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NON-FIBER PRESERVING ACTIONS

ON PRISM MANIFOLDS

By

John Kalliongis and Ryo Ohashi

Abstract. In this paper we classify the finite groups of isometries

which act on a prism manifolds Mðb; dÞ and do not preserve any

fibering. We construct nine distinct finite groups of isometries which

act on Mð1; 2Þ, and do not preserve any fibering. We then show that

if a finite group of isometries G acts on Mðb; dÞ and does not

preserve any fibering, then Mðb; dÞ ¼ Mð1; 2Þ and G is conjugate to

one of these nine groups which are: Z3 � T , T , O, S3 �O, Z3 �O,

S3 � T , Z3 �O, Z3 � I , and S3 � I , where T , O, I and S3 are the

tetrahedral, octahedral, icosahedral, and symmetric groups respec-

tively.

0. Introduction

In [1], W. D. Dunbar investigated which finite subgroups of SOð4Þ acting on

the three sphere S3 preserve no fibration of S3 by circles. He identified 21

conjugacy classes of isometries acting on S3 which preserve no fibration of S3 by

circles, and he computed the quotient type of each such action. Each quotient

type is a spherical orbifold, whose underlying space is S3, and contains an

embedded trivalent graph for its exceptional set. These spherical orbifolds

obviously cannot be fibered. For a very nice discussion of Seifert fibered spaces

and distinct fiberings of 3-manifolds, see the work of W. Jaco [2] and K.

Morimoto [6] which is written in Japanese.

This paper investigates which prism manifolds admit finite groups of iso-

metries which do not preserve any fibering, and classifies these groups up to

conjugacy. A prism manifold admits only two distinct non-isotopic fiberings, the
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meridian fibering and the longitudinal fibering. (See [2] or [5].) Let Mðb; dÞ be a

prism manifold and let G be a finite group of isometries acting on Mðb; dÞ. We

show that if Mðb; dÞ0Mð1; 2Þ, then G preserves either the meridian or lon-

gitudinal fibering. If G is a finite group of isometries acting on Mð1; 2Þ which

does not preserve any of the two fiberings, we show that G is conjugate to one of

the following groups: Z3 � T , T , O, S3 �O, Z3 �O, S3 � T , Z3 �O, Z3 � I , and

S3 � I , where T , O, I and S3 are the tetrahedral, octahedral, icosahedral, and

symmetric groups respectively. In addition, we give explicit descriptions of the

generators of these groups, which are projections of isometries of S3 to Mð1; 2Þ.
We now define a prism manifold. Let T ¼ S1 � S1 be a torus where

S1 ¼ fz A C : jzj ¼ 1g is viewed as the set of complex numbers of norm 1 and

I ¼ ½0; 1�. The twisted I-bundle over a Klein bottle is the quotient space W ¼
T � I=ðu; v; tÞF ð�u; v; 1� tÞ. Let D2 be a unit disk with qD2 ¼ S1 and let

V ¼ S1 �D2 be a solid torus. Then the boundary of both V and W is a torus

S1 � S1. For relatively prime integers b and d, there exist integers a and b such

that ad � bc ¼ �1. We consider the manifold obtained by glueing qV and qW by

the homeomorphism c : qV ! qW defined by cðu; vÞ ¼ ðuavb; ucvdÞ for ðu; vÞ A
qV ¼ S1 � S1. Then, since ð1; vÞ represents the meridian loop of V and cð1; vÞ ¼
ðvb; vdÞ, the manifold V U cW is determined by the pair ðb; dÞ and is called the

prism manifold Mðb; dÞ. Using Van Kampen’s Theorem the fundamental group

p1ðMðb; dÞÞ ¼ hc0; c1 j c1c0c�1
1 ¼ c�1

0 ; c2b1 cd0 ¼ 1i.

An embedded Klein bottle K in Mðb; dÞ is called a Heegaard Klein bottle if

for any regular neighborhood NðKÞ of K , NðKÞ is a twisted I-bundle over K and

the closure of Mðb; dÞ �NðKÞ is a solid torus. Any G-action which leaves a

Heegaard Klein bottle invariant is said to split. In [4] the authors classify, up to

conjugacy, the finite group actions on a prism manifold which split. It follows

from this classification that if an action splits, then it preserves both the lon-

gitudinal and meridian fiberings. Thus the non-fiber preserving actions described

on Mð1; 2Þ do not leave any Heegaard Klein bottle invariant. We note that

Mð1; 2Þ is the Seifert fibered space over the 2-sphere which has three exceptional

fibers with the Seifert invariants 1
2 ,

1
2 ,

1
2 and obstruction class �1, and that Mð1; 2Þ

is also the Seifert space over the projective plane which has no exceptional fiber

with obstruction class �2. Thus we have Mð1; 2ÞGS2
�
�1; 12 ;

1
2 ;

1
2

�
GP2ð�2; Þ.

The standard elliptic structure on the 3-sphere S3 is associated with the

orthogonal group Oð4Þ under its action on S3, and therefore giving Oð4Þ as the

group of isometries of S3 and SOð4Þ as the orientation preserving subgroup. A

3-orbifold (or 3-manifold) M has an elliptic structure if there exists a finite group

of isometries GaOð4Þ such that there is an orbifold (or 3-manifold) covering
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S3 ! S3=G ¼ M. An isometry of M is a homeomorphism of M which lifts to an

isometry of S3.

1. Group Isomorphisms of Fundamental Groups of Prism Manifolds

in S3 � S3

In this section, we will view the fundamental group of a prism manifold

pðn;mÞ ¼ hc0; c1 j c1c0c�1
1 ¼ c�1

0 ; c2n1 cm0 ¼ 1i as a subgroup of S3 � S3, where we

view S3 ¼ fuþ vj j u; v A C and juj2 þ jvj2 ¼ 1g.
Let D�

4m ¼ hx; y j x2 ¼ ym ¼ ðxyÞ2i and Zn ¼ ht j tn ¼ 1i be a subgroups of

S3 where x ¼ j, y ¼ epi=m, and t ¼ e2pi=n.

Proposition 1. If n is odd, then D�
4m � Zn is isomorphic to pðn;mÞ.

