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NON-FIBER PRESERVING ACTIONS
ON PRISM MANIFOLDS

By

John KarLiONGIS and Ryo OHASHI

Abstract. In this paper we classify the finite groups of isometries
which act on a prism manifolds M(b,d) and do not preserve any
fibering. We construct nine distinct finite groups of isometries which
act on M(1,2), and do not preserve any fibering. We then show that
if a finite group of isometries G acts on M (h,d) and does not
preserve any fibering, then M(b,d) = M(1,2) and G is conjugate to
one of these nine groups which are: Z3 x T, T, O, S3 x O, Z30 O,
Sy x T, Z3 x O, Zs x I, and S5 x I, where T, O, I and S3 are the
tetrahedral, octahedral, icosahedral, and symmetric groups respec-
tively.

0. Introduction

In [1], W. D. Dunbar investigated which finite subgroups of SO(4) acting on
the three sphere S® preserve no fibration of S® by circles. He identified 21
conjugacy classes of isometries acting on S* which preserve no fibration of S by
circles, and he computed the quotient type of each such action. Each quotient
type is a spherical orbifold, whose underlying space is S°, and contains an
embedded trivalent graph for its exceptional set. These spherical orbifolds
obviously cannot be fibered. For a very nice discussion of Seifert fibered spaces
and distinct fiberings of 3-manifolds, see the work of W. Jaco [2] and K.
Morimoto [6] which is written in Japanese.

This paper investigates which prism manifolds admit finite groups of iso-
metries which do not preserve any fibering, and classifies these groups up to
conjugacy. A prism manifold admits only two distinct non-isotopic fiberings, the
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meridian fibering and the longitudinal fibering. (See [2] or [5].) Let M (b,d) be a
prism manifold and let G be a finite group of isometries acting on M (b,d). We
show that if M(b,d) # M(1,2), then G preserves either the meridian or lon-
gitudinal fibering. If G is a finite group of isometries acting on M(1,2) which
does not preserve any of the two fiberings, we show that G is conjugate to one of
the following groups: Z3 x T, T, O, S3 X O, Z30 0, S3 x T, Z3 x O, Z3 x I, and
S3 x I, where T, O, I and S3 are the tetrahedral, octahedral, icosahedral, and
symmetric groups respectively. In addition, we give explicit descriptions of the
generators of these groups, which are projections of isometries of S to M (1,2).

We now define a prism manifold. Let 7 =S!xS! be a torus where
Sl ={zeC:|z] =1} is viewed as the set of complex numbers of norm 1 and
I =10,1]. The twisted I-bundle over a Klein bottle is the quotient space W =
T x I/(u,v,t) ~ (—u,v,1 —¢). Let D> be a unit disk with dD*>=S' and let
V= S!' x D? be a solid torus. Then the boundary of both ¥ and W is a torus
S! x S!. For relatively prime integers » and d, there exist integers a and b such
that ad — bc = —1. We consider the manifold obtained by glueing ¢V and oW by
the homeomorphism  : 0V — oW defined by y(u,v) = (u“v”, u‘v?) for (u,v)e
oV = S' x S'. Then, since (1,v) represents the meridian loop of V' and y(1,v) =
(v®,v?), the manifold VU, W is determined by the pair (b,d) and is called the
prism manifold M(b,d). Using Van Kampen’s Theorem the fundamental group
m(M(b,d)) = {co,c1 | creoeyt = ¢yt ebed = 1.

An embedded Klein bottle K in M(b,d) is called a Heegaard Klein bottle if
for any regular neighborhood N(K) of K, N(K) is a twisted I-bundle over K and
the closure of M(b,d) — N(K) is a solid torus. Any G-action which leaves a
Heegaard Klein bottle invariant is said to split. In [4] the authors classify, up to
conjugacy, the finite group actions on a prism manifold which split. It follows
from this classification that if an action splits, then it preserves both the lon-
gitudinal and meridian fiberings. Thus the non-fiber preserving actions described
on M(1,2) do not leave any Heegaard Klein bottle invariant. We note that
M(1,2) is the Seifert fibered space over the 2-sphere which has three exceptional
fibers with the Seifert invariants 1, 1,  and obstruction class —1, and that M(1,2)
is also the Seifert space over the projective plane which has no exceptional fiber
with obstruction class —2. Thus we have M(1,2) =~ S*(-1;1,1,1) ~P*(-2;—).

The standard elliptic structure on the 3-sphere S is associated with the
orthogonal group O(4) under its action on S?, and therefore giving O(4) as the
group of isometries of S® and SO(4) as the orientation preserving subgroup. A
3-orbifold (or 3-manifold) M has an elliptic structure if there exists a finite group
of isometries I' < O(4) such that there is an orbifold (or 3-manifold) covering



Non-fiber preserving actions on prism manifolds 61

S - S3 /T = M. An isometry of M is a homeomorphism of M which lifts to an
isometry of S°.

