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HELICOIDAL SURFACES IN THE 3-DIMENSIONAL
LORENTZ-MINKOWSKI SPACE E; SATISFYING A"y = Ar

By

Bendehiba SENousst and Mohammed BEKKAR

Abstract. In this paper the helicoidal surfaces in the 3-dimensional
Lorentz-Minkowski space are classified under the condition A/ =
Ar, where A is a real 3 x 3 matrix and A" is the Laplace operator
with respect to the third fundamental form.

Introduction

Let E; be a three-dimensional Lorentz-Minkowski space with the scalar
product of index 1 given by

gr = ds> = —dxl2 + dx% + dx%7

where (x1,x2,x3) are the canonical coordinates in R’

Let r = r(u,v) be a regular parametric representation of a surface M in the
3-dimensional Lorentz-Minkowski space Ef which does not contain parabolic
points.

The notion of finite type submanifolds in Euclidean space or pseudo-
Euclidean space was introduced by B.-Y. Chen [5]. A surface M is said to be of
finite type if its coordinate functions are a finite sum of eigenfunctions of its
Laplacian A. B.-Y. Chen posed the problem of classifying the finite type surfaces
in the 3-dimensional Euclidean space E*. Further, the notion of finite type can be
extended to any smooth functions on a submanifold of a Euclidean space or a
pseudo-Euclidean space.

If H is the mean curvature vector of the immersion r, we know that:

Ar=-2H.
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In [12] M. Choi, Y. H. Kim and G. C. Park classified helicoidal surfaces with
pointwise 1-type Gauss maps and harmonic Gauss maps. In [§] G. Kaimakamis
and B. J. Papantoniou classified the first three types of surfaces of revolution
without parabolic points in the 3-dimensional Lorentz-Minkowski space, which
satisfy the condition

ATy = Ar, 4 e Mat(3,R),

where Mat(3,R) is the set of 3 x 3 real matrices. They proved that such surfaces
are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or
imaginary radius.

In [1] Ch. Baba-Hamed and M. Bekkar studied the helicoidal surfaces
without parabolic points in E13, which satisfy the condition

Ay, =iy, 1<i<3.

In [3] Chr. Beneki, G. Kaimakamis and B. J. Papantoniou obtained a clas-
sification of surfaces of revolution with constant Gauss curvature in E; and in [4]
defined four kinds of helicoidal surfaces in E;. C. W. Lee, Y. H. Kim and D. W.
Yoon [13] studied the ruled surfaces in E; which satisfy the condition

A”Ir:Ar, (1)

where A4 € Mat(3,R).

S. Stamatakis and H. Al-Zoubi in [11] classified the surfaces of revolution
with non zero Gaussian curvature in E® under the condition (1).

In [9] G. Kaimakamis, B. J. Papantoniou and K. Petoumenos classified and
proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski
space El3 satisfying (1) are either minimal or Lorentz hyperbolic cylinders or
pseudospheres of real or imaginary radius.

Recently, the authors [2] studied the translation surfaces in E; satisfying (1).

In this work we classify the helicoidal surfaces with non-degenerate third
fundamental form in the 3-dimensional Lorentz-Minkowski space under the
condition (1).

1. Preliminaries

A vector X of E; is said to be timelike if g (X,X) <0, spacelike if
gr(X,X) >0 or X =0 and lightlike or null if g.(X,X) =0 and X # 0. A time-
like or light-like vector in E; is said to be causal.
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For two vectors X = (x1,x2,x3) and Y = (y1, y2, y3) in Ef the Lorentz cross

product of X and Y is defined by

X ALY = (X3y2 — X203, X391 — X113, X1 V2 — X2)1).

The pseudo-vector product operation Ay is related to the determinant function
by

det(X, Y7 Z) = gL(X AL Y, Z)

The matrices

coshf sinhf O cosh® O sinh @ 1 0 0
sinh# coshd 0 |, 0 1 0 , 0 cosh@ sinh6
0 0 1 sinhf 0O cosh@ 0 sinh6 cosh®

are called the Lorentzian rotation matrix in Ej, where 0 €R.

For an open interval / c R, let y: 7 — Il be a curve in a plane II in Ef
and let L be a straight line in IT which does not intersect the curve y (axis). A
helicoidal surface in Minkowski space E; is a surface invariant by a uni-
parametric group

Gr..=1{9./9. - E; — E{;veR}

of helicoidal motions. Each helicoidal surface is given by a group of helicoidal
motions and a generating curve. A helicoidal surface parametrizes as

r(“v U) = gv(V(u))7 (u, U) el xR.