Proof. We first note that ðx; tÞ4 ¼ ð1; t4Þ. Since n is odd, t4 generates Zn.

Furthermore ðx; tÞn ¼ ðxn; 1Þ, which equals either ðx; 1Þ or ðx�1; 1Þ since x ¼ j.

Therefore, ðx; tÞ and ðy; 1Þ generate D�
4m � Zn. Observe that ðx; tÞðy; 1Þðx; tÞ�1 ¼

ðxyx�1; 1Þ ¼ ðy�1; 1Þ ¼ ðy; 1Þ�1, and ðx; tÞ2nðy; 1Þm ¼ ðð�1Þn; 1Þð�1; 1Þ ¼ ð1; 1Þ.
Consequently, there is an isomorphism from D�

4m � Zn to pðn;mÞ by sending ðx; tÞ
to c1 and ðy; 1Þ to c0. r

Define groups B2kþ3a ¼ hx; y j xyx�1 ¼ y�1; x2kþ3 ¼ 1; ya ¼ 1i and Zm 00 ¼
ht j tm 00 ¼ 1i. It follows that the order of the group jB2kþ3aj ¼ 2kþ3a.

Proposition 2. If a and m 00 are both odd, then B2kþ3a � Zm 00 is isomorphic to

pð2kþ1m 00; aÞ.

Proof. We will first show that hc20 ; c
m 00

1 ; c2
kþ3

1 i ¼ pð2kþ3m 00; aÞ. Since 2kþ3

and m 00 are relatively prime, there exist integers s and t such that 2kþ3sþm 00t ¼ 1.

Therefore ðc2kþ3

1 Þsðcm 00

1 Þ t ¼ c1. Now ðcm 00

1 Þ�ð2kþ2Þ ¼ ca0 ¼ c2lþ1
0 for some l since a is

odd. Hence ðc20Þ
�lðcm 00

1 Þ�ð2kþ2Þ ¼ c�2l
0 c2lþ1

0 ¼ c0. Note that ðc2kþ3

1 Þm
00
¼ 1, ðc20Þ

a ¼ 1,

and cm
00

1 c20c
�m 00

1 ¼ c�2
0 since m 00 is odd. Thus, we can define an isomorphism from

B2kþ3a � Zm 00 to pð2kþ1m 00; aÞ by sending ðx; 1Þ to cm
00

1 , ðy; 1Þ to c20 , and ð1; tÞ to

c2
kþ3

1 . r

Let H be the subgroup of S3 � S3 generated by X ¼ ð j; epi=2kþ2Þ, Y ¼
ðe2pi=a; 1Þ, and T ¼ ð1; e2pi=m 00 Þ.

Proposition 3. The group H is isomorphic to B2kþ3a � Zm 00 .
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Proof. Observe that X and Y both commute with T , X 2kþ3 ¼ ð j2kþ3
; 1Þ ¼

ð1; 1Þ, and Y a ¼ ðe2pi=a; 1Þa ¼ ð1; 1Þ. Furthermore, XYX �1 ¼ ð j; epi=2kþ2Þðe2pi=a; 1Þ �
ð j; epi=2kþ2Þ�1 ¼ ð je2pi=aj�1; 1Þ ¼ ðe�2pi=a; 1Þ ¼ Y �1. Thus, there exists a surjection

y from B2kþ3a � Zm 00 to G by sending x to X , y to Y , and t to T . Now, hYiFZa

is a normal subgroup of G, and H=hYiFZ2kþ3 � Zm 00 . Hence jHj ¼ 2kþ3am 00 ¼
jB2kþ3a � Zm 00 j, and therefore y is an isomorphism. r

Let s : S3 � S3 ! SOð4Þ be the homomorphism defined by sðq1; q2ÞðqÞ ¼
q1qq

�1
2 . Now s is onto with kernel Z2 ¼ hð�1;�1Þi.

Proposition 4. Suppose a, m 00, and n are odd. The element ð�1;�1Þ is not

an element of H or D�
4m � Zn, and hence s restricted to either of these groups is

one-to-one.

Proof. Suppose ð�1;�1Þ A H. Then for some integers u, v, and w, we have

X uY vT w ¼ ð j; epi=2kþ2Þuðe2pi=a; 1Þvð1; e2pi=m 00 Þw ¼ ð�1;�1Þ. We obtain the equa-

tions j ue2vpi=a ¼ �1 and eupi=2
kþ2

e2wpi=m
00 ¼ �1. The first equation implies that

j u ¼ 1 or �1. Suppose first that j u ¼ 1, and hence e2vpi=a ¼ �1. Becasuse a

is odd, this is impossible since e2pi=a generates a cyclic group of odd order.

Therefore, we must have j u ¼ �1 and u ¼ 2ð2xþ 1Þ for some integer x. For

the second equation, we have e2ð2xþ1Þpi=2kþ2
e2wpi=m

00 ¼ �1, and simplifying we get

eð2xþ1Þpi=2kþ1
e2wpi=m

00 ¼ �1. By raising both sides of this equation to the m 00-th

power and using the fact that m 00 is odd, we obtain em
00ð2xþ1Þpi=2kþ1 ¼ �1. Since

2xþ 1 and m 00 are both odd, we again get a contradiction by raising both sides

to the 2kþ1 power.

Suppose that ð�1;�1Þ A D�
4m � Zn. This implies that there exist integers u, v

and w, such that ðxuyv; twÞ ¼ ð�1;�1Þ. Since t ¼ e2pi=n and n is odd, e2wpi=n ¼ �1

is impossible, giving a contradiction. r

2. Fiber Preserving Actions on Prism Manifolds

In this section we indicate the elliptic structure and the two distinct fiberings

on a prism manifold. We show that any finite group of isometries acting on a

prism manifold Mðb; dÞ when Mðb; dÞ0Mð1; 2Þ is fiber preserving.