1. Group Isomorphisms of Fundamental Groups of Prism Manifolds
in S* xS’

In this section, we will view the fundamental group of a prism manifold
n(n,m) = {co,c1 | crcoer = ¢yt el = 1) as a subgroup of S* x S*, where we
view S* = {u+ vj|u,ve C and |u]® + |v|* = 1}.

Let D}, =<{x,y|x?=y" = (xy)2> and Z, = {t|" = 1) be a subgroups of

3 where x = j, y=e™/™ and t = e2™/"

ProPoSITION 1. If n is odd, then D}, x Z, is isomorphic to m(n,m).

Proor. We first note that (x,7)* = (1,74). Since n is odd, r* generates Z,.
Furthermore (x,7)" = (x", 1), which equals either (x,1) or (x~!,1) since x = j.

Therefore, (x,7) and (y,1) generate D}, x Z,. Observe that (x,7)(y,1)(x, 1) =

4m
(ox D= (7 )= D)7 and ()™ (1" = ()" D(=1,1) = (1 1).
Consequently, there is an isomorphism from Dj,, x Z, to n(n,m) by sendmg (x,1)
to ¢; and (y,1) to c. O

Define groups By, = <x, y|ayx =y 1L x¥7 =1,p=1) and Z,» =
{t|t"™" =1). It follows that the order of the group |B,is,| = 25 a.

PROPOSITION 2. If a and m" are both odd, then Byiis, X Ly is isomorphic to
n(2k+1m”,a),

Proor. We will first show that (c2, ¢, ¢y = n(2K3m” a). Since 23
and m" are relatively prime, there exist integers s and ¢ such that 283s 4 m"t = 1.
Therefore (¢2)*(e"")" = ¢;. Now (e"") ") = ¢g = 2*! for some / since a is
odd. Hence (c 0) l(c{”'/)_(zkf = ¢y 2’“ — ¢p. Note that (¢2*")"" =1, (¢3) =1,

-2

and ¢ cie;™" = ¢y ? since m” is odd. Thus, we can define an isomorphism from

Bokisy X Ly to m(2¥'m” @) by sending (x,1) to ¢}, (y,1) to ¢Z, and (1,7) to

2A+3

- O

Let H be the subgroup of S*xS? generated by X:(j,e’”'/zm), Y =
(e*™/e 1), and T = (1,e>™/™").

ProposITION 3. The group H is isomorphic to Bairs, X Ly
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PROOF. Observe that X and Y both commute with T, X2 = (j27 1) =
(1,1), and Y = (¢27/9 1) = (1,1). Furthermore, XYX ~' = (j, e™/2"?) (/4 1)
(j,e™/2 )l = (jetmilaj=1 1) = (e=27i/a 1) = Y~!. Thus, there exists a surjection
0 from Bk, X Zy» to G by sending x to X, yto Y, and tto T. Now, (Y) ~Z,
is a normal subgroup of G, and H/{Y) ~ Zyi:s x Z,,». Hence |H| = 2K 3am” =
|Byiisg X L], and therefore € is an isomorphism. ]

Let 0:S° xS® — SO(4) be the homomorphism defined by a(q1,¢2)(q) =
¢19¢;'. Now ¢ is onto with kernel Z, = {(—1,—1)).

PROPOSITION 4. Suppose a, m”, and n are odd. The element (—1,—1) is not
an element of H or D}, x ZL,, and hence o restricted to either of these groups is
one-to-one.

Proor. Suppose (—1,—1) € H. Then for some integers u, v, and w, we have
XUYUTY = (j,e™/2 ) (e2m/a 1)°(1,e¥™/m")" = (—1,—1). We obtain the equa-

tions jue?™/a = —1 and e"m/2""?¢2mi/m" — _1 The first equation implies that
j*=1 or —1. Suppose first that j*=1, and hence e*™/¢ = —1. Becasuse a
2ni/a

is odd, this is impossible since e generates a cyclic group of odd order.

Therefore, we must have j“=—1 and u=2(2x+ 1) for some integer x. For

2(2x+1)ni/2k+ze2wni/m” _

the second equation, we have e —1, and simplifying we get

2o Dmi/284 2umi/m” — 1 By raising both sides of this equation to the m”-th
"(2x4-1)mi /25!

el
power and using the fact that m” is odd, we obtain ™ = —1. Since
2x+1 and m"” are both odd, we again get a contradiction by raising both sides
to the 2! power.

Suppose that (—1,—1) € D} x Z,. This implies that there exist integers u, v
and w, such that (x“p?, ") = (=1, —1). Since ¢ = e**/" and n is odd, e>"™/" = —1

is impossible, giving a contradiction. O

2. Fiber Preserving Actions on Prism Manifolds

In this section we indicate the elliptic structure and the two distinct fiberings
on a prism manifold. We show that any finite group of isometries acting on a
prism manifold M (b,d) when M(b,d) # M(1,2) is fiber preserving.

