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TIME DECAY ESTIMATES OF SOLUTIONS TO THE MIXED
PROBLEM FOR HEAT EQUATIONS IN A HALF SPACE
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Akio BaBa and Kunihiko KAJTANI

1 Introduction

The Cauchy problem for the heat equation
{6,u—AuzO, t>0,xeR",
ul,_y =uo(x), xeR"
has a solution
1
Jant"

) = [ e () dy

which has the following three estimates for ¢ > 0
c
(@l < 275 ol

lu(®)lr < cnplluoll,, 1<p<oco,

and

C )
lu(@llze < it ol 1<g<p <o,

n/2)(g™" =p~

s = ([ o )

where

(1.3) and (1.4) follow immediately from (1.2). We can derive (1.5) from (1.3) and

(1.4) by use of interpolation (see Proposition 2.1 below).

Dirichlet and Neumann problem in a half space R” = {x = (x/,x,),x’ e R,

x, >0} has a solution respectively as

up(t,x) =

7]
4nt” Jrer
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e (K==t yn)) /41 _ o= (/=3 P=Corm) VA1) () dy (1.6)
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and

uy(t,x) = J [e,<‘x/,ﬂ2,<X”+},n>z)/4, + e*(lz\"*y’\zf(xryn)z)/ﬂuo(y) dy. (1.7)
R

1
Vant" I
So we can see that up(f,x) and wuy(z,x) also satisfy (1.3), (1.4) and (1.5).

In this article we shall investigate the boundary conditions which are gen-
eralizations of Dirichlet and Neumann conditions and with which the solution
of heat equation in a half space R’ satisfies (1.3), (1.4) and (1.5).

Let us consider

ou—Au=0, t>0,xeR],

n—1
Bu := (Cax,, + ijaxj + d) u|xn:0 = 07 > 07 x'e Rn_l’ (18)

Jj=1
ul,_o =uo(x), xeRY,

where ¢, b; and d are complex constants.

Our aim is to give the integral expressions of the solutions to the mixed
problem (1.8) and to derive by use of these expression the time decay estimates
(1.3)—(1.5) of the solutions of (1.8) under the strong Lopatinski condition (below).

The above problem (1.8) is well posed in L?(R”) if the boundary operator B
satisfies

n—1
B(—\A+ &1 &) = —c\Ja+ |1 +i>_b&+d #0, (1.9)
j=1

for A€ C such that R®A>¢; (3¢ €R) and for & eR"!, which is called a
Lopatinski condition, where we choose the branch of /44 \é’|2 such that
R/ A+ |E')* >0 for RA+|E)* > 0. Then the solution of (1.8) satisfies

()l 2rry < COlluoll2(gry, > 0,3C(r) > 0. (1.10)

However in order to get the estimate (1.3), (1.4) and (1.5) we need a stronger
condition than (1.9), that is, there is ¢p > 0 such that

B(—\/Z+E15E) #0, Ri>—c|¢')?, & eR™NO0. (1.11)

We call our condition (1.11) the strong Lopatinski condition. For simplicity we
denote b= (by,...,by1), b&' =317 b& and () =" When 3(2) #0 and
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¢ # 0, there is & € R"™! such that R(, = %{ibé/”} > 0. Then we can find Ay € C

¢

satisfying for such ¢’

n—1
B(—\Jdo+ &1, &) = —c\Jho + &) +i)_b&+d =0. (1.12)

Jj=1

For 1y € C satisfying (1.12) then we have

—c(A—4
B—\Ji+ [P, ¢) = k) see an)
i+ 1EP+ i+
from which Ay is determined uniquely. On the other hand we note that if
Ry = R{Z1 < 0 holds, then there is no solution of (1.12).
Now we can see that the strong Lopatinski condition (1.11) implies the

following theorem.

THEOREM 1.1. Assume that the strong Lopatinski condition (1.11) is valid.

(0) When ¢ =0, the condition (1.11) implies that d # 0 is valid and that
b=0 or if b#0 the two real vectors 3(5) and R(5) are parallel. In this case
the boundary condition is equivalent to Dirichlet condition.

(1) Let ¢#0. Then the condition (1.11) implies that |f/\2—(% b—f/))z
(R(ED))? = wole')?, Rio < —cole']? for all &' eR™ and (3(4))” - (R(4))* =
hold.

Then the following three cases occur.

(i) When (%(%))2 - (%(?))2 >0 is valid, there is ¢; >0 such that Ry <
—ci(1+ |E']*) for & e R,

(i) When (3(9))" = () # 0 s ealid, REOIE) + SER(E) =0, i -
I+ 2i(R(E) - () (S () +R(5)) and &y = (g + ) (30 +R(5))
hold. Moreover if Rd <0, then Ay < —c1(1+[&']7) holds for Ry > 0.

(i) If (3(9))* = (R())* =0, that is, d =0, then (o = i"S holds.

(2) Let ¢ #0. It holds that {y = ib&' +d satisfies
R - 1€ < —cole']?, & eR™

+
0

The proof of this theorem will be given in the section 2.

Since we consider the equation (1.8) in the half space R""!, it is natural to
use the Fourier transform with respect to the tangential variable x’. We follows
the notation used in Ukai [6]. Let f(x’,x,) be a function defined on R’. Then
its Fourier transform in x’ is defined by

FEm) = [ e ) ay
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and Fourier inverse transform by

1

f(X' %) = T

J e’f/x’f(x’,x,,) dx’.
Rn-1
In the sequel we shall drop the hat in f , if there is no confusion. Thus we shall
use the same symbol f for f and its Fourier transform f .

We can give the expression of the solution of the mixed problem (1.8) as
follows.