Let s : S3 � S3 ! SOð4Þ be the homomorphism defined by sðq1; q2ÞðqÞ ¼
q1qq

�1
2 . Now s is onto with kernel Z2 ¼ hð�1;�1Þi. For a more complete

discussion, see [3] and [7]. Define a map k : S3 ! SOð3Þ by kðqÞðpÞ ¼ qpq�1 for
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any p A S2 and q A S3. By Dunbar [1], there exists a map r : SOð4Þ ! SOð3Þ�
SOð3Þ such that r � s ¼ k� k. Let p1 : SOð3Þ � SOð3Þ ! SOð3Þ be the projection

onto the first coordinate, and let p2 : SOð3Þ � SOð3Þ ! SOð3Þ be the projection

onto the second coordinate.

For the subgroup S1 ¼ heiy j y A Ri of S3, let Fl ¼ hpS1ip AS3 and Fr ¼
hS1pip AS3 be the left and right Hopf fibrations of S3 respectively. View S2 ¼
CU fyg where C is the complex plane. Define Hl : S

3 ! S2 and Hr : S
3 ! S2 by

Hlðuþ vjÞ ¼ u=v and Hrðuþ vjÞ ¼ u=v respectively. See [5] for a good reference.

Let D�
4m ¼ hx; y j x2 ¼ ym ¼ ðxyÞ2i and Zn ¼ ht j tn ¼ 1i be subgroups of S3

where x ¼ j, y ¼ epi=m, and t ¼ e2pi=n. We will assume that n is odd and relatively

prime to m. Since the group generated by x2 ¼ �1 is a normal subgroup of D�
4m,

let D2m ¼ D�
4m=hx

2i ¼ hx; y j 1 ¼ x2 ¼ ym ¼ ðxyÞ2i. The subscripts indicate the

order of these groups.

Let Gð2kþ1a;m 00Þ be the subgroup of S3 � S3 generated by X ¼ ð j; epi=2kþ2Þ,
Y ¼ ðe2pi=a; 1Þ, and T ¼ ð1; e2pi=m 00 Þ where a and m 00 are both odd and kb 0.

Proposition 5. Let mb 2 and n be relatively prime positive integers with n

odd. The group sðD�
4m � ZnÞ acts freely on S3 and preserves both the left and right

Hopf fibrations. The manifold S3=sðD�
4m � ZnÞ is the prism manifold Mðn;mÞ with

induced left and right Hopf fibrations. If hl : Mðn;mÞ ! Bl and hr : Mðn;mÞ ! Br

are the maps which identify fibers to points in the induced left and right fibrations

respectively, then Bl ¼ S2ð2; 2;mÞ and Br ¼ P2ðnÞ.

Proof. It is not hard to see that each of the actions sð j; 1Þ, sðepi=m; 1Þ, and
sð1; e2pi=nÞ on S3 preserves both the left and right Hopf fibrations. We obtain the

following commutative diagram where H is either Hl or Hr, h is either hl or hr

respectively, and the vertical maps are covering maps where B is S2 modulo the

induced action on S2.

S3 ���!H
S2???yn

???yn

Mðn;mÞ ���!h B

Consider first the left Hopf fibration Fl ¼ hpS1ip AS3 on S3. Let p ¼
uþ vj A S3. Then sð j; 1ÞðpeiyÞ ¼ jðueiy þ ve�iyjÞ ¼ ue�iyj þ veiyj2 ¼ �veiy þ ue�iyj.

Therefore Hlsð j; 1ÞðpeiyÞ ¼ Hlð�veiy þ ue�iyjÞ ¼ �veiy=ue�iy ¼ �v=u. For the

induced action sð j; 1Þ on S2, we have sð j; 1Þðu=vÞ ¼ �v=u. Therefore for any
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z A S2, it follows that sð j; 1ÞðzÞ ¼ �1=z and the fixed points are i and �i. We

also have sðepi=m; 1ÞðpeiyÞ ¼ epi=mðueiy þ ve�iyjÞ ¼ ueiðyþp=mÞ þ veið�yþp=mÞj. Thus

Hlsðepi=m; 1ÞðpeiyÞ ¼ ueiðyþp=mÞ=veið�yþp=mÞ ¼ ue2pi=m=v. For the induced action

sðepi=m; 1Þ on S2, it follows that sðepi=m; 1ÞðzÞ ¼ ze2pi=m for any z A S2. The fixed

points are 0 and y. Now sð1; e2pi=nÞðpeiyÞ ¼ ðuþ vjÞeiye�2pi=n ¼ ueiðy�2p=nÞ þ
veið�yþ2p=nÞj, and thus Hlsð1; e2pi=nÞðpeiyÞ ¼ ueiðy�2p=nÞ=veið�yþ2p=nÞ ¼ u=v. There-

fore the induced map sð1; e2pi=nÞ on S2 is the identity. It now follows that the

orbifold S2=hsð j; 1Þ; sðepi=m; 1Þi ¼ S2ð2; 2;mÞ.
Consider now the right Hopf fibering Fr ¼ hS1pip AS3 on S3. We see

that sð j; 1ÞðeiypÞ ¼ jðeiyuþ eiyvjÞ ¼ �e�iyvþ e�iyuj, and thus Hrsð j; 1ÞðeiypÞ ¼
�e�iyv=e�iyu ¼ �v=u. For the induced action sð j; 1Þ on S2, we get sð j; 1ÞðzÞ ¼
�1=z for any z A S2. Furthermore, sð j; 1Þ is fixed point free. We see

that sðepi=m; 1ÞðeiypÞ ¼ epi=mðeiyuþ eiyvjÞ ¼ eiðyþp=mÞuþ eiðyþp=mÞvj, and thus

Hrsðepi=m; 1ÞðeiypÞ ¼ u=v. Therefore the induced map sðepi=m; 1Þ on S2 is the

identity. Now, sð1; e2pi=nÞðeiypÞ ¼ ðeiyuþ eiyvjÞe�2pi=n ¼ eiðy�2p=nÞuþ eiðyþ2p=nÞvj,

and therefore Hrsð1; e2pi=nÞðeiypÞ ¼ eðiy�2p=nÞu=eiðyþ2p=nÞv¼ e�4pi=nu=v. If sð1; e2pi=nÞ
is the induced action on S2, then sð1; e2pi=nÞðzÞ ¼ e�4pi=nz for any z A S2 where

0 and y are the fixed points. Since n is odd, this is a cyclic action of order n.