Let 0:S° xS® — SO(4) be the homomorphism defined by a(q1,¢2)(q) =
q19¢5"'. Now o is onto with kernel Z, = {(—1,-1))>. For a more complete
discussion, see [3] and [7]. Define a map « : S* — SO(3) by x(q)(p) = qpg~" for
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any peS? and ¢ € S>. By Dunbar [1], there exists a map p : SO(4) — SO(3) x
SO(3) such that poo = x . Let p; : SO(3) x SO(3) — SO(3) be the projection
onto the first coordinate, and let p, : SO(3) x SO(3) — SO(3) be the projection
onto the second coordinate.

For the subgroup S!'= (e |0eR) of S° let F, = (pS"),css and F, =
<S1p>pes3 be the left and right Hopf fibrations of S® respectively. View S? =
CU {0} where C is the complex plane. Define H; : S* — S? and H, : S* — S? by
Hi(u+vj) =u/t and H,(u+ vj) = u/v respectively. See [5] for a good reference.
Let D}, = {x,y|x?=yp" = (xy)2> and Z, = {t|" =1) be subgroups of S*
where x = j, y = ™™ and t = ¢*™/". We will assume that » is odd and relatively
prime to m. Since the group generated by x> = —1 is a normal subgroup of D;,,,
let Dy, = Dj,/<x*> = <{x,y|1 =x2= y™ = (xy)*>. The subscripts indicate the
order of these groups.

Let G(25'a,m") be the subgroup of S* x S generated by X = (j,e™/2""),
Y = (e?™/41), and T = (1,e**/™") where a and m"” are both odd and k > 0.

PROPOSITION 5.  Let m > 2 and n be relatively prime positive integers with n
odd. The group o(Dj,, x Z,) acts freely on S3 and preserves both the left and right
Hopf fibrations. The manifold S*/a(D}, x Z,) is the prism manifold M (n,m) with
induced left and right Hopf fibrations. If h; : M (n,m) — B; and h, : M (n,m) — B,
are the maps which identify fibers to points in the induced left and right fibrations
respectively, then B; =S*(2,2,m) and B, = P*(n).

PrOOF. It is not hard to see that each of the actions a(j, 1), a(e™/™ 1), and
a(1,e2™/™) on S* preserves both the left and right Hopf fibrations. We obtain the
following commutative diagram where H is either H; or H,, h is either /; or h,
respectively, and the vertical maps are covering maps where B is S> modulo the
induced action on S2.

s g

T

M(n,m) " . B

Consider first the left Hopf fibration F; = {pS l>pes3 on S Let p=
u+uvjeS* Then a(j,1)(pe”) = j(ue” + ve ")) = ite=j + ve’j> = —ve™ + e ;.
Therefore Hyo(j, 1)(pe'”) = H)(—te® + iie~"j) = —te™ /e~ = —5/u. For the
induced action &(j,1) on S* we have &(j,1)(u/t) = —5/u. Therefore for any
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ze$S?, it follows that &(j,1)(z) = —1/z and the fixed points are i and —i. We
also have a(e™/™ 1)(pe') = e™/"(ue® + ve~j) = ue®+7/m 4 pei=0+7/m)j  Thus
Hyo(e™/™ 1)(pe™) = ue'0+=/m) [yei(=0+n/m) — ye2i/m /5 For the induced action
a(e™/™ 1) on 82, it follows that G(e™/™ 1)(z) = ze*™/™ for any z € S*. The fixed
points are 0 and co. Now a(1,e?™/™)(pe') = (u+ vj)ee /" = ye'0=2/7 1
ve'=0+22/m; - and thus Hyo(1,e™/")(pe™) = ue''=2%/" [pei(=0+2n/n) — 4 /5. There-
fore the induced map &(1,e2"/") on S* is the identity. It now follows that the
orbifold S?/<(G(j,1),a(e™™ 1)y = 8*(2,2,m).

Consider now the right Hopf fibering F, = <Slp>pes3 on S®. We see
that o(j,1)(e"p) = j(eu+ e™vj) = —e 5 + e~ uj, and thus H,o(j,1)(ep) =
—e "5/e~"n = —5/i. For the induced action &(j,1) on S? we get &(j,1)(z) =
—1/z for any zeS? Furthermore, &(j,1) is fixed point free. We see
that  a(e™/™, 1)(e?p) = e™/"(e"u + e"vj) = 'O+ /My 4 ! O+7/Myj  and  thus
H,a(e™/™ 1)(ep) = u/v. Therefore the induced map &(e™™, 1) on S? is the
identity. Now, a(1,e?/")(ep) = (eu + evj)e /" = 0-27/m)y 4 @/0+2m/n)y;.
and therefore H,a(1,e>™/")(ep) = e(10-27/my [ 1(0+27/m)y — o=47i/my [y If G(1,e>7/™)
is the induced action on S then G(1,e*/")(z) = e~*"/"z for any z € S* where
0 and oo are the fixed points. Since n is odd, this is a cyclic action of order n.
Thus S2/<5(j,1),a(1,e* /")y = P*(n). O

PROPOSITION 6. Let m" and a be relatively prime positive odd integers. The
finite group o(G(2*'a,m")) acts freely on S and preserves both the left and
right Hopf fibrations. The manifold S*/a(G(2%t'a,m")) is the prism manifold
M2 \m" a) with induced left and right Hopf fibrations. If hy - M(2*"'m" a) —
By and h, : M(2¥*'m" a) — B, are the maps which identify fibers to points in
the induced left and right fibrations respectively, then B; = S2(2,27a) and B, =
P2(2k+lm//).