Each group of helicoidal motions is characterized by an axis L and a pitch ¢ # 0.
Depending on the axis L being spacelike, timelike or null, there are three types of
motion.

If the axis L is spacelike (resp. timelike), then L is transformed to the y-axis
or z-axis (resp. x-axis) by the Lorentz transformation. Therefore, we may consider
z-axis (resp. x-axis) as the axis if L is spacelike (resp. timelike). If the axis L is
lightlike, then we may suppose that the axis is the line spanned by the vector
(1,1,0). We distinguish helicoidal surfaces in E? into the following types.

Case 1. The axis L is spacelike, i.e., (L = {(0,0,1)>).

Without loss of generality we may assume that the profile curve y lies in the
yz-plane or xz-plane. Hence, the curve y can be represented by

() = (0, f(u),g(u)) or y(u)=(f(u),0,9(u)),

where f is a smooth positive function and g is a smooth function on I.
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The helicoidal surfaces M in E13 given by [4] are defined by
r(u,v) = (f(u) sinh v, f(u) cosh v,cv+ g(u)), ceR" (2)
or
r(u,v) = (f(u) cosh v, f(u) sinh v,cv+ g(u)), ceR". (3)

We call (2) and (3) a helicoidal surface of type I and type II respectively.

Case 2. The axis L is time-like, ie., (L =<(1,0,0))).

In this case, we may assume that the profile curve y lies in the xy-plane. So
the curve y is given by

for a positive function f = f(u) on I. Hence, the helicoidal surface M is given by
4]

r(u,v) = (g(u) + cv, f(u) cos v, f(u) sinv), f(u)>0,ceR". 4)
We call (4) a helicoidal surface of type III.
Case 3. The axis L is light-like, i.e., (L = <(1,1,0))).

In this case, we may assume that the profile curve y lies in the xy-plane. Then
its parametrization is given by

where f and g are functions on I, such that f(u) # g(u),Vuel.
Therefore the helicoidal surface M may be parametrized as [4]

r(u,v) = (f(u) + I;—Zh(u) + cv,g(u) +U—22h(u) + cv, vh(u)), ceR, (5)

where h(u) = f(u) — g(u). We call (5) a helicoidal surface of type IV.

If we take ¢ =0, then we obtain a rotations group related to axis L. The
helicoidal surface is a generalization of rotation surface.

The immersion (M, r) is said to be of finite Chen-type if the position vector r
admits the following spectral decomposition

k
F=r +Zi’i7
i=1

where r; are Ef-valued eigenfunctions of the Laplacian of (M,r): Ar; = Ay,
LeR, i=1,2,....k [5]. If 4 are different, then M is said to be of k-type.
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Let {x/,x/} be a local coordinate system of M. For the components e;
(i,j=1,2) of the third fundamental form III on M we denote by (e?) the
inverse matrix of the matrix (e;).

The Laplace operator Af of the third fundamental form III on M is
formally defined by

The coeflicients of the first fundamental form and the second fundamental
form are

where e = det(e;;).

E:g11:<ru,ru>, F:912:<ruarv>a G:922:<rmrv>a
L:hll = <ruv7N>; M:h12 = <VuvaN>7 N:hZZ = <rvL‘7N>~

If p: M — R, (u,v) — ¢(u,v) is a smooth function and A the Laplace
operator with respect the third fundamental form, then it holds [10]:

Am(/) _ —1 i 0P, —enP,\ ﬁ eny, —eng, ' (7)
Vel \ou Vel dv Vel

The Gaussian curvature K and the mean curvature H of M are given
by

_ (LN — M?)
KG _gL(N7N) EG-FZ
H_(EN+GL—2FM)

-~ 2EG-F?|

where N is the unit normal vector to M.