Thus S2=hsð j; 1Þ; sð1; e2pi=nÞi ¼ P2ðnÞ. r

Proposition 6. Let m 00 and a be relatively prime positive odd integers. The

finite group sðGð2kþ1a;m 00ÞÞ acts freely on S3 and preserves both the left and

right Hopf fibrations. The manifold S3=sðGð2kþ1a;m 00ÞÞ is the prism manifold

Mð2kþ1m 00; aÞ with induced left and right Hopf fibrations. If hl : Mð2kþ1m 00; aÞ !
Bl and hr : Mð2kþ1m 00; aÞ ! Br are the maps which identify fibers to points in

the induced left and right fibrations respectively, then Bl ¼ S2ð2; 2; aÞ and Br ¼
P2ð2kþ1m 00Þ.

Proof. The proof is similar to that of Proposition 5. It is easy to verify

that sð j; epi=2kþ2Þ, sðe2pi=a; 1Þ, and sð1; e2pi=m 00 Þ on S3 preserve both the left and

right Hopf fibrations. For the first generator, we have sð j; epi=2kþ2Þððuþ vjÞeiyÞ ¼
ðuj þ vj2Þeiðy�p=2kþ2Þ ¼ �veiðy�p=2kþ2Þ þ ueið�yþp=2kþ2Þ. Applying Hl , we see that

Hlsð j; epi=2
kþ2Þððuþ vjÞeiyÞ ¼ �veiðy�p=2kþ2Þ=ueið�yþp=2kþ2Þ ¼ �v=u. The induced

map sð j; epi=2kþ2Þ on S2 sends z to �1=z. For sðe2pi=a; 1Þ, we have sðe2pi=a; 1Þ �
ððuþ vjÞeiyÞ ¼ ueiðyþ2p=aÞ þ veið�yþ2p=aÞj. Applying Hl , we get Hlsðe2pi=a; 1Þ �
ððuþ vjÞeiyÞ ¼ ueiðyþ2p=aÞ=veið�yþ2p=aÞ ¼ ue4pi=a=v. The induced action sðe2pi=a; 1Þ
on S2 sends z to ze4pi=a. It is not hard to check that sð1; e2pi=m 00 Þ induces the

identity on S2, and hence S2=hsð j; epi=2kþ2Þ; sðe2pi=a; 1Þi ¼ S2ð2; 2; aÞ.
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Next, we compute

sð j; epi=2kþ2Þðeiyðuþ vjÞÞ ¼ jðeiyuþ eiyvjÞe�pi=2kþ2 ¼ ðe�iyvj þ e�iyvj2Þe�pi=2kþ2

¼ �veið�y�p=2kþ2Þ þ ueið�yþp=2kþ2Þj:

Therefore, Hrsð j; epi=2
kþ2Þðeiyðuþ vjÞÞ ¼�veið�y�p=2kþ2Þ=ueið�yþp=2kþ2Þ ¼�ve�pi=2kþ1

=

u. The induced map sð j; epi=2kþ2Þ on S2 sends z to ð�1=zÞe�ip=2kþ1
. Although

sð j; epi=2kþ2Þ is fixed point free, s2ð j; epi=2kþ2Þ sends z to ze�2pi=2kþ1
fixing both

0 and y. For the map sð1; e2pi=m 00 Þ, we see that sð1; e2pi=m 00 Þðeiyðuþ vjÞÞ ¼
ðeiyuþ eiyvjÞe�2pi=m 00 ¼ ueiðy�2p=m 00Þ þ veiðyþ2p=m 00Þj. Then, Hrsð1; e2pi=m

00 Þðeiyðuþ vjÞÞ
¼ ue�4pi=m 00

=v, and hence the induced map sð1; e2pi=m 00 Þ on S2 sends z to ze�4pi=m 00

fixing both 0 and y. Similarly one can check that sðe2pi=a; 1Þ induces the identity

on S2. Therefore, S2=hsð j; epi=2kþ2Þ; sð1; e2pi=m 00 Þi ¼ P2ð2kþ1m 00Þ. r

Proposition 7. p1 � ðk� kÞðD�
4m � ZnÞ ¼ D2m and p2 � ðk� kÞðD�

4m � ZnÞ ¼
Zn.

Proof. Since the kernel of k is h�1i which is a subgroup D�
4m, we see

that kðD�
4mÞ ¼ D�

4m=h�1i ¼ D2m. Furthermore since n is odd, h�1iEZn. Thus

kðZnÞ ¼ Zn. r

Proposition 8. p1 � ðk� kÞðGð2kþ1a;m 00ÞÞ ¼ D2a and p2 � ðk� kÞ �
ðGð2kþ1a;m 00ÞÞ ¼ Z2kþ2m 00 .

Proof. Since kerðkÞ ¼ h�1i and a is odd, we obtain kðh j; e2pi=aiÞ ¼ D2a.

Notice that as m 00 is odd, kðepi=2kþ2Þ and kðe2pi=m 00 Þ generate cyclic subgroups

of order 2kþ2 and m 00 respectively. Therefore kðhepi=2kþ2

; e2pi=m
00
iÞ generates the

cyclic subgroup Z2kþ2m 00 . r

Theorem 9. Let Mðn;mÞ be a prism manifold and let G be a finite group

of isometries acting on Mðb; dÞ. If Mðb; dÞ0Mð1; 2Þ, then G preserves either the

meridian or longitudinal fibering.

Proof. Let G be a finite group action on Mðb; dÞ, and suppose that G is

not fiber preserving. Lift G to a finite group of isometries ~GG on S3 and note that
~GGaSOð4Þ.
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We suppose first that S3=sðD�
4m � ZnÞ ¼ Mðn;mÞ, and therefore sðD�

4m � ZnÞ
is a normal subgroup of ~GG. By Dunbar [1], ðpi � rÞð ~GGÞ for i ¼ 1; 2 is neither

cyclic or dihedral. Now the only subgroups of SOð3Þ are cyclic, dihedral, the

tetrahedral group T , the octahedral group O, or the icosadedral group J. The

only nontrivial normal subgroup of T is D4. The octahedral group O has two

normal subgroups, D4 and T . The icosadedral group J is a simple group. Now

p1 � r � sðD�
4m � ZnÞ ¼ p1 � ðk� kÞðD�

4m � ZnÞ ¼ D2m is a normal subgroup of

ðp1 � rÞð ~GGÞ, and hence D2m ¼ D4 and m ¼ 2. We also have p2 � r � sðD�
4m � ZnÞ

¼ p2 � ðk� kÞðD�
4m � ZnÞ ¼ Zn being a normal subgroup of ðp2 � rÞð ~GGÞ, which

implies that Zn is the trivial group. Thus D�
4m � Zn ¼ D�

8 � f1g, and

S3=sðD�
8 � f1gÞ ¼ Mð1; 2Þ.