Proor. The proof is similar to that of Proposition 5. It is easy to verify
that a(j,e™?""), g(e?/9,1), and o(1,e*/™") on S* preserve both the left and
right Hopf fibrations. For the first generator, we have a(j,e™2 ") ((u + vj)e™®) =
(i + 0j2)e /2 = _ei@m/2%) | jjoi(=0+m/2%)  Applying H;, we see that
Hio(j,e™?" ) ((u+ vj)e™) = =072 Jei=0+7/27) — _5/y. The induced
map &(j,e™/?"”) on S? sends z to —1/z. For a(e?/4 1), we have a(e2™/4,1).
((u + vj)e'®) = ue'0+2m/4) 4 pei(=0+2n/a);  Applying H;, we get Hya(e? /% 1)-
((u + vj)e') = ue'0+2m/4) Jyei(=0+2n/a) — ye*ri/@ /5 The induced action &(e*™/“ 1)
on S? sends z to ze*/? It is not hard to check that &(1,e*"/™") induces the
identity on S%, and hence S?/<&(j,e™/*""),(e*™/4 1)y = S%(2,2,a).
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Next, we compute

O_(j7eni/2"+2)(ei0(u + U])) _ j(eif)u + eiﬁvj)e—m‘/ﬂ’z _ (e‘”’ﬁj—i— 6,—1‘61—]]-2)e—m‘/Zk+2

— _gell=0-m/2"7) | aei(70+n/2/"+2)j.

Therefore, H,o(j,e™?"") (e (u+ vj)) = —ve~0-7/27) Jgei=0tm/2") — _jo-mi/25
i. The induced map &(j,e™?"") on S? sends z to (—1/z)e~™2""". Although
&(j,e™*?) is fixed point free, a2(j,e™/?") sends z to ze 2"/ fixing both

0 and oo. For the map o(l,e*/™"), we see that o(1,e*/™")(e"(u+ vj)) =
(ei(}u+eiovj)e’2”i/’”// :uei(()72n/m”)+U€i(0+2n/m”)j' Then, Hra(1782n[/m”)(ei0(u+Uj))

—4mi/m" /1, and hence the induced map &(1,e*@/™") on S? sends z to ze */™"

= ue
fixing both 0 and oo. Similarly one can check that a(e*/, 1) induces the identity

on S2. Therefore, S?/{a(j,e™*?),a(1,eXm/m")y = P22kt m"). O

PROPOSITION 7. pj o (k x k)(Dj},, X Zy,) = Dyy and py o (k x k)(Dj,, X L,) =
Z,.

Proor. Since the kernel of x is {(—1) which is a subgroup Dj,, we see
that x(D;,) = Dy, /{—1) = D,,. Furthermore since n is odd, {—1) £ Z,. Thus

4m

K(Zy) = Zy. O

PROPOSITION 8. pjo (k x k)(G2K*'a,m")) = Dy, and — pyo (k x k) -
(G(2k+la,m//)) = Z2k—2mu‘

PrOOF. Since ker(x) = (—1) and a is odd, we obtain x({j,e*/*y) = Da,.
Notice that as m” is odd, x(e™?"") and x(e*™/™") generate cyclic subgroups
of order 25*2 and m” respectively. Therefore x((e™/2" ¢@/m"y) generates the
cyclic subgroup Zjkiz,,n. O

THEOREM 9. Let M (n,m) be a prism manifold and let G be a finite group
of isometries acting on M(b,d). If M(b,d) # M(1,2), then G preserves either the
meridian or longitudinal fibering.

ProOF. Let G be a finite group action on M (b,d), and suppose that G is
not fiber preserving. Lift G to a finite group of isometries G on S* and note that
G < SO(4).
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We suppose first that S*/a(Dj, x Z,) = M(n,m), and therefore (D}, x Z,)
is a normal subgroup of G. By Dunbar [1], (p;op)(G) for i=1,2 is neither
cyclic or dihedral. Now the only subgroups of SO(3) are cyclic, dihedral, the
tetrahedral group 7', the octahedral group O, or the icosadedral group J. The
only nontrivial normal subgroup of 7 is D4. The octahedral group O has two
normal subgroups, D, and T. The icosadedral group J is a simple group. Now
piopoa(D;, xZ,) = pyo(xxx)(Dj, X Z,) =Dy, is a normal subgroup of

(p10p)(G), and hence Dy, = D4y and m = 2. We also have propoa(Dy, X Z,)
= pro (k x k)(D}, x Z,) = Z, being a normal subgroup of (p; o p)(G), which
implies that Z, is the trivial group. Thus Dj, xZ,= D¢ x {1}, and
S*/a(Dg x {1}) = M(1,2).