2. Helicoidal Surfaces of Type I, I

In this section we are concerned with non-degenerate helicoidal surfaces M
without parabolic points satisfying the condition (1).
Suppose that M is given by (2), or equivalently by

r(u,v) = (u sinh v,u cosh v, cv + g(u)), ceR". (8)

We define smooth function W as:

W = \/sgL(ru AL Vo Py ALTy) = \/8(u2(1 +9g7) = c?).
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The coeflicients of the first and the second fundamental form are:
E=1+4+¢" F=cg, G=c-u’

L:_ug// M:i ulg

;_dg n__dg
where g' =7/, =7

The components of the third fundamental form of the surface M is given,
respectively, by

¢ 2
el :W(u4g//2 _ 6,2(ugll+g/) _ (32),
) ©)
_ " / _ 2 2.2
ez =5 ug" +g), en =5 (S~ g,

hence

\/TQT—SIR

=3

3 001

where ¢ = +1 and R = u’g'g" + ¢
From these we find that the curvature K; and the mean curvature H of (8)
are given by

3 1.1 2
u’gg +c
Re ="y

and

uzg/(l + g/2) _ 26’2g/ _ ug"(62 _ u2)

H=-
2W3

(10)
We rewrite the above equation as [7]
H L (w9,
2u\ W

ProrosiTiION 2.1. If H =0, then the function on the profile curve y(u)=
(0,u,g(u)) is as follows

g(u)zij e du+b (11)

in E13, where a,b e R.
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Proor. If H =0, then we obtain
ulg' =aW, aeR.
Hence, if we solve

p_ @’ —c?)

eut —au?’

then we have (11). O

If a surface M in El3 has no parabolic points, then we have
wg'g" +c*#0, Yuel

Suppose that LN — M? >0 (we have the same result if LN — M? < 0).
By a straightforward computation, the Laplacian A’ of the third funda-
mental form III on M with the help of (9) and (7) turns out to be

eW3 [ ee
A ( 1 (—£W2u3g'g”’(c2 _ u2g12) +ctu— 3c2u3g’2

R WR2
+ 3c4g’2u _ 362g/4u3 4 6C4g/g”u2 _ 4029/g//u4 + 62g/29112u5
0
o 2g/4g//2u7 _ glzg//2u7 _ ng//zus 4 C4g//2u3 _ 662g/3g”u4)%
cee 2wy 2 2,2 ’omns "o 4 4 4
+ e EWug" (" = g%u) — g'g"uw’ = 2979 U — 29" 9"
+ 3C2g/g//2u3 + 3c2g//u2 + ng/u+ 762g//g/2u2 + ng/3u
0
_ 26’49” + czg//3u4 _ g//}ué)_
v
N 2e,We(ug" +¢g') > e W(c* —g?u?) o°
R Oudv R ou?
+881 (g//2u4 _ CZ(ug// + g/)z _ C2) (32 (12)
WR ov?) )’

By using (8) and (12) we get
A™ (u sinh v) = P(u) cosh v + Q(u) sinh v

A™ (4 cosh v) = Q(u) cosh v + P(u) sinh v (13)
A" (cv+ g(u)) = T(u)
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where

eW?

P(u) =— e

({;‘Cquzg"'(Cz _ glzuz) _ Cg//3u7 + C(l +2g/2)g/g//2u6

4 C3g//3uS +c39/g//2u4 +C3(7g/2 + 5)g//u3 + 303(1 +g/2)g/u2

—4c’g"u—2c%g"),

W2
Q(u) _ _{,‘R3 (8W2u3g/g///(g/2u2 _ CZ) + 264g'2u+4c4g"g'u2
_ 362(g/2 + g’4)u3 _ 62(7g/3g” + 5g”g’)u4 _ ng/zguzus

_ ng//3g/u6 _ (2gl4g//2 _|_g/2g//2)u7 + g"3g’u8), (14)

(equg”’(cz _ gl2u2)2 + (_3g/2 _ 2)gl3g//2u7

_ C2g//3u6 + C2(3g/2 _ 1)g/gl/2u5 + CZ(ng//z _ 7g/2 _ 9g/4)g//u4

+ 362(02g//2 _ g/4 _ g/z)gzu3 + 04(159/2 + 4)g//u2

+2¢*(29” + 1)g'u — 3¢%g").

REMARK 2.2. We observe that

ug' P(u) + cQu) =0
(15)

(2851/(1;/> ((¢* = g"u?)P(u) — cuT (u)) = H.

The equation (1) by means of (8) and (13) gives rise to the following system
of ordinary differential equations

(P(u) — arpu) cosh v+ (Q(u) — aju) sinh v —aj3(cv+g) =0
(Q(u) — anu) cosh v+ (P(u) — azu) sinh v — axn(cv+¢g) =0 (16)
asju sinh v + asu cosh v + asz(cv + g) = T(u),

where a; (i,j=1,2,3) denote the components of the matrix 4 given by
(1).