Next we suppose S3=sðGð2kþ1a;m 00ÞÞ ¼ Mð2kþ1a;m 00Þ where Gð2kþ1a;m 00Þ
is the subgroup of S3 � S3 generated by X ¼ ð j; epi=2kþ2Þ, Y ¼ ðe2pi=a; 1Þ, and

T ¼ ð1; e2pi=m 00 Þ where a and m 00 are both odd. As above, we have p1 � r � sðGÞ ¼
p1 � ðk� kÞðGÞ ¼ D2a being a normal subgroup of ðp1 � rÞð ~HHÞ, and hence D2a ¼
D4. This implies a ¼ 2, which is impossible since a is odd. r

3. Non-fiber Preserving Actions on the Prism Manifold Mð1; 2Þ

In this section we will construct nine non-fiber preserving groups of isometries

acting on the prism manifold Mð1; 2Þ, and show that any finite group of iso-

metries which does not preserve a fibering is conjugate to one of these. The

fundamental group of Mð1; 2Þ is pð1; 2Þ ¼ hc0; c1 j c1c0c�1
1 ¼ c�1

0 ; c21c
2
0 ¼ 1i. These

actions will originate in S3 � S3. Form the semidirect product G ¼ ðS3 � S3Þ � Z4

in which Z4 is generated by j and jðq1; q2Þj�1 ¼ ðq2; jq1 j�1Þ. Note that if

q ¼ uþ vj, then jðuþ vjÞ j�1 ¼ uþ vj. Define an epimorphism s : G ! Oð4Þ by

sðq1; q2ÞðqÞ ¼ q1qq
�1
2 for q1; q2; q A S3, and sðjÞðuþ vjÞ ¼ vþ uj. The kernel of

s is an order four cyclic subgroup which is generated by ð j; jÞj2 and coincides

with the center of G. Then s ¼ sjS3�S3 : S3 � S3 ! SOð4Þ is an epimorphism

whose kernel is Z2 ¼ hð�1;�1Þi.
The quaternion subgroup hi; ji of S3 is isomorphic to pð1; 2Þ by sending i

to c0 and j to c1. Since the group generated by hi; ji� h1i and ð�1;�1Þ is

hi; ji� h�1i, it follows that sðhi; ji� h�1iÞ is a free action on S3 with

S3=sðhi; ji� h�1iÞ ¼ Mð1; 2Þ. We note that S3=sðh�1i� hi; jiÞ is also a prism

manifold which is homeomorphic to Mð1; 2Þ. This follows by observ-

ing that jðhi; ji� h�1iÞj�1 ¼ h�1i� hi; ji, and therefore sðjÞ conjugates

sðhi; ji� h�1iÞ to sðh�1i� hi; jiÞ. Thus sðhi; ji� h�1iÞ and sðh�1i�
hi; jiÞ are conjugate in Oð4Þ but not in SOð4Þ.
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Z3 � T-action on Mð1; 2Þ.

Let T � ¼ hx; y j x2 ¼ y3 ¼ ðxyÞ3i be a subgroup of S3 where x ¼ j and

y ¼ 1ffiffi
2

p ðepi=4 þ epi=4 jÞ. Note that Q� ¼ hx; yxy�1i is a normal subgroup of T �,

and T �=Q� FZ3. A computation shows that yxy�1 ¼ ij, and therefore Q� ¼
hi; ji which is isomorphic to pð1; 2Þ.

By Dunbar [1], sðT � � T �Þ is a non-fiber preserving action on S3,

and therefore the orbifold S3=sðT � � T �Þ cannot be fibered. Note that Q� � h1i

is a normal subgroup of T � � T � and ð�1;�1Þ B Q� � h1i. Thus sðQ� � h1iÞ
is a normal subgroup of sðT � � T �Þ isomorphic to Q�. Observe that

hQ� � h1i; ð�1;�1Þi ¼ Q� � h�1i, and sðQ� � h�1iÞ is a normal subgroup of

sðT � � T �Þ isomorphic to Q�.

Note that hð�1;�1Þi t Q� � h�1i t T � � T �; and it follows that

sðT � � T �Þ=sðQ� � h�1iÞ

F ½ðT � � T �Þ=hð�1;�1Þi�=½ðQ� � h�1iÞ=hð�1;�1Þi�:

By the Third Isomorphism Theorem ½ðT � � T �Þ=hð�1;�1Þi�=½ðQ� � h�1iÞ=
hð�1;�1Þi�F ðT � � T �Þ=ðQ� � h�1iÞ. Now ðT � � T �Þ=ðQ� � h�1iÞFT �=

Q� � ðT �=h�1iÞFZ3 � T , where T ¼ hx; y j 1 ¼ x2 ¼ y3 ¼ ðxyÞ3i. Therefore

sðT � � T �Þ=sðQ� � h�1iÞFZ3 � T .

Let p : S3 ! S3=sðQ� � h�1iÞ ¼ Mð1; 2Þ be the universal covering of the

prism manifold Mð1; 2Þ. Now sðT � � T �Þ=sðQ� � h�1ÞiFZ3 � T acts on

Mð1; 2Þ, and the quotient orbifold is Mð1; 2Þ=ðZ3 � TÞFS3=sðT � � T �Þ which is

not fibered. Thus Z3 � T acts on Mð1; 2Þ and does not preserve any fibering.

S3 �O-action on Mð1; 2Þ.