THEOREM 1.2.  Assume that the strong Lopatinski condition (1.11) is vaild. Let

(o= w and ¢ > max{R{,,0}. Then we have the Fourier image u(t,&', x,) with

respect to x' of the solution of (1.8) if ¢c=0
u(taé/;xn) = uD(tvé/,xn) (114)

where up(t,&' x,) is the Fourier transform of up(t,x) given by (1.6) and if
c#0

u([aé’axn) = uM(tvélvxn) + MD(l,f/,Xn), (115)
where

o0

upy (t,E' x,) = Jo K(t,&', X0+ ya)uo(E', yn) dyn (1.16)

and K(t,&',x,) = 2%[&1(2‘,5',)@1) and Ky(1,&',x,) is given by,

Ki(t,& %) 1 J e@—meﬂcdg 1)
tE X)) = — - dL )
: 2ni Jpe—e  C—Co
Moreover we can also express
u(t7f,axn) = _u?\4(l>él7xn) + uN(laé/axn) (118)

where

dC“O(é/ayn) dyn (119)

| =1 = (5t 1)
| 2
R(=¢

(1, 0) = J (=0

0 27

and uy(t,&',x,) is the Fourier transform of uy(t,x) given by (1.7).

The proof of this theorem will be given in the section 3.
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It is trivial that up(f,x) and uy(z,x) satisfy (1.3) and (1.4) clearly. So in
Theorems below it suffices to prove that uy, or ul, satisfies (1.3) and (1.4) in the
case of ¢ #0.

Now we can mention the following main theorems.

THEOREM 1.3. Let k be a non negative integer. Assume that the strong
Lopatinski condition (1.11) is valid. When (S(%)f = (?R(%))z # 0 occurs, moreover
we assume R(2) < 0. Then the solution of (1.8) satisfies

IVEU(O)]| ey < Cet™ "2 lug[ 1 gy 2> 0. (1.20)
Moreover we assume the space dimension n > 3. Then

IV u(o)]

LrRY) = Cklik/ZHuOHLl'(R:)v 1>0,1<p<oo, (1.21)

and

HV"u(t) HLP(RK) < Cl*r’&'/Z*(n/Z)(‘[’l,p*l) ||u0|

Liwrys >0, 1<g<p<oo, (122)

are satisfied, where V¥u = {0"u; |o| = k}.

The proof of (1.20) and (1.21) of this theorem will be given in the section 4.
We can derive (1.22) from (1.20) and (1.21) evidently by use of the interpolation
theorem.

When (%(%))2 = (8‘%(%))2 #0 occurs, In order that (1.20) with k=0 in
Theorem 1.3 holds the condition §R(%) < 0 is necessary in the sense of the
following theorem.

THEOREM 1.4. Assume that the strong Lopatinski condition (1.11) is valid
and that (%(?))2 = (?R(%))z # 0 and %(?) > 0 hold. Then there is a initial datum
ug € L'(R) such that the solution of (1.8) does not satisfy (1.20) with k = 0.

We shall prove this theorem in the section 5.

When | < p < co, we can prove (1.21) in Theorem 1.3 without the aditional
condition %(¢) < 0 in the case of (%(%))2 = (?R(%’))z # 0. In fact, we can prove
the following theorem, applying the L? boundedness of singular integral oper-
ators of Calderén-Zugmund [1] to the expression (1.19) (also see (6.7)) of solution
of the equation (1.8). However it is noted that Calderén-Zugmund theorem is not
applicable to the case of p =1, co.
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THEOREM 1.5. Let 1 < p < co. Assume that the strong Lopatinski conditions
(1.11) is valid. Then the solution of (1.8) satisfies

c
IVEu(t)|,, < T luoll .y t>0,k=0,1,.... (1.23)

We shall prove Theorem 1.5 in the section 6.

It should be remarked that there are any works about the mixed problem in
R’ and in the exterior domain of heat equation with which boundary conditions
are Dirichlet, Neumann and Bobin. We refer, for example, S. Jimbo and S.
Sakaguchi [3], K. Ishige [2] and their references.

Forthcoming paper we shall derive the time decay estimates of solutions to
the mixed problem for Stokes equation in a half space by use of the expression of
solutions to the mixed problem for the heat equation and the Ukai’s formula [6]
of solutions for the Stokes equation in a half space.

2 Proof of Theorem 1.1 and Preliminaries

We begin to prove Theorem 1.1. When ¢ =0, B(—a(4,&), &) = ibé' +d.
Therefore the condition (1.11) implies that d #0, d(1+i%) =d(1 — (%) +
i (?R%)) # 0 for any ¢’(# 0) e R""! and consequently we get our conclution that
d #0 and RY is parallel to 3. Hence we get Dirichlet condition u(&',0) =0
from the boundary condition Bul|, _o= (1 — %b%—&— i%b%)u(é’,()) =0.

Next we investigate the case (1). We may assume ¢ =1 without loss
of generality. Let R(y=—ShE +Rd>0. Then B(—\/lo+|E']%¢E) =

—\/ 20+ |E']* + ibE" +d = 0 is equivalent to —R1/ Ao + |¢']* — Sb&’ +Rd = 0 and

S/ 20+ |E')? + RbE + Sd = 0, that is,
+ 1) + +1&1%)? + a2
%THé,FZJﬂO P 4\ (o + 1) b maenr @)

2

and

—uo — &' + /(o + 1€ + 0}
%\//10+|f’|2=iJ il \/;”0 <1 O = Rbe'+3d, (2.2)

where Ay =y, +iop and + means the sign of gy # 0. When gy =0, we have

3?\//10 + |f/|2%\//10 + &) = 0. We note that there exists (u,00) satisfying (2.1)
and (2.2), only if Ry = Rd — Ib&’ > 0. Then we get from (2.1) and (2.2)




Time decay estimates of solutions to the mixed problem 277

o = —|¢"]* + (Rd — Sb&")? — (RbE' 4 Sd)?,

(2.3)
oo = 2(Rd — IbE')(RbE' + 3d).
The assumption (1.11) implies
po = —1&'* + (Rd — b&')? — (RbE' + Sd)?
= —{IE')*(1 — (Sbw')* + (Rbw')?) + 2|¢'|(RdSbw’ 4+ SdRebw')
+(Sd)* = (Rd)*} < o[, (2.4)

for ¢ e R"\{0} with R{; = Rd — IbE" > 0, where o’ :é—j‘ However p, is a
funcion of (8‘%{0)2. Therefore (2.4) is valid for R, < 0, that is, for all &' e R" .
So we can see from (2.4) that (Sd)* — (Rd)? > 0 and |¢'|* — (SbE')? 4 (Rbe')?
> ¢ol¢')* for all & e R,

(1)-(i). Let (Id)? — (Rd)* > 0. Since 1 — (Sbw’)*> + (Rbw’)* > ¢o > 0 holds
for || = 1. We can write

2
RASbo’ + SdRbe'’ }

L (1—(3 w,z (Ul2 I
#o = —=(1 = (Sbe')” + (%b )){|€|+1_(3bw/)2+(%bw’)2

(RdSbo’ 4+ SdRbw')?

