, there is a system of neighborhoods g of fx; yg in FnðXÞ
(of rX

n;1ðfx; ygÞ in SF n
1 ðX Þ, respectively) such that for every V A g, V cannot be

embedded in Rn (see [2]). But, each point in Sm have a system of neighborhoods,

each one of which is embedded in Rn, this is a contradiction. r

Theorem 4.3. Let X be a continuum. The following statements are true:

(1) (Triviality) If n ¼ 1, then FnðX Þ is homeomorphic to Sm if and only if X is

homeomorphic to Sm,

(2) FnðXÞ is homeomorphic to Sm for some ma n if and only if either n ¼ 3

or n ¼ 1, and X ¼ S1.

Proof. (1) is true, because F1ðXÞ is homeomorphic to X . The su‰ciency of

(2) is true by [3] and (1).

For the necessity of (2), suppose that FnðX Þ is homeomorphic to Sm for

some ma n. By Theorem 4.2, n ¼ 1 or n ¼ 3. If n ¼ 1, since F1ðX Þ is home-

omorphic to X , then X is homeomorphic to S1. If n ¼ 3, by [5, Corollary 5.9],

X is homeomorphic to S1. r

Since each continuum Z is a compact, metric space, coneðZÞ is homeo-

morphic to the so-called geometric cone over Z (see [18, Exercise 3.28, p. 47]).

So, the following remark is easy to be seen.

Remark 4.4. If Z is a continuum and nb 2, coneðZÞ can be embedded in

Rn if and only if Z can be embedded in Rn�1.

Lemma 4.5. If T3 is a simple triod, then F3ðT3Þ and SF 3
1 ðT3Þ can not be

embedded in R3.

Proof. Let v1, v2 and v3 the end points of T3. Let

Z ¼ fA A F3ðT3Þ : AV fv1; v2; v3g0qg:
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Since coneðZÞ is homeomorphic to F3ðT3Þ (see [4]). In order to prove that F3ðT3Þ
can not be embedded in R3 we only need to show Z can not be embedded in R2.

Let v be the vertex of T3. Is easy to construct a system of neighborhoods g of

the point fv1; vg such that for each V A g, V contain a homeomorphic copy of

T3 � I , but by [4, Lemma 3.1, p. 58], each one of them can not be embedded in

R2. In a similar method, we can show that SF 3
1 ðT3Þ can not be embedded in R3.

r

Lemma 4.6. If X is homeomorphic to I or S1, then F3ðX Þ is not homeomorhic

to SF 3
1 ðXÞ.

Proof. First suppose that X is homeomorphic to I . By [2, Theorem 6,

p. 880], there exists a homeomorphism k : F3ðXÞ ! D where

D ¼ fðx; y; zÞ A R3 : x2 þ y2 þ z2 a 1g

and kðF1ðXÞÞ is the linear segment that joint the points ð0; 0; 1Þ and ð0; 0;�1Þ.
So, SF 3

1 ðXÞ is not homeomorphic to I 3, and then F3ðX Þ and SF 3
1 ðX Þ are not

homeomorphics.

Now, if X homeomorphic to S1, suppose that there is a homeomorphism

h : SF 3
1 ðXÞ ! F3ðX Þ. Let p ¼ hðF 3

1 ðXÞÞ. By Remark 2.1, S3nfpg is homeo-

morphic to F3ðX ÞnF1ðX Þ. On the other hand, S3nfpg is homeomorphic to R3.

Moreover by [15, Theorem 2] there is a homeomorphism between F3ðXÞ and S3

such that the image of F1ðX Þ is a trefoil knot T in S3. Thus, R3 and S3nT are

homeomorphic. But, its first fundamental groups p1ðR3Þ and p1ðS3nTÞ are not

isomorphic, which is a contradiction. r

Theorem 4.7. If X is a continuum, then SF 3
1 ðXÞ is not homeomorphic to S3.

Proof. Suppose that X is a continuum and SF 3
1 ðXÞ is homeomorphic to

S3. So, X is locally connected. By Lemma 4.5, X cannot contain simple triods,

because each point in S3 has a system of neighborhoods, g, such that for each

V A g, V can be embedded in R3. So, X must be an arc or a simple closed curve.

This contradicts Lemma 4.6. r

By Theorems 4.2 and 4.7 we obtain the following corollary.

Corollary 4.8. If X is a continuum and nb 2, then SF n
1 ðX Þ is not

homeomorphic to Sm, for each 2ama n.
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To finish this paper, we pose the following questions.

Question 4.9. Does there exist a continuum X and nb 2 such that FnðXÞ is

homeomorphic to Sm for some mb 4?

Question 4.10. Does there exist a continuum X and m; nb 2 such that

SF n
mðXÞ is homeomorphic to Sm for some m A N?
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