We now consider the binary octahedral group O� ¼ hx; y j x2 ¼ y3 ¼ ðxyÞ4i,
which can be viewed as a subgroup of S3 by letting x ¼ 1ffiffi

2
p ði þ jÞ and y ¼

1ffiffi
2

p ðepi=4 þ epi=4 jÞ. By Dunbar [1], sðO� �O�Þ is a non-fiber preserving action on

S3, and therefore the orbifold S3=sðO� �O�Þ cannot be fibered.

Consider the subgroup H � ¼ hðxyÞ2; xðxyÞ2x�1i. A computation shows that

ðxyÞ2 ¼ �i and xðxyÞ2x�1 ¼ �j, and thus H � ¼ hi; ji. It can be shown that H �

is a normal subgroup of O� which is isomorphic to pð1; 2Þ. Observe that

O�=hðxyÞ2; xðxyÞ2x�1i ¼ hx; y j x2 ¼ y3 ¼ 1; ðxyÞ2 ¼ 1i

¼ hx; y j x2 ¼ y3 ¼ 1; xy ¼ y2xi:

This is the symmetric group on three letters which we denote by S3.
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Now H � � h1i is a normal subgroup of O� �O�, and since ð�1;�1Þ B
H � � h1i, sðH � � h1iÞ is a normal subgroup of sðO� �O�Þ isomorphic to H �.

Observe that hH � � h1i; ð�1;�1Þi ¼ H � � h�1i, and sðH � � h�1iÞ is a nor-

mal subgroup of sðO� �O�Þ isomorphic to H �.

Note that hð�1;�1Þi t H � � h�1i t O� �O�; and it follows that

sðO� �O�Þ=sðH � � h�1iÞ

F ½ðO� �O�Þ=hð�1;�1Þi�=½ðH � � h�1iÞ=hð�1;�1Þi�:

We apply the Third Isomorphism Theorem to obtain

½ðO� �O�Þ=hð�1;�1Þi�=½ðH � � h�1iÞ=hð�1;�1Þi�

F ðO� �O�Þ=ðH � � h�1iÞF ðO� �O�Þ=ðH � � h�1iÞ

FO�=H � � ðO�=h�1iÞFS3 �O;

where O ¼ hx; y j 1 ¼ x2 ¼ y3 ¼ ðxyÞ4i. Therefore sðO� �O�Þ=sðH � � h�1iÞ
FS3 �O.

Let p : S3 ! S3=sðH � � h�1iÞ ¼ Mð1; 2Þ be the universal covering of the

prism manifold Mð1; 2Þ. Note that sðO� �O�Þ=sðH � � h�1iÞFS3 �O acts

on Mð1; 2Þ, and the quotient orbifold is Mð1; 2Þ=ðS3 �OÞFS3=sðO� �O�Þ
which is not fibered. Thus the S3 �O-action does not preserve any fibering on

Mð1; 2Þ.

S3 � T and Z3 �O-actions on Mð1; 2Þ.

It follows by Dunbar [1] that the two non-equivalent (in SOð4ÞÞ group

actions sðT � �O�Þ and sðO� � T �Þ on S3 do not preserve any fibering. We note

that these actions are equivalent in Oð4Þ. Recall that H � and Q� are normal

subgroups of O� and T � respectively which are isomorphic to pð1; 2Þ.
As above we have hð�1;�1Þi t H � � h�1i t O� � T �, and hð�1;�1Þi t

Q� � h�1i t T � �O�. Applying the Third Isomorphism Theorem we have

½ðO� � T �Þ=hð�1;�1Þi�=½ðH � � h�1iÞ=hð�1;�1Þi� F ðO� � T �Þ=ðH � � h�1iÞ,
which is isomorphic to O�=H � � T �=h�1i; similarly ½ðT � �O�Þ=hð�1;�1Þi�=
½ðQ� � h�1iÞ=hð�1;�1Þi�F ðT � �O�Þ=ðQ� � h�1iÞ, which is isomorphic to

T �=Q� �O�=h�1i. Since O�=H � � T �=h�1i and T �=Q� �O�=h�1i are iso-

morphic to S3 � T and Z3 �O respectively, we obtain as above S3 � T and

Z3 �O-actions on Mð1; 2Þ which do not preserve any fibering.
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Z3 � I -action on Mð1; 2Þ.

Let I � ¼ hx; y j x2 ¼ y3 ¼ ðxyÞ5i be the binary icosahedral subgroup of S3

where x ¼ j and y ¼ 1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 cos

�
2p
5

�q
i þ cos

�
p
5

�
j. By Dunbar [1], the two non-

equivalent (in SOð4Þ) group actions sðT � � I �Þ and sðI � � T �Þ do not preserve

fiberings of S3, although the two actions are equivalent in Oð4Þ. As above

we have hð�1;�1Þi t Q� � h�1i t T � � I �, and using the Third Isomorphism

Theorem we obtain a non-fiber preserving Z3 � I -action on Mð1; 2Þ where I is

the icosahedral group hx; y j 1 ¼ x2 ¼ y3 ¼ ðxyÞ5i.

S3 � I-action on Mð1; 2Þ.

By Dunbar [1], the two non-equivalent (in SOð4Þ) group actions sðO� � I �Þ
and sðI � �O�Þ do not preserve any fibering of S3. These actions are equivalent

in Oð4Þ. We have hð�1;�1Þi t H � � h�1i t O� � I �, and as above we obtain

a non-fiber preserving S3 � I -action on Mð1; 2Þ.

T-action on Mð1; 2Þ.

Using Dunbar’s notation [1], let T � �C3
T � be the subgroup of T � � T �

generated by ðx; 1Þ, ð1; xÞ, and ðy; yÞ. Note that Q� � h�1i is a normal subgroup

of T � �C3
T �. By Dunbar [1], sðT � �C3

T �Þ is a non-fiber preserving action on

S3, and therefore the orbifold S3=sðT � �C3
T �Þ cannot be fibered.