1 — (Sbo')? + (Rbo’)® ((3d)° = (Rd)°) < —eole’f (2.5)

for all ¢/. We can prove

b/ L Cx 72
o1 = (3d)2 — (Rd) — sup (RdSbo’ + IdRbw')

> 2.6
wi=11 — (Shw')? + (Rbw')? (26)

In fact, assume for some w’

dSbho' + SdRbo')?
dy = JASbO' & SARbO)” 2 gy >
1 — (Sha')? + (Rbo')?
Taking [¢] = —% in the equality in (2.5) we get
93 ! ¥, 72
0— (RdSbo’ + SdRbw’)” (3d) — (Rd)?)

1 — (Sbw’)? + (Rbw')?

| RdSbo’ + SdRbe’
11— (Sbw)? + (Rbw')?
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which implies

RASbw’ + IdRbew’
1 — (Sbow')? + (Rbw')*

This contradicts to dy # 0. It follows from (2.5) and (2.6) that we have
po < = (el + ).

(1)-(ii). Let (Sd)* = (Rd)* # 0. Then it follows from (2.4) that RdSbe’ +
SdRbw’ =0 must hold for w' = E—,‘ Hence we obtain RdSIb + IdRb =10
and consequently Ay = —|&'|* + 2i(Rd — Sb&')(Rbé’ + Sd) from (2.4) and { =
(34 + 1) (3d) + R(bE')) hold. If Rd < 0 and Ry = —SbE" + Rd > 0, then |&'| >
¢2>0 (¢; >0) must be valid. Hence we have R < —2L(|¢']* + ¢3).

(1)-(iii) is trivial.

(2). If R, >0, we have Jy satisfying 1/4o+ |&'|* =¢, which implies
Jo +1¢')* = (Lo)?. Hence we get from the strong Lopatinski condition R({y)* —
|E'12 = Ry < —co|é'|?, for Ry > 0. On the other hand R({y)? — |¢']? is a func-
tion of (Rp)? and so R((o)? — |€']* < —co|¢|* holds also for Ry < 0. Thus
we have proved (2) and consequently we have complete the proof of Theorem
1.I.  QED.

In oder to prove Theorem 1.3-1.5 we need the lemmas below.

Lemma 2.1. Let {€C and peR. Then

0 itp —Lp
1J e {e PH(p), (>0, 2.7)

i) 1= " T L e H(—p), RL<O0.

Here H is the Heaviside function such that H(p)=1 for p>0 and =0 for
p <0.

PrOOF. Let R¢ > 0. Then Fourier transform of e~ H(p) is given by

J e—l/’f[e—CﬂH(p)] dp = J e(—it=0p dp
-0 0
1
(=)’
Hence we get (2.7) taking the inverse Fourier transform of ﬁ We can show

similarly (2.7) for R < 0. Q.E.D.
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LemMmA 2.2, Let {eC, ceR, t>0 and y > 0. Then

ect—cv 0 (Co—e)z—(y—2c1—2)% /41
e - e Co—)z=(y=2ct—2 d27 Cc — ReCo >0
271\/@me
1L (" o
—Coz—(y—z)" /4t
1 Sy (:T\Mmj_@e o ) 2.8
ﬁJReccCCO - AN RN NP RCP o
e e~ Go—)z=(y— cl—z)" Idz, Cc — ReC() <0
271\/47‘5[]0
( 1 r ~toz=(r-2 /4t g
___ e z 7).
2nv/4nt Jo

Proor. Let ¢ — Ry, > 0. Then we can see

C-y¢
1 J e dc

2_77:i Rel=c 4' - éO

1 (® e([&9+(‘)zl‘—y(i6+6’)
= — EE——— )
27ziJ,OO i0+c—{ !

_ 1 t—cy @ —10* 1 —i(y—2ct)0
5" mm=m))e v

T 2ni 2« o —ilc—{

where f* means Fourier transform of f and we used (fy)" = ﬁ f xg. On the
other hand it follows from (2.7) that for R(c —{) >0

L~ 1 —iz0 _ ,(e=()z
2niJ,w07i(c—Co)e di =e H(-z).

Besides, noting

JOO o0 pily=2e-2)0 gp _ Lef(nyctfz)z/M
—w Vant ’
we get the part of ¢ — Ry > 0 in (2.8) of Lemma 2.2 from (2.9). We can show
Lemma 2.2 similarly in the case of ¢ — R, < 0. The relation
(y—2ct—2* (y—2)°

_ T 2
1 = c(y—z)+ct (2.10)

yields the equality in the brackets of (2.8). Q.E.D.
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Let j be a nongegative integer. It follows from Lemma 2.2 that we can see
easily

L e,
Rel=c

27 (-4
L R 24
_0‘6’ =20/4 gz ¢ — Rely > 0
2n/4nt J, %
= (2.11)
1 Jw e~bz gl = (r=2) /41 dz, c¢— Re{,<0.
2nv/4nt Jo -
We remark that for ¢; < Ry, < ¢; Cauchy formula gives
1 J oo 1 e
- e = ety 4 L J dc. 212
2mi Rel=c> g - CO 2mi Rel=c, C - CO ( )

To get our Theorem 1.5, we need the boundedness in L”(R’) of singular integral
operators of which proof is in Calderén and Zygmund [1].