But sinh » and cosh v are linearly independent functions of v, so we finally
obtain a3y = a31 = as3 = a;3 = a3 = 0.

We put a;; =ax =24 and a)p = ap; = u, 4,1 € R. Therefore, this system of
equations is equivalently reduced to
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O(u) = Ju
P(u) = pu (17)
T(u) =0.

Therefore, the problem of classifying the helicoidal surfaces M in E; given by (8)
and satisfying (1) is reduced to the integration of this system of ordinary dif-
ferential equations.

Next we study this system according to the values of the constants A4, u.

Case 1. Let /=0 and u #0.

The system of equations (17) takes the form

g'P(u) =0
P(u) = pu (18)
T(u)=0.

Then ¢'(u) = 0, which is a contradiction. Hence there are no helicoidal surfaces
of E} in this case which satisfy (1).

Case 2. Let 2 #0 and x4 =0.

In this case the system (17) is reduced equivalently to

g'P(u) = —Ac
P(u) =

T(u)

o o

But this is not possible. So, in this case there are no helicoidal surfaces of E;.
Case 3. Let A =u =0 then 4 = diag(0,0,0).
In this case the system (17) is reduced equivalently to

P(u) =

0
O(u) =0
T(u)=0.

From (15) we have H = 0. If we substitute (11) in (14) we get Q(u) = 0. By using
(15) we get P(u) =0 and T(u) =0. Consequently M is a minimal surface.
Case 4. Let A #0 and u #0.
In this case the system (17) is reduced equivalently to

g(u) = —% In(u) +k, keR. (19)

If we substitute (19) in (14) we get Q(u) = 0. So we have a contradiction and
therefore, in this case there are no helicoidal surfaces of E;.
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THEOREM 2.3. Let r: M — E; be an isometric immersion given by (8). Then
A™y = Ar if and only if M has zero mean curvature.

3. Helicoidal Surfaces of Type 111

In this section, we study the case of helicoidal surfaces M in E; of type III.
Suppose that M is given by (4), or equivalently by

r(u,v) = (cv + g(u), u cos v, u sin v). (20)
The coeflicients of the first and the second fundamental form are:
E=1-g¢? F=—-cg', G=u>-¢?

" 2 .1
A Y S A

L=— .
w'’ w’ w

The unit normal vector field N on M is given by

-1
N= W(u —csin v+ g'u cos v, ¢ cos v+ g'usin v),

where W = \/egr(ry AL o, Fu ALTy) = /e(u2(1 — g”2) — c2).
The components of the third fundamental form of the surface M is given,
respectively, by

€
e :W(u4g//2 —cz(ug”+g’)2+cz),

1 1)
en =3, (ug +9), en= W(uzg/z +¢),

hence

81R
Vel = w3
where ¢ = +1 and R = u’¢’g" —
By a direct computation, we can see that the Gauss curvature Ks and the
mean curvature H of M are given by

3 01

uwgyg —

Ko ==

and

H_uzg’(l —g?%) —2c*g" —ug"(? — u?)
- 203 :
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We rewrite the above equation as [7]
no L (e
2u\ W

ProrosiTiON 3.1. If H =0, then the function on the profile curve y(u) =
(g(u),u,0) is as follows

a2(u2 _ CZ)

PSR du—+b (23)

g(u) = ij

in E137 where a,b e R.

Proor. If H =0, then we obtain
ulg' =aW, aeR.
Hence, if we solve

p_ @ —c?)

T oeut 4 a2u?’

then we have (23). O
If a surface M in E? has no parabolic points, then we have
u3g/g// _ C2 £0.

Suppose that LN — M? > 0 (we have the same result if LN — M? < 0).
By a straightforward computation, the Laplacian A of the third funda-
mental form III on M with the help of (7) and (21) turns out to be

i eW? &el 2.3 1 g2 .2 ” 2 on2. 1
A =r WRz(sWugg (¢*+g"u”) + (29" — )g"g"u

+ 62(g/2 + 1)g//2u5 + 62(4 _ 6g/2)g/g//u4

0
4 c2(3g/2 _ 3g/4 _ ng//z)u.% _ 6C4g’g//u2 + 04(1 _ 3g’2)u)£
+ 5;;;2 (SWZMQW(62+QIZ1/I2) +g”3u6 Jrg/g//2uS

+ (2912 _ 2g/4 _ czg//z)g//u4 _ 3C2g/g//2u3 + 02(3 _ 7g/2)g//u2

—|—CZ(1 _ g/Z)g/u_ 2c4g”)%
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C(2aWelug" +g")\ P (aw(d+ g% P
R Judv R ou?