Next we suppose S°/a(G(2K'a,m")) = M(25*'a,m") where G(2*'a,m")
is the subgroup of S*xS* generated by X = (j,e™/?"?), Y = (e*/4 1), and
T = (1,e*™/™") where a and m” are both odd. As above, we have p; o poa(G) =

p1 o (k x k)(G) = Dy, being a normal subgroup of (p; o p)(H), and hence D,, =
Dy. This implies @ = 2, which is impossible since a is odd. O

3. Non-fiber Preserving Actions on the Prism Manifold M (1,2)

In this section we will construct nine non-fiber preserving groups of isometries
acting on the prism manifold M(1,2), and show that any finite group of iso-
metries which does not preserve a fibering is conjugate to one of these. The
fundamental group of M(1,2) is n(1,2) = {co, ¢1 | cicoe;t = ¢yt cied = 1). These
actions will originate in S* x S*. Form the semidirect product I' = (S* x §%) 0 Z,4
in which Z, is generated by ¢ and ¢(q1,92)¢"' = (¢2, jg1j~'). Note that if
g =u-+uvj, then j(u+uvj)j~' =i+ . Define an epimorphism &: I — O(4) by
a(q1,92)(q) = q1qq;5" for qi,q2,q€S?, and G(p)(u + vj) = v+ @j. The kernel of
& is an order four cyclic subgroup which is generated by (j, /)p*> and coincides
with the center of T'. Then ¢ =d|g,q S’ xS® — SO(4) is an epimorphism
whose kernel is Z, = {(—1,—-1)).

The quaternion subgroup <i, ;> of S* is isomorphic to 7(1,2) by sending i
to ¢p and j to ¢;. Since the group generated by <i,j> x (1) and (—1,—1) is
i, jy x {=1p, it follows that o({i,j> x (—1)) is a free action on S* with
S3/a(<i, j> x (1)) = M(1,2). We note that S*/a({(—1) x (i, j») is also a prism
manifold which is homeomorphic to M(1,2). This follows by observ-
ing that ¢({,j> x {(~1))p~ ! =<(~1) x i, j>, and therefore &(p) conjugates
a(<i, j> x {=1)) to a({—=1) x i, j>). Thus o({,j>x<{=1)) and o({—1)x
i, j>) are conjugate in O(4) but not in SO(4).
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Z3 x T-action on M(1,2).

Let T* = {x,y|x*=y*=(xy)*> be a subgroup of S* where x =, and
y = \/%(e’”/“ + ¢™/j). Note that Q* = {x, yxy~!) is a normal subgroup of T*,

and T*/Q* ~Zs;. A computation shows that yxy~!

=1ij, and therefore Q* =
i, j» which is isomorphic to z(1,2).

By Dunbar [1], o(T* x T*) is a non-fiber preserving action on S
and therefore the orbifold S*/a(T* x T*) cannot be fibered. Note that Q* x (1)
is a normal subgroup of 7" x T* and (—1,—1) ¢ Q* x {1). Thus o(Q* x (1))
is a normal subgroup of o(7* x T*) isomorphic to Q*. Observe that
O* x 1, (—1,-1)> = 0" x (—1), and o(Q* x {(—1)) is a normal subgroup of
o(T* x T*) isomorphic to Q*.

Note that ((—1,—1)> =2 0* x{—1> =21 T* x T*; and it follows that

AT % T%)/a(Q" x <-1)
=~ [(T7 < T7) /(=1L =1)]/[(@" x (=13)/{(=1,=1))].
By the Third Isomorphism Theorem [(T* x T%)/<{(—1,—=1)}]/[(Q* x {—=1})/
(=1, =1 = (T* X T)/(Q" x (~13). Now (T x T*)/(Q" x {~1%) ~ T"/
0" x (T*/{=1>) ~Z3x T, where T = {x,y|l=x*=y?=(xp)*). Therefore
o(T* x T*)/a(Q* x (~1)) ~Z3 x T.

Let p:S® — S%/6(0* x (—1)) = M(1,2) be the universal covering of the
prism manifold M(1,2). Now o(T* x T*)/a(Q* x{—1)) ~Z3x T acts on
M(1,2), and the quotient orbifold is M(1,2)/(Z3 x T) ~S*/a(T* x T*) which is
not fibered. Thus Z; x T acts on M(1,2) and does not preserve any fibering.

S3 x O-action on M(1,2).

We now consider the binary octahedral group O* = (x, y|x?> = y? = (xy)4>,
which can be viewed as a subgroup of S* by letting xz\/iz(i—k j) and y=
%(e”i/ 4 4 ¢™/4}). By Dunbar [1], ¢(O* x O*) is a non-fiber preserving action on
S3, and therefore the orbifold S*/a(0* x 0*) cannot be fibered.