LEMMA 2.3. Let 1 < p < co. Assume that R(&) e COO(Ré\{O}) satisfies
0IR(E)| < G, 77, &0, (2.13)

for any multi-index y e N' (denotes the set of multi-index y= (yy,...,y,) with
;= 0) with |y < (4] + 1. Put

Ru(x) =v.p JR, R(x = y)u(y) dy,
where R(x) means the Fourier inverse transform of R. Then there is C >0 such

that

|| Rul

, < C max GCllu
L7 bl <in/2)+1 }” ||Lpa

for any ue L’

LemMa 24. Let a(é) = erfk:lajkéjék be a polynomial satisfying Ra(&) >
c0|f|2, (co > 0). Then for any ¢ >0 and for o€ N" there is Cy > 0 such that

j02e 49| < /i - 450, e e R, (2.14)
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PrOOF. Put Q% t) = e“(é)’age‘”@’. We shall prove by induction of o.
|6§Qd(f, )| —&Ra(& t < C \/“ |+‘V| yGN” (215)

for >0, £eN". When |a| =1, we have 07 = 0;, for some j and so we get
= > i(ajx + ay)é,. Hence we get agQ“(a, 1) =0 for |y| =2 and consequently
(2.15) with |«| =1 is trivial for |y| = 2. While

|agQ“(o(’ )| —eRa(& < C |f|l bllein(’ld t < C \/—l+|y
for |o| =1, |y| <1 which implies (2.14) with |¢| = 1. We assume that (2.15) is

valid for |« > 1. Noting that Q“™*(&, 1) = Q¢(&, 1) Q*(&, 1) + 0:0%(&, ) for e = 1,
we obtain

|agQa+e(£, l)‘ —eRa(¢ Z| =y Q | —eRa (¢ t/Z‘a/ Q | —eRa(&)t/2

/<y

+ ‘angEQoz‘eﬂ:?Ru(g')t

\’|+|x\+l
{ZCC (- V)(é/2)+C;+eaa}‘[)

which implies (2.15) with o +e. Q.E.D.

We remark that if a(¢) satisfies (2.14), then
02(B(E)e™ )| < Copp/1™ e 1-RO 5 g, (2.16)

for any homogenuous polynomial b(¢) of order m and that if a(&) satisfies
Ra(&) > co(1+ &%), (co > 0), we can prove analogously to (2.14)

102(b(&)e )| < Cypp/1”" e (1= RalCr (2.17)

for any polynomial 5(&) of order m.
Applying Hoélder inequality we can prove easily the following lemma.

LEMMA 2.5. Let 1 < p < oo and Q be an open domain in R and H(x, y) be
a mesurable function defined in Q x Q. Assume that H(x,y) satisfies

j H(x, y)| dx < C, j H(x, y)| dv < C.
Q Q
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Define Hu(x) = [o H(x, y)u(y) dy. Then we have

||H”Hu(g) < C””HLI’(Q)a

for any ue LP(Q).

To prove Theorem 1.5 we need the following lemma of which proof is given
by Yuzawa [7].

LemMMA 2.6. Let Q be a domain in C. Assume tat f(z) is holomorphic func-
tion Q, y is a closed curve in Q and {11, 22,...,24} is a subset of points in the
interior of y. Then

T,
i, [ 4)

1 1
=[] 0000l a2 0) dordts 0, 218)
0 0

where
g1, Ay Aa;0) = 0105 -+ - 0414 + (1 — 01)0, -+ 04122
+(1=02)03---0q-123+ -+ (1 = 04-2)04-124-1
+ (1= 04-1)4a.

We remark that applying the above lemma of the case of d =2, we can
see easily that if f satisfies sup,,_, <, |f(u+id)| = o(|4]%), |4] — oo, we get for
ca >R =RL >0

1
27U'J§m—c1 (A—=A)(4A— )

s 4 1 f(2)
- Lf (0224 (1 = 0) 1) d"*z—Jm “

which will be applied to the proof of Theorem 1.5 in the section 6.

ProprosITION 2.1 (Riesz-Thorin interpolation theorem). Let T be a linear
mapping from L% to LV satisfying ||Tf1|, < Milf|,, i=0,1. Then for each
feL™NLM, and for each te (0,1), Tf € L” and | Tf||, < My~'M{||f||,, hold,

1l L1ty
where V4 Po +171 and q 90 +111'
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The proof of this proposition can be seen in M. Reed and B. Simon [4]
(Theorem IX.17).

Using the above proposition we can derive (1.5) from (1.3) and (1.4). In fact,
we denote by T a linear operator defined as Tuy = u(t) where u(t) is the solution
of the mixed problem (1.8). Then it follows from (1.3) and (1.4) that T satisfies

1 Tuoll,, < Ct="[|uoll,
and

| Tuol|, < Clluol|,-

Take po =00, gqo=1 and p; =r, ¢ =r. Then it follows from Proposition 2.1
that
1 Tuoll,, < Co= P00 ug

where - =1, =1 —7+4%. Here we choose | —#=[—, p,= p and ¢, = ¢, that

is, we choose ¢, r such that 1=1—,+ and r= (1 —_+;)p. Then the last
estimate means (1.5).
3 Solution Formulas for Mixed Problem to Heat Equation in Half Space

First we shall show that the fundamental solutions E(¢) of the mixed problem
(1.8) are given as follows;

E(Duo(&'x) = j E(6,& %0, y)uto(E's 32) s (3.1)
0
where

1 4
E(6,¢ 30 1) =5 J HE(E X, yu) di. (3.2)
Tl ) Rej=c

Here we take a complex variable 4= u+io and the symbol E(4,&’,x,, yu) is
given by

e_(xn"'y:i) V /H"C:/lz
210/A+ &

e*(xn*yn) V ;»+|f/‘2
+———=—H(X, — yn)

210/A+ &

e =)V AHE

20/a+ &7

E(/17él7xn7 yn) - —

+
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if ¢=0, and
e~ Cart)Va+E e~ Cort Ve

B(—\2+1¢'% &) i+ e

e*(x,ryn)\//T:\CT’I7
2/ a+1¢'?

e(xn_J’n)\/ /H"il‘z
+——H(y, — xa), (3.4)

20/A+ &

if ¢ # 0, where we denote by H Heaviside function such that H(z) =1 for z > 0
and =0 for z < 0.