881(—g”2u4 +c2(ug” +g/)2 _ Cz) 52
a ( WR o2 (24)

By using (24) and (20) we get

A" (cv+ g(u)) = T(u)
A" (14 cos v) = P(u) cos v+ Q(u) sin v (25)
A™ (y sin v) = —Q(u) cos v+ P(u) sin v,

where
6W2 2.3 1 ms 2 2.2 1 n3, 8 ” 7. mn. 7
P(u) = —5 (W ug'g" (" +9"u7) +¢'g"u” + (297 = 1)9"g"u
_ C2g/g"3u6 _ c2g/2gl/2u5 +C2(5 _ 7g/2)g/g//u4+3c2(1 _g/2)g/2u3
—dctg'g"u® — 2¢*g"u), (26)
_8W2 2.2 mg¢.2 2.2 "3, 7 ny 1126
Q(u):T(echg (c"+g"u”)+cg™u’ +c(—=1+29")g'g"u
fc3g”3u5 _ c3g'g”2u4+ (*79,2 +5)C3g”u3 +3C3gl(1 7g,2)u2
—4ccg"u—2c%g"), (27)
8W2 2. my 2 ”.2\2 5 m 13 m2N, 7 2 136
T(u) = (eW ug” (" +g"u”)" + (399" —29"¢")u" + g™ u

R3
+ (302g'3g"2 + ng/g//z)us + (7C4g"3 + 7ng/2g” _ 9C2gl4g//)u4
+ (_3c4g/g//z _ 3czg/5 + 3c2g’3)u3 + (_1504g/29// + 4c4g”)u2

+ (—4c*g” 4+ 2¢* g u — 3c8g™).

REMARK 3.2. We observe that

(30 ) (T ) + (€ + 9) Q) = 1 o

cP(u) +ug'Q(u) = 0.

The equation (1) by means of (20) and (25) gives rise to the following system
of ordinary differential equations
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apucos v+ ajzusin v+ ay (cv+g) = T(u)
(P(u) — ayu) cos v+ (Q(u) — axu) sin v — axy (cv +g) =0 (29)
(O(u) + asu) cos v — (P(u) — azsu) sin v + az (cv+ g) = 0.

From (29) we easily deduce that a;) =apn =ai;3 =ax =az3 =0, an =axp
and a3y = —ax;. We put ap =az; =4 and —as = a3 = 4, A, u € R. Therefore,
this system of equations is equivalently reduced to

P(u) = lu
O(u) = pu (30)
T(u) = 0.

Therefore, the problem of classifying the helicoidal surfaces M in E13 given by
(20) and satisfying (1) is reduced to the integration of this system of ordinary
differential equations.

We discuss four cases according to the constants A and u.

Case 1. Let /=0 and u #0.

9'0(u) =0
O(u) = pu
cP(u)=0

From this system we get g’ = 0, which is a contradiction. Hence there are no
helicoidal surfaces of E; in this case.

Case 2. Let A1 #0 and u=0.

In this case the system (30) is reduced equivalently to

i

But this is not possible. So, in this case there are no helicoidal surfaces of
E;.

Case 3. Let A =pu =0 then 4 = diag(0,0,0).

In this case the system (30) is reduced equivalently to

0.

g9'0u) =
Ou) =0
T(u) =0.

Then, the equation (28) gives rise to H = 0. If we substitute (23) in (26) we
get P(u) = 0. By using (28) we get Q(u) = 0 and T'(u) = 0. Consequently M is a
minimal surface.
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Case 4. Let A #0 and u # 0.
In this case the system (30) is reduced equivalently to

g(u) = —% In(u) +k, keR. (31)

If we substitute (31) in (27) we get Q(u) = 0. So we have a contradiction and

therefore, in this case there are no helicoidal surfaces of E;.

We are now ready to state the following theorem.

TueorReM 3.3. Let r: M — E; be an isometric immersion given by (20). Then

A"y = Ar if and only if M has zero mean curvature.
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