Now hð�1;�1ÞitQ� � h�1it T � �C3
T �; and it follows that

sðT � �C3
T �Þ=sðQ� � h�1iÞ

F ½ðT � �C3
T �Þ=hð�1;�1Þi�=½ðQ� � h�1iÞ=hð�1;�1Þi�:

By the Third Isomorphism Theorem ½ðT � �C3
T �Þ=hð�1;�1Þi�=½ðQ� � h�1iÞ=

hð�1;�1Þi�F ðT � �C3
T �Þ=ðQ� � h�1iÞ. The group ðT � �C3

T �Þ=ðQ� � h�1iÞ ¼
hðx; 1ÞðQ� � h�1iÞ; ð1; xÞðQ� � h�1iÞ; ðy; yÞðQ� � h�1iÞi ¼ hð1; xÞðQ� � h�1iÞ;
ðy; yÞðQ� � h�1iÞi. It is convenient at this point to use di¤erent letters

for a tetrahedral group T ¼ ha; b j 1 ¼ a2 ¼ b3 ¼ ðabÞ3i. Define a function

y : T ! ðT � �C3
T �Þ=ðQ� � h�1iÞ by sending a to ð1; xÞðQ� � h�1iÞ and b to

ðy; yÞðQ� � h�1iÞ. One can check that y is an isomorphism.

Note that sðT � �C3
T �Þ=sðQ� � h�1iÞFT acts on the prism manifold

Mð1; 2Þ ¼ S3=sðQ� � h�1iÞ, and the quotient orbifold Mð1; 2Þ=T F
S3=sðT � �C3

T �Þ is not fibered. No fibering is preserved when the tetrahedral

group T acts on Mð1; 2Þ.
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Z3 �O-action on Mð1; 2Þ.

The binary tetrahedral group T � can be viewed as a normal subgroup of O�

where T � ¼ hðxyÞ2; yi, and recall H � ¼ hðxyÞ2; xðxyÞ2x�1i. Let O� �C2
O� be

the subgroup of O� �O� generated by ðx; xÞ, ð1; yÞ, ðy; 1Þ, ððxyÞ2; 1Þ, and

ð1; ðxyÞ2Þ. By Dunbar [1], sðO� �C2
O�Þ is a non-fiber preserving action on S3.

Now J ¼ H � � h�1i is a normal subgroup of O� �C2
O� with sðJÞ isomorphic to

pð1; 2Þ. The quotient group O� �C2
O�=J ¼ hðx; xÞJ; ð1; yÞJ; ðy; 1ÞJ; ð1; ðxyÞ2ÞJi.

Since �1 A H �, we have ððx; xÞJð1; yÞJÞ2 ¼ ðx2; ðxyÞ2ÞJ ¼ ð�1; ðxyÞ2ÞJ ¼
ð1; ðxyÞ2ÞJ. Thus O� �C2

O�=J ¼ hðx; xÞJ; ð1; yÞJ; ðy; 1ÞJi.
As above we have hð�1;�1Þi t H � � h�1i t O� �C2

O�, and

sðO� �C2
O�Þ=sðH � � h�1iÞ

F ½ðO� �C2
O�Þ=hð�1;�1Þi�=½ðH � � h�1iÞ=hð�1;�1Þi�;

which is isomorphic to ðO� �C2
O�Þ=ðH � � h�1iÞ.

Let Z3 ¼ ht j t3 ¼ 1i, and using di¤erent letters for the octahedral group

let O ¼ ha; b j 1 ¼ a2 ¼ b3 ¼ ðabÞ4i. Form the semi-direct product Z3 �O by

letting ata�1 ¼ t�1, and btb�1 ¼ t. Define a function y : Z3 �O ! O� �C2
O�=J

as follows: yðaÞ ¼ ðx; xÞJ, yðbÞ ¼ ð1; yÞJ, and yðtÞ ¼ ðy; 1ÞJ. Now ððx; xÞJÞ2 ¼
ðx2; x2ÞJ ¼ ð�1; y3ÞJ ¼ ð1; y3ÞJ ¼ ðð1; yÞJÞ3, and ððx; xÞJð1; yÞJÞ4 ¼ ððx; xyÞJÞ4

¼ ðx4; ðxyÞ4ÞJ ¼ ð1; ðxyÞ4ÞJ ¼ ð1; y3ÞJ. A computation shows xðxyÞ2x�1 ¼ ðyxÞ2;
and using x2 ¼ ðxyÞ4 it can be verified that xyx�1 ¼ y�1ðyxÞ�2. We therefore have

ðx; xÞJðy; 1ÞJððx; xÞJÞ�1 ¼ ðxyx�1; 1ÞJ ¼ ðy�1ðyxÞ�2; 1ÞJ ¼ ðy�1; 1ÞJððyxÞ�2; 1ÞJ
¼ ðy�1; 1ÞJ. This proves that y is an isomorphism.

Therefore sðO� �C2
O�Þ=sðH � � h�1iÞFZ3 �O acts on the prism mani-

fold Mð1; 2Þ ¼ S3=sðH � � h�1iÞ, and the quotient orbifold Mð1; 2Þ=Z3 �OF
S3=sðO� �C2

O�Þ is not fibered. Thus Z3 �O acts on Mð1; 2Þ and does not

preserve any fibering.

O-action on Mð1; 2Þ.

The binary dihedral group D�
2 ¼ hðxyÞ2; xðxyÞ2x�1i is a normal subgroup

of O� and O�=D�
2 is the dihedral group D3. Let O� �D3

O� be the subgroup

of O� �O� generated by ðx; xÞ, ðy; yÞ, ð1; ðxyÞ2Þ, and ððxyÞ2; 1Þ. By Dunbar [1],

sðO� �D3
O�Þ is a non-fiber preserving action on S3. Now J ¼ H � � h�1i is

a normal subgroup of O� �D3
O� and sðJÞ is isomorphic to pð1; 2Þ. It fol-
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lows that O� �D3
O�=J ¼ hðx; xÞJ; ðy; yÞJ; ð1; ðxyÞ2ÞJi. Since ððx; xÞJðy; yÞJÞ2 ¼

ððxyÞ2; ðxyÞ2ÞJ ¼ ððxyÞ2; 1ÞJð1; ðxyÞ2ÞJ ¼ ð1; ðxyÞ2ÞJ, it follows that O� �D3
O�=J

¼ hðx; xÞJ; ðy; yÞJi, which is isomorphic to O.