Consider the subgroup H* = <(xy)2,x(xy)2x‘l>. A computation shows that
(xy)2 = —i and x(xy)’x~! = —j, and thus H* = {i, j>. It can be shown that H*
is a normal subgroup of O* which is isomorphic to #(1,2). Observe that

0" /<{(xp)%, x(xp)’x ™y = (e, y [ X2 =1 = 1, () = 1D

=[xt =y =1,xp = yx).

This is the symmetric group on three letters which we denote by Ss.
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Now H* x (1) is a normal subgroup of O* x O* and since (—1,—1)¢
H* x (1), a(H* x (1)) is a normal subgroup of ¢(O* x O*) isomorphic to H".
Observe that <H* x {1>,(—=1,—1)> = H* x {—1), and o(H* x (—1)) is a nor-
mal subgroup of ¢(O* x O*) isomorphic to H*.

Note that ((—1,—1)> = H* x{—1)> =2 O* x O*; and it follows that

a(0* x 0%)Ja(H* x {~1))
~ [(0" x O") /(=1L =1)))/[(H" x {=13)/<(=1,=1)}].

We apply the Third Isomorphism Theorem to obtain

(07 x O")[K(=1, =ID]/[(H" x {=13)/{(=1,=1))]
~ (0" x O%)/(H* x {(—1) = (0" x O*)/(H* x {~1))
~ 0" /H" x (0" [{~1)) ~ S5 x O,

where O = (x, y|1=x2= 3= (x3)*>. Therefore ¢(O0* x 0%)/a(H* x (1))
~ S3 x O.

Let p:S® — S*/a(H* x (—1)) = M(1,2) be the universal covering of the
prism manifold M(1,2). Note that o(O* x O*)/a(H* x {—1)) ~ S3 x O acts
on M(1,2), and the quotient orbifold is M(1,2)/(S; x O) ~S*/a(0* x 0*)
which is not fibered. Thus the S5 x O-action does not preserve any fibering on
M(1,2).

Sy x T and Z3 x O-actions on M(1,2).

It follows by Dunbar [1] that the two non-equivalent (in SO(4)) group
actions o(T* x 0*) and ¢(O* x T*) on S* do not preserve any fibering. We note
that these actions are equivalent in O(4). Recall that H* and Q* are normal
subgroups of O* and T* respectively which are isomorphic to 7(1,2).

As above we have {(—1,-1)) s H* x (-1 =2 O* x T*, and {(—1,-1)) =
Q* x{(—=1>=a T* x O*. Applying the Third Isomorphism Theorem we have
(0% x T) (=L, =IDI/I(H" x (—1)/<(=1,=1))] = (0% x T*)/(H* x (~1)),
which is isomorphic to O*/H* x T*/{—1); similarly [(T* x 0*)/{(-1,—-1))]/
[(Q* x (=1))/(=1,=1))] ~(T* x O*)/(Q* x {—1)), which is isomorphic to
T*/Q* x O*/{—1). Since O*/H* x T*/{—1) and T*/Q* x O*/{—1) are iso-
morphic to S3 x T and Zs3 x O respectively, we obtain as above S3 x T and
Z3 x O-actions on M (1,2) which do not preserve any fibering.
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Z; x I -action on M(1,2).

Let I* = (x, y|x% = y? = (xp)°> be the binary icosahedral subgroup of S*
where x = jand y =1 +1,/1 -2 cos(%)i + cos(Z),. By Dunbar [1], the two non-
equivalent (in SO(4)) group actions o(7* x I*) and o(I* x T*) do not preserve
fiberings of S*, although the two actions are equivalent in O(4). As above
we have ((—1,—-1)) =2 Q* x (—1) == T* x I'*, and using the Third Isomorphism
Theorem we obtain a non-fiber preserving Zs; x I-action on M(1,2) where I is
the icosahedral group <x,y|1=x?= y? = (xy)">.

S3 x I-action on M(1,2).

By Dunbar [1], the two non-equivalent (in SO(4)) group actions a(O* x I'*)
and o(I* x O*) do not preserve any fibering of S3. These actions are equivalent
in O(4). We have {(—1,-1)> == H* x {(—1) =2 O* x I'*, and as above we obtain
a non-fiber preserving S3 x [-action on M(1,2).

T-action on M(1,2).

Using Dunbar’s notation [1], let 7% x¢, T* be the subgroup of 7" x T*
generated by (x,1), (1,x), and (y, y). Note that Q0* x (—1) is a normal subgroup
of T* x¢, T*. By Dunbar [1], 6(T* x¢, T*) is a non-fiber preserving action on
S*, and therefore the orbifold S°/a(T* x¢, T*) cannot be fibered.

Now {(=1,-1)) =2 0* x {—1> =2 T* x¢, T*; and it follows that

o(T" x¢, T7)/a(Q" x {=1))
> [(T7 %, TY)/K(=1,=1IDI/(Q7 x {=13)/<(=1,=1)}].