We shall derive the formula (3.1)—(3.4). Let u(¢, x) be a solution of (1.8) and
denote by u(z,¢’, x,) Fourier transform of u with respect to x’. Denote by U

E(;“,é/>xn7 yn) =

+ H(xn - yn)

Laplace transform of u, that is,

U2 & xy) = J: e Mu(t, &, x,) dt,
which satisfies from (1.8)
(A 1P - j—;) U %) = (€' %), (35)
and the boundary condition,
BU = (c 6)86,, + ib&E" + d) U(4,¢E,0)=0. (3.6)

Denote y = R4, 0 = S and o = /A + |¢'|%. We can choose a bounded solution
of (3.5) as follows,

U(Aa é/a xn) = e_“(z’é/)x’l U(ia él7 0) T A /1 2N\ e_“()v’i/)y"uo(éa J’n) dJ’n

e—c{(l,i’)xn JOC
20(2,¢")

0

ea(lvél)xn © -~ (/1 v/), N 12
J e Mg (& ya) dyn

T2 )

x"

T N (&
J PRI }”uo(é 7yn) dyn. (37)

- 2&(27 5,) 0
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When ¢=0, BU=0 implies U(4,¢',0) =0. It follows from (3.7) that we
have

) il )
Uk &x) :_ML ey (& y,) dyy
e o0 "o,
+WJ e By (€, p,) dyy

e‘“(ivi')xn Xn Py
j X4y (& ) dy (3.8)

+
20((/“76/) 0

When ¢ =1 (we may assume ¢ = 1 without loss of generarity), by operating B

to (3.7) we see that the boundary condition BU =0 yields

1 © e
U<;”7é/70) = —O((i é/)+lbé,+djo e (A’C)y"uo(f/,%z) dyﬂ (39)

Therefore inserting U(4,¢&’,0) given by (3.9) into (3.7), we obtain

e_“(;w, é/)xn

Uik &) = { —a(4,&") +ib- &'+ d

e—m(ﬂ.,f/)x" @ —a(2,E" )y, ! d
_W JO e uo(f >yn) 'Vn

e*“(%&)«‘n Xn L.
J e )ynuo(é/’ V) dyn

2% o

a(2,ENxy oo .,
: J e 4 g (', ya) dy. (3.10)

o)

Xn

Since

| , i
u(t,x) = %Jﬁi_cl>0 U(AE x,) dA

we get (3.1)-(3.4) from (3.8) and (3.10).

LEMMA 3.1, Assume B(—\/2+ &2, &) = =\ A+ &P +ibE' +d satisfies

the strong Lopatinski condition (1.11). Let t>0, y>0, ¢, >0, ¢>0 and
REy < ¢. Then we have



286 Akio BaBa and Kunihiko KAJITANI
1 M=V

*J dA
270 )=, B(—W’é,)

| 1PNty
- 2_me£5 o dc (3.11)
1 eI Pty 1 I
:%J%(7~250Wd§_\/_ﬁe—\g Pi—y2 /4t (3.12)

and

J— /}. é/ 2
LJ g di— Leflé’\ztfyz/hl (3.13)
27Tl Ri=c )\.‘1‘ |f/|2 \/E

Proor. First we shall prove (3.11). Put ' = {ie C;R\/A+ &) =¢}. It

suffices to prove

di.  (3.14)

1 eH-VIHET ; IJ MV AT
FB(

*-J dh=~—
27 Jpp—e, B(_W’f,) 27i _\/m’é/)

In fact, by the change of variable { = \/4 + |¢|* we can get (3.11) from (3.14).
Let A > 1. Denote I'j(4) = {Ae C;RA=c1;|S4| < 4}, T2(4) = {4 e C; —|E 4
F-L <R, Si=4}, i) ={leCG-[¢+& -4 <Ri<e, 3=
—A} and T4(A4)={lel;-4<SA<A}. Then since there is no zero of
B(—y/Z+|¢'1%,¢) in the interior domain enclosed by boundaries Ule I;(4),
Cauchy formula gives

1 4

M-IV

— J dj=0. (3.15)
27'[1 =1 rk(A) B(— i‘i’ |fl Z’é/)

Therefore in order to prove (3.14) it suffices to show that when A4 — oo,
M=V

Jrz(A) B(—m»fl)

dj.— 0 (3.16)

and
J e H=IVAHE
D) B(—y/ A+ |12, &)

dj. — 0. (3.17)
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Let us show (3.16). Put ,u(A):—|é’\2+Ez—§. Since 31 =4>0 and

IB(—\/2+ |12, )| = VA — C(&) for 1 eT5(4) we have
eit*y\/ ;“‘Hf/‘z et
di <

JM@B@wx+wav At

1 ct
<10 4w

VA-C@) 1

Thus we can obtain (3.16). Analogously we can show (3.17). Put {, = ib¢&’' + d.

Changing the variale { = /2 + ||, we have

t

du

1 J e).r—y\//lﬂg"\z ” 1 J e(CZ*‘Cyl‘Zﬁ*}’C 2&: dé’
27i rB(— //lJr |£/|2) 2ni Jpe—e Lo —C
_ __2J Pt g
2mi Re=¢
QCOJ e C—1E1?)-w¢
L 3.18
2ni Jpe—e  Co—¢ (3.18)

On the other hand, changing the variable { = ¢ + if again, we can get

LJ ecz,,yg dc = L J ” e(éﬂ'e)zzf YE+io); 4o
27 R(=¢ 2ni —x0

Co1—yé oo
_ € 7 J 6702t+i(25l7y)6’ do

2 )_o
Yo 1 .
_ = = Qe=y)A =y A 3.19
e e . .
2\/n /t Vit (3.19)
Here we used the equality
JOO o~V HHI2E-1)0 g @e—(za—y)z/m. (3.20)
—w Vi

Thus we can get (3.12) from (3.18). Next we shall prove (3.13). Analogously to
(3.11) we have
1 M-IV IHE 1 [ eMrVarlT

J —d J —d]

Rel=c r

2ni ;L+|£/|2 2mi /1_"_'5/'2
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Taking the change of variable { = /A +|&'|?, we can see from (3.19)

1 [ oM Vitle 1 e (C=1EP)i-xt 1 o2 2
J J 20 d¢ ey /4t7
r Rel=¢ Vit

| S di=
2mi /}Hr |é'|2 27i 4

which means (3.13). Thus we have proved Lemma 3.1.