As above we obtain sðO� �D3
O�Þ=sðH � � h�1iÞFO acting on the prism

manifold Mð1; 2Þ ¼ S3=sðH � � h�1iÞ, and the quotient orbifold Mð1; 2Þ=OF
S3=sðO� �D3

O�Þ is not fibered.

The following proposition will be useful in classifying the finite group actions

on Mð1; 2Þ which do not preserve a fibering.

Proposition 10. The quaternion group hi; ji contained in T � and O� is

unique.

Proof. We give a brief outline of the proof. Now Z2 ¼ h�1i is a normal

subgroup of hi; ji, T � and O�, and hi; ji=h�1i is the Klein four-group Z2 � Z2.

Using the 4-th Isomorphism Theorem giving the lattice correspondence, and the

fact that the Klein four-group is unique in T ¼ T �=h�1i and O ¼ O�=h�1i,

proves the result. r

We now have the following theorem where T , O, I , and S3 are the tet-

rahedral, octahedral, icosahedral, and symmetric groups respectively.

Theorem 11. The following groups act on Mð1; 2Þ and do not preserve any

fibering: Z3 � T , T , O, S3 �O, Z3 �O, S3 � T , Z3 �O, Z3 � I , and S3 � I : In

addition, if G is any finite group acting on Mð1; 2Þ which does not preserve any

fibering, then G is conjugate to one of the groups listed above.

Proof. Let G be a finite group action on Mð1; 2Þ ¼ S3=sðhi; ji� h1iÞ ¼
S3=sðhi; ji� h�1iÞ which does not preserve any fibering. Lift G to a finite group
~GG acting on S3, and observe that ~GG does not preserve any fibering of S3.

By Dunbar [1] ~GG is conjugate in SOð4Þ to exactly one of 21 groups in SOð4Þ.
There is an epimorphism r : SOð4Þ ! SOð3Þ � SOð3Þ, and these groups are either

contained in or equal to, the pre-image under r of certain subgroups of SOð3Þ�
SOð3Þ. Furthermore there is an epimorphism k : S3 ! SOð3Þ ¼ S3=h�1i defined

by kðpÞðvÞ ¼ pvp�1, such that r � s ¼ k� k.

Suppose ðq1; q2Þ A S3 � S3 so that sðq1; q2Þ ~GGsðq1; q2Þ�1 yields one of these 21

groups. Observe that sðhi; ji� h�1iÞ is a normal subgroup of ~GG isomorphic to

the quaternion group hi; ji, and ðq1; q2Þðhi; ji� h�1iÞðq1; q2Þ�1 ¼ q1hi; jiq�1
1 �

h�1i. We consider each of these 21 groups separately.
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Suppose that ~GG is conjugate to one of the lifts in Dunbar [1] ðT�T TÞ1 a
r�1ðT �T TÞ, ðO�O OÞ1 a r�1ðO�O OÞ, or ðO�O OÞ2 a r�1ðO�O OÞ. Since

these groups are isomorphic to T , O and O respectively, and the quaternion

group is not a subgroup of T or O, these groups are excluded.

Suppose ~GG is conjugate to T�T T¼ r�1ðT �T TÞ or O�O O¼ r�1ðO�O OÞ,
which are equal to sðhT � �T � T �; ð�1; 1ÞiÞ and sðhO� �O � O�; ð�1; 1ÞiÞ respec-

tively. Since q1hi; jiq�1
1 � h�1i is not contained in the groups hT � �T � T �;

ð�1; 1Þi or hO� �O � O�; ð�1; 1Þi, these cases are also excluded.

We now suppose that ~GG is conjugate to T� T ¼ r�1ðT � TÞ, which equals

sðT � � T �Þ. Thus ðq1hi; jiq�1
1 Þ � h�1i t T � � T � and q1hi; jiq�1

1 is a normal

subgroup of T � isomorphic to the quaternion group. Since by Proposition 10 the

quaternion group is unique in T �, we must have q1hi; jiq�1
1 ¼ hi; ji ¼ Q�. Now

sðT � � T �Þ ¼ sðq1; q2Þ ~GGsðq1; q2Þ�1 and sðq1; q2Þsðhi; ji� h�1iÞsðq1; q2Þ�1 ¼
sðQ� � h�1iÞ t sðT � � T �Þ. As indicated in the above cases, we obtain a

Z3 � T-action on Mð1; 2Þ. Furthermore sðq1; q2Þ induces a homeomorphism of

Mð1; 2Þ which conjugates G to Z3 � T . If ~GG is conjugate to either O�O, O� T,

T�O, T� I, or O� I, which equals sðO� �O�Þ, sðO� � T �Þ, sðT � �O�Þ,
sðT � � I �Þ or sðO� � I �Þ respectively, then a similar proof can be used to show

G is conjugate to either S3 �O, S3 � T , Z3 �O, Z3 � I , or S3 � I respectively.

Note that if ~GG is conjugate to I� T ¼ sðI � � T �Þ, then q1hi; jiq�1
1 would be

a normal subgroup of I � isomorphic to the quaternion group, but this is im-

possible. Similarly we may exclude the groups I�O, I� I, I�I I, ðI�I IÞ1,
ðI��

I IÞ
1, and I��

I I.

Assume that ~GG is conjugate to T�C3
T ¼ r�1ðT �C3

TÞ ¼ sðT � �C3
T �Þ. As

above we have q1hi; jiq�1
1 � h�1iaT � �C3

T � and q1hi; jiq�1
1 ¼ hi; ji in T �.

In this case we obtain a T-action on Mð1; 2Þ, and G is conjugate to this T-action.

The cases O�C2
O and O�D3

O are similar, and we obtain Z3 �O and O-actions

on Mð1; 2Þ respectively. r

By combining theorems 9 and 11, together with theorems 10 and 11 in [4], we

obtain the following theorem.

Theorem 12. Let Mðb; dÞ be a prism manifold and let G be a finite group of

isometries acting on Mðb; dÞ which does not preserve any fibering. Then Mðb; dÞ ¼
Mð1; 2Þ and G is conjugate to one of the following group of isometries: Z3 � T , T ,

O, S3 �O, Z3 �O, S3 � T , Z3 �O, Z3 � I , and S3 � I : Furthermore these actions

do not leave any Heegaard Klein bottle invariant.
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