By the Third Isomorphism Theorem [(T* x¢, T*)/<{(—1 —1) 1/[(QF x<=1>)/
(=1, =1))] ~ (T* ¢, T)/(Q" x <~1%). The group (T* xc, T*)/(Q" x (~1)) =
(e (07 x (=13), (L,x)(QF x (=1)), (1, 1)(Q" x (~1))> = {(1,x)(Q" x (~1)),
(y, »)(Q* x {—1))>. It is convenient at this point to use different letters
for a tetrahedral group T =<a,b|1=a*=5b>= (ab)’y. Define a function
0:T — (T x¢, T*)/(Q* x {—1)) by sending a to (1,x)(Q* x {—1)) and b to
(y,¥)(0* x {(—1)). One can check that # is an isomorphism.

Note that o(T* x¢, T*)/a(Q* x {(—1)) ~ T acts on the prism manifold
M(1,2) = S3/a(Q* x {(~1)), and the quotient orbifold M(1,2)/T ~
S*/a(T* x¢, T*) is not fibered. No fibering is preserved when the tetrahedral
group T acts on M(1,2).
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Z o O-action on M(1,2).

The binary tetrahedral group 7* can be viewed as a normal subgroup of O*
where T* = {(xp)?, ), and recall H* = {(xy)* x(xy)’x~'>. Let O* x¢, O* be
the subgroup of O* x O* generated by (x,x), (1,y), (»,1), ((xp)*,1), and
(1,(xy)%). By Dunbar [1], (O* x¢, O%) is a non-fiber preserving action on S
Now J = H* x {—1) is a normal subgroup of O* x¢, O* with ¢(J) isomorphic to
7(1,2). The quotient group O* x¢, O*/J = <(x,x)J, (1, »)J, (3, DJ, (1, (x»)}) I .
Since —leH* we have ((x,x)J(1,y)J)> =% (x»))J = (-1, (xy)})J =
(1, (xy)*)J. Thus O* x¢, 0% )J = <{(x,x)J, (1, )J, (3, 1)J>.

As above we have ((—1,-1)) =2 H* x {—1) =2 O* x¢, O*, and

a(0" x¢, 07)[a(H™ x {=1))
> [(0" x¢, O7) /(=1L =1IDI/[(H" x {(=13)/{(=1,=1))],

which is isomorphic to (O* x¢, O*)/(H* x {—1)).

Let Z; = {t|t* =1), and using different letters for the octahedral group
let O=<a,b|1=a*=0b>=(ab)*>. Form the semi-direct product Z;o O by
letting ata=! = ¢!, and bth~! = t. Define a function 6:Z30 O — O* x¢, O*/J
as follows: 0(a) = (x,x)J, 0(b) = (1, y)J, and 6(r) = (y,1)J. Now ((x,x)J)* =
(2 = (—1, 3 = (1,00 = ((1,9)7)%, and ((x, (1, 2)0)* = ((x.0))"
= (x*, (x)HJ = (1, (xp)")J = (1, y*)J. A computation shows x(xy)’x~! = (yx)*;
and using x2 = (x)* it can be verified that xyx~' = y~!(yx) %. We therefore have
(3,0 (3, DI (e, 0)) = (o™, DT = (7 o) 2 1D = (7L DI ()2 1)
= (y~1,1)J. This proves that 0 is an isomorphism.

Therefore o(O* x¢, O*)/o(H* X {—1)) ~Z30 O acts on the prism mani-
fold M(1,2) =S?/a(H* x {(~1)), and the quotient orbifold M(1,2)/Z30 O ~
S3/a(0* x¢, 0*) is not fibered. Thus Zso O acts on M(1,2) and does not
preserve any fibering.

O-action on M(1,2).

The binary dihedral group Dj = <(xy)2,x(xy)2x‘1> is a normal subgroup
of O* and O*/D; is the dihedral group D;. Let O* xp, O* be the subgroup
of 0O* x O* generated by (x,x), (,), (1,(x»)?), and ((xy)?,1). By Dunbar [1],
a(0* xp, O*) is a non-fiber preserving action on S*. Now J = H* x (~1) is
a normal subgroup of O* xp, O* and o(J) is isomorphic to x(1,2). It fol-
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lows that O* xp, 0*/J = {(x,x)J, (y, )7, (1, (xy)})J>. Since ((x,x)J(y, y)J)* =
((x9)?, () = ()3 DI, (xv) )T = (1, (xp)?)J, it follows that O* xp, O*/J
=<(x,x)J, (y, y)J», which is isomorphic to O.

As above we obtain g(O* xp, O*)/a(H* x (—1)) ~ O acting on the prism
manifold M(1,2) =S*/a(H* x {(~1)), and the quotient orbifold M(1,2)/0 ~
S*/a(0* xp, 0*) is not fibered.

The following proposition will be useful in classifying the finite group actions
on M(1,2) which do not preserve a fibering.

ProrosITION 10. The quaternion group {i,jy contained in T* and O* is
unique.