PrOOF OF THEOREM 1.2. When ¢ = 0, it follows from (3.1) and (3.3) that we
get by use of (3.13)

/ 1 At 87“(}'75/)'\/’1 * (} f/>} ' d
| o e Hhem —a(4, n )
u( ¢ ’x,) 27”1%/1:06 { 2(1(1’5’) JO e uO(é yn) Vn

e~ A& X LENy /
e!l(/‘u,é,)xn 0 _ (/1 zl) !
_WJ e M g (&5, yn) dy"} dz
Jx{ 1 ( —|E =t ya) /4 _ p=lE P (= )2/41)} (&' yn) d
= — e n n — e o " uO ’ ,yn yn
o Want
(1,8 3). (3.21)

This means (1.14). When ¢ = 1, it follows from (3.1), (3.4) and (3.11) in Lemma
3.1 that we can see

u(l‘, é,, xn)
1 it e % e Jw —a(2,&")y !
1 _ a4, ¢ n d
zniLR;L:Ce {(a(i,é/)+lbf/+d 206(/1,5') 0 ¢ uO(é 7yn) Vn

—o(A, &)Xy [ Xn
e a(A.ENy
J A< )}nuo(f/’ V) dyn

* 20{(/17 fl) 0

ea(ﬂ,é')xn o
+5 7

JOO _1J 2Cg(52*|5/|2)f*(xn+yn)g” p
a 0 2 Ri=c C—Co

1 =l , 5
+ Tm(e—\g\21—<x,,—yn)z/4z_e—\ém—(xn+yn> /4’)}uo(z,é’,yn) Ay, (3.22)

(& ) dyn} di

Xn

which means (1.15) and moreover we get (1.18) from (3.12) and (3.22). Q.E.D.
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4 Proof of Theorem 1.3
We shall prove Theorem 1.3. We may assume ¢ =1 without loss of gen-

erality.

ProoF OF (1.20) oF THEOREM 1.3. It follows from (1.16) in Theorem 1.2 that
Wwe can express Uy as

613,(7£nuM(l, x) = J 6»1,6){'1]((@ X' =y xn + ya)uo(y) dy, (4.1)
R!
where (1.17) gives
62,6{: K(t,x',x,) = %J eix'f,(if’);’(?{ K(t, & xy) dé! (4.2)
P Xn (277:) n R”’l n
and
N 1 a j+1 2e<C27‘i,‘2>t7xnc
0l K(t,& x, :—<—> J - dc 4.3
o ( f ) 27'[1 (3)6,, R(=¢ g — CO C ( )

In order to prove that 6;’,6{;”uM(t, x) given in (4.1) satisfies (1.20), it suffices to
show that

07,67 K(t,x",x,)| < J ()7 0L K(1, &' xy)| A&’ < Cr 2 (4.4)
Rn—1
for >0, xeR/.
First we consider the case of R{;, < 0. In this case we can apply the first
equality of (2.8) with ¢ =0 in Lemma 2.2 to (4.3) and so we get

P e (AN e
0L K(t1,E',x,) = 7J e s? <) e = A 7 4.5
LK) =S e (o @)

Taking account that Lemma 2.4 implies

j+1
Jw LA Ry
_»|\0z

we can estimate easily

dz< Ct7? >0, (4.6)

Rn—1

Jw 0|<ic’)}‘af;,,1€(z,éﬂxn)\df’éCf”“WJ &1 le=le"P g
Co<

< Ct D2, (4.7)
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Next we consider the case of Ry > 0. In this case we can use (2.12) with ¢; = ¢,
¢; =0 and the second equality of (2.8) and we get

N . LoV el
X ( ) (=Co) 2ni \ 0x, RE=0 (=&

_1EN2t poo ji+1
_ 2(_C0)j+1e/lot—éoxn _¢ < ,J e—éoz i o e—(x,,—z)z/4f d-. (4.8)
nvant Jo 0xy,

In the case (i) of (1) in Theorem 1.1, taking account that R4y < —(co + &|¢’|?) is
valid, by use of (4.6) we have from (4.8)

|aink(tyé/7xn)| < C{(l + ‘é|)j+1€7(60+£0‘5r|2>t + [7(j+1>/2€7|é/‘2t}

< Cr D2 =ale Pt (4.9)

for R{y > 0, which implies
J |(lé/)/a{( K(t,f',xn)| df/ < CJ ‘é/|\7|t*(j+1)/26760\f’|2t df/
RE>0 . R

< Cr~ /2, (4.10)

Next we consider the case (ii). Namely (Sd)* = (Rd)? # 0 and the assumption
Rd < 0 are valid. Then there is ¢ >0 such that R, < 0 for [£| < ¢, which
case is considered already in (4.7). If R, >0, then |&'| > ¢ must hold and
consequently R4y < —¢; (1 +|&'|?) holds. Hence by use of (4.8) we can show (4.4)
in this case similarly to (4.9). Next we consider the csae (iii), that is, d =0,
Lo = ibE'. So |¢o] < C|¢'| holds. When R(y > 0, Rig < —&|¢’|* holds. Hence we
have by use of (4.8)

[0 K(1,¢' )| < C(I&H e g m Um0k

which implies

J\(K’)V@;{;,K(t, &' x| de' < CJ (| el Pty =D 2g=1e Py 2|1 gt
R”’]

< Ct*(n+‘7|+f)/2'
Thus we have completed the proof of (1.20) of Theorem 1.3.
ProoF of (1.21) orF THEOREM 1.3. We shall begin to state the following

proposition which is inspired by the idea of Theorem 3.2 in Shibata and
Shimizu [7].
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ProposITION 4.1. Ki(1,&,y) given by (1.17) satisfies
(0 + iby) {(&") 05 Ki(1,E", )}
< Cop /1 (=@t pmanlé'ly) gmsalé'Pr
t>0,y>0,&eR"N0, (4.11)

for 0,y e N""1 k=0,1,2,... and some & > 0.

Let Ki(t,x’,x,) be the Fourier inverse transform in &’ of Kl(t,f’,xn). It follows
from Proposition 4.1 that we can prove the following proposition.

PROPOSITION 4.2. Assume n >3 and let k be a non negative integer. Then
K(t,x',x,) =255 Ky (1,x', x,) satisfies

J |V’;K(z,x/,xn)|dx'dxngi’;. t>0, (4.12)
R N

where we denote V;‘ = {6;‘,6;(:”; lo| + j = k}.

This proposition and Lemma 2.5 imply (1.23) of Theorem 1.5. Because the
solution of (1.8) is given by

Vﬁu([, X) = J VfK(t, x' =y xn + yu)uo(x) dy'dy, + VkuD(t, X).
R

n
+

PROOF OF PROPOSITION 4.2.  We shall prove that (4.11) implies (4.12). In fact,
noting that

(—ix + ibx,)*0%,0% K(1,x, x,)

1 e _ A
= (zyzljeIXé (0 + ibx,) { (i) 05 Ky (1, &' x) } A&’
7T

holds, we get by use of (4.11)

Joe]
, Cluk t
182,08 K(t, ', 37)] < —bk ( Vi )

- \ﬁl}'\+k+l |x’—bxn|

780){3/[ 780|§ul‘x,, 780‘i,|2td ! 4 13
| e e e e gy (@)
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for any o € N"~!. Therefore using (4.13) with |¢| = 0 and with |«| = » and taking
account that the assumption # > 3 and Fubini’s Theorem imply

o0 o0
J J (ew0%/t 4 e*é'”‘é,‘x”)e*“lé/'% dé'dx, < C\/Ez_nj (r"2 4 "3 dr
0 Jrt 0

< C\/;Z—n’

we get

J J 107,0% K(1,x", x,)| dx'dx,,
R1 Jo oo

o0

k 1 /

J - \[J |6$,6;ﬂK(t,x,x,,)|dx dx,
x'—Rbx,| </t JO

o0

+J J 107,0% K(1,x",x,)| dx'dx,,
Ix'—Rbx,|>vido T "

< Sl J dx’ —i—J <£)" ax' b < Gk
= \/Z‘y|+k+n*1 \x’|§\/7 ‘X"Z\/E |x/| - \/Z\ka )

which means (4.12). Q.E.D.

Proor oF ProrosiTiON 4.1. It follows from the strong Lopatinski condition
and the assumption Rd < 0 in the case (Sd)* = (Rd)* #0 that it suffices to
consider the three cases below.

(a) RCy <el¢|.

(b) Ry = ¢’ and Rig < —ei(1+ [E]%), (e1 > 0).

(©) R = ¢l¢'| and [¢] < CIE)

Here ¢ > 0 is determined later.

In fact, Since Ry < ¢|¢’| means (a), it suffices to consider only the case of
RCy > ¢|¢’|. In the case (i) of (1) in Theorem 1.1 Ry < —co(1 + [¢']%) is valid.
Hence this case means (b). In the case of (ii) of (1) in Theorem 1.1 we assume
Rd < 0. If R,y > e|¢’|, then || > e >0 must hold. Hence we have c¢; >0
such that Ry < —c (1 +|¢'|%), because Rig < —col¢|* holds from the strong
Lopatinski condition. Hence this case is contained in the case (b). In the case
(iii) of (1) of Theorem 1.1 we have {, = ib&" and so |{y| < |b||¢’|. This means
the case (), if Ry >¢/¢'|.  Q.E.D.
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We shall begin to prove (4.11). First we consider the case (a), that is,
Ry < ¢¢'|. Then it follows from the first term with ¢ =0 in (2.8) that we can
express

i
K(1,¢,y) = 2;;4_7; Jow e~boie= =4t g (4.14)
Applying (2.16) to ﬁg/((f')ye"é/|2t) and to |y—z|‘“|8fe’<y*3)2/4’ we obtain
02((E)e 1) < Cppu/d™ Ve 1 (4.15)
and
|y — 2| ljke (=24 < Cou/1 K 1-0((=2)/40) (4.16)
and using the relation % = (}'112)2 —¢(y — z) 4 ¢%t, we can estimate by use

of (4.15) and (4.16)

(0 + iby)*(&") O3 Ky (1, )

1 0 e 5 L Ak —(pz)?
Hmjooe Y3 (ib(y — z) + 02) (&) eI T a4 dz}‘

C, , _— 0 N
I i I e L T
e—(1-8)1E")

< Co iR

0
J e*?ﬁéozf(lfa/Z)(yf:)z/M d=

(1=e)((2=[¢"*)i=cy) (O
e 2 2 2
((1=&)e—Ry)z— (1=e)(y—2cy—2)> /4t ,—(&/2)(y>+2) /4t
< Copk TR J e 0 y=2cy e Yy dz
Vi
ngyk 732\5’\217513)/’ (417)

= T €

which implies (4.11) in the case (a), where we choose ¢ >0, ¢ >0, & >0,
e3> 0 and ¢ = ¢|&'| such that (1 —e&)c — Ry = (1 —e)e—elE']0, (1 —e)ep = &3
and (1 —e)(c? — &)%) = —&2|¢")? (&2 > 0).