Proor. We give a brief outline of the proof. Now Z, = (—1) is a normal
subgroup of <i, j», T* and O*, and i, j»/{—1) is the Klein four-group Z, x Z,.
Using the 4-th Isomorphism Theorem giving the lattice correspondence, and the
fact that the Klein four-group is unique in 7= T*/{—1) and O = O*/{-1),
proves the result. O

We now have the following theorem where 7, O, I, and S; are the tet-
rahedral, octahedral, icosahedral, and symmetric groups respectively.

THEOREM 11. The following groups act on M(1,2) and do not preserve any
fibering: Z3 x T, T, O, S3x O, Z300, S3x T, Z3x O, Z3 x I, and S3 x I. In
addition, if G is any finite group acting on M(1,2) which does not preserve any
fibering, then G is conjugate to one of the groups listed above.

ProoOF. Let G be a finite group action on M(1,2) = S3/a(<i,j> x 1)) =
S3/a(<i, j> x {(~1)) which does not preserve any fibering. Lift G to a finite group
G acting on S® and observe that G does not preserve any fibering of S°.
By Dunbar [1] G is conjugate in SO(4) to exactly one of 21 groups in SO(4).
There is an epimorphism p : SO(4) — SO(3) x SO(3), and these groups are either
contained in or equal to, the pre-image under p of certain subgroups of SO(3) x
SO(3). Furthermore there is an epimorphism « : S* — SO(3) = 8*/(~1) defined
by x(p)(v) = pop~!

Suppose (¢1,¢2) € S* x S? so that a(ql,qz)éa(qhqz)_] yields one of these 21

, such that poo =k X k.

groups. Observe that o(<i, j> x (—1)) is a normal subgroup of G isomorphic to

the quaternion group i, /), and (q1,42)(<i, j> X <=1))(q1,42) ™" = q1<i, g7 x
{—1). We consider each of these 21 groups separately.
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Suppose that G is conjugate to one of the lifts in Dunbar [1] (T xr T)1 <
pUT x7T), (0x00) <p~1(0x00), or (0x00)*<p(0xp0). Since
these groups are isomorphic to 7, O and O respectively, and the quaternion
group is not a subgroup of T or O, these groups are excluded.

Suppose G is conjugate to T xt T=p~ (T x7 T) or O xo O =p~1(0 xp 0),
which are equal to o({T* x7- T*,(—1,1))) and a({O* x¢- O*,(—1,1))) respec-
tively. Since ¢1<i, j>q;' x (—1) is not contained in the groups {(T* xr. T*,
(=1,1)> or <O* xp- O*,(—1,1)), these cases are also excluded.

We now suppose that G is conjugate to T x T = p~ (T x T), which equals
a(T* x T*). Thus (q1<i, j>q;") x (=1> =2 T* x T* and ¢;<i, j>q;"' is a normal
subgroup of 7* isomorphic to the quaternion group. Since by Proposition 10 the
quaternion group is unique in 7%, we must have ¢;<i, j)>q;' = {i, j> = Q*. Now
o(T* x T*) = a(q1,42)Go(q1,42) "' and (g1, q2)a (<, j> x <=1))alq1,42) " =
g(Q* x {—1)) D o(T* x T*). As indicated in the above cases, we obtain a
Z5 x T-action on M(1,2). Furthermore o(q;,¢>) induces a homeomorphism of
M (1,2) which conjugates G to Z3 x T. If G is conjugate to either O x O, O x T,
TxO, TxI or OxI, which equals a(0* x 0%), a(O* x T*), o(T* x O¥),
a(T* x I*) or a(O* x I'*) respectively, then a similar proof can be used to show
G is conjugate to either S3 x O, S3 x T, Z3 x O, Z3 x I, or Sy x I respectively.
Note that if G is conjugate to I x T = a(I* x T*), then q<i, jyq;" would be
a normal subgroup of I* isomorphic to the quaternion group, but this is im-
possible. Similarly we may exclude the groups Ix O, IxL IxpI (I xll)l,
(Ix; 1", and I ;1L

Assume that G is conjugate to T xc, T =p (T x¢, T) = a(T* x¢, T*). As
above we have qi<i, j>q;! x (=1) < T* x¢, T* and ¢i<i, jyq;' = i, jy in T*.
In this case we obtain a 7-action on M(1,2), and G is conjugate to this T-action.
The cases O x¢, O and O xp, O are similar, and we obtain Z3 o O and O-actions
on M(1,2) respectively. [

By combining theorems 9 and 11, together with theorems 10 and 11 in [4], we
obtain the following theorem.

THEOREM 12. Let M(b,d) be a prism manifold and let G be a finite group of
isometries acting on M (b,d) which does not preserve any fibering. Then M(b,d) =
M(1,2) and G is conjugate to one of the following group of isometries: Z3 x T, T,
0, S3x0,7Z300, S3xT,7Zs x O, Lz x I, and Sy x I. Furthermore these actions
do not leave any Heegaard Klein bottle invariant.
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