Next we consider the case of (b). It follows from (2.12) and the second term
of (2.8) with ¢ =0 that we have

n2
K\(1,&,y) = eM=t0y — 767‘6 - Jw e~C07= (=214t g (4.18)
2/ 4nt Jo
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Hence noting (65/ + iby)"‘e—loy = e—Coyag, and (05/ + iby)"‘e‘io: — e—Coz(aé/ +
ib(y —z))* we can see

(0 + iby) (&) 0} K1 (1, p))

N 2112
2o\ vk ity (&) o
= (0 + iby) {(5')fggew Gy _ J e~rgke(=2 40 g |
2nv4nt  Jo 4

= e*“y@é«(é’)%:é‘e*“’)

((&)7e kT a :
+ cw, J e % (ib ke A A gz (4419

Z, 271\/@ 0 (ib(y =2)) y (419)
We can prove by use of (4.15) and (4.16) that the second term above satisfies
(4.11). In fact, taking account again that the relation W (}’41) -
c(y —z) +c*t we get by use of (4.15) and (4.16) analogously to (4.17)

- ey s
=y 2nv4nt

J e R (jp(y — ))a*a’afef(yﬁ)z/‘“ dz
0

ol — v — 2 7 l © - )
< Cpp/1" T 1k Wr—mW J o ((1=8)e=RL0)z (1) (v—-200-2)/41)
0

Iyl —k 212 ol
< Co(y;;\/;‘al ‘)’l efsz‘g‘ I*E}‘q \y7 (420)

where we choose ¢ >0, ¢ >0, & >0, &3 >0 and ¢ = ¢|¢'| such that (1 —¢)c—
R < (1 —e)c—elé'| <0, (1 —e)e; =e3 and (1 —e&)(c2 —|&')) = —&a| &)

Noting R < —co(1 +&¢’|?) and using (2.17) we can prove that
02.((¢")7¢ge™)| < Cy/1" 71 e=a(1+1€171/2 i5 valid. Hence we see the first term
of the right side in (4.19) satisfies

|e_§°y6‘g/{(f’) “/C(/)ceiotH < Cakﬁ'“"‘y"ke—(roﬂ)(1+\§’\z)fe—8\i’\y (4.21)

which and (4.20) imply (4.11) for the case (Db).
Finally we consider the case (c), that is, &/&'| < Ry, |{o] < C|E'| and RAp <
—co|¢'|? are valid. In this case we use again (4.19). By use of (2.16) we can show

03A(E) LMY < Cop/17T T e R

Therefore we can see similarly to the case (b) that the first and second term of
(4.19) satisfies (4.21) and (4.20) respectively. This shows (4.11) in the case (c).
Thus we have proved (4.11) for all cases. Q.E.D.
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5 Proof of Theorem 1.4

We shall prove Theorem 1.4 in this section. We shall show that u{,(z,x)
given by (1.19) in Theorem 1.2 does not satisfy (1.3) if (%(4)2 = (5)%‘(1)2 # 0 and
R4 > 0. We may assume ¢ = 1. Then there is & > 0 such that R, > 2 holds for

|€'| < e. We note that there is 4o the solution of equation B(—/2 + |&/|>,&") = 0.
Hence we have from (4.8)

N 1 a2 [P .0 2
K(t,&x,) = 2Lyt — 7| ’J e~ o= /4 gy
(1,&,xn) =26 T . e

:Kl(l7é/7xn) +K2(Z7f/7xn)7 (51)

where K (1,¢&',x,) = 2{pe’ %% and
% 1 12 0 a 5
K>(t, ’7xn — 7l tj etz 2 p—(a—2)"/4t g
26 %) n/4nt 0 0z

It is easy to check |K(1,&' x,)| < %e"é"z‘ from (4.6). So K(t,&' x,) satisfies
J | |Ka (1, & x,)| dE' < Ct2, (5.2)
&<e
On the other hand, we decompose K; as
1 ! Aot—Cox,
EKl(taf axn) = COE ofco

_ l'bé/e)»()t*COXn + d(e/iol‘*CoXn _ elofdeu) 4 de’ot=dx

= K/ (1,8 x) + K7 (1, 30) + K7 (1,6, x0).
Define K;(t,x',x,) by

Ki(t, %', %) = j R4, E ) dE j=1,2,

¢ <e

KI (' x) = J NERI(1,E x) dE, = 1,2,

R
and put
1
uj(l7x): n,]J Kj(ﬂx,_)’/axn‘FJ’n)MO(J’) dya ]: 1727
2m)" " IRy
u.ll(t7x) = _1J Ki/(t7x/_y/7xn+)’n)“0(J’) dya ]: 1727(137
(2m)" Jry
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and so we see u = u] + u} + u® + up, where u satisfies (1.3) from (5.2). We shall
prove that u! and u? satisfy (1.3), and however we shall show that u;° does not
satisfy (1.3) if we choose u, suitably. We begin to prove that

J ! —n/2 .
) ) n — b - ) : .
|K{ (1, x",x,)| < Ct j=12 (5.3)
In fact, K| satisfies

|K11(t7é/;xn)| — |l‘bé/€/lot7§0xn < C|f|e*|é/‘2f’

which implies (5.3) for j =1 and taking account that Ry = —|f'|2 and {, =
ibE' 4 d, we can see K? satisfies

|kf(t, f,’xn)| = |d| \e’lot*gox" — eiof*dx”|
< |d| |e§mor(e—(ihg“’+d>x,, _ e_dx”)|
< C|5/|xne*|5f\2t+<\Sb51\f§Rd)xn < C|f’|xne"5’|2f*(m/2>"" < C|£’|e*|5’\2t

holds for |&'| < e, because Rd > 0, and consequently yields (5.3) for j = 2. Finally
we shall prove that the last term u{°(z,x) does not satisfiy (1.3). In fact, noting
that A9 = —|&'|? + 2i(—RBE'IHE' + 2RARDE + RAId), we have

0 d o0
up (1, x) = WJR” K7 (t,x" = y', xu + yu)uo(y) dy

d 7 ! ! ’

= — J J et(x —y')¢ eiotfd(x,ﬁryn)uo(y) df/dy

(27) R JRe
_ d e2i§Rd%‘dt—dx,,J J ol (X =y H4RARDNE

(2n)"! Rt Ry

X e"i/lzt’mbé/%élt’dy“uo(y) dé'dy. (5.4)

Hence we get
d RS
u” (&, —4RdRb1, 0) = ————— M
(2mt1/2)"

X J i J o€ O—IE P2 S~y (1) Gy
Rt JRr

_ d 2iRd3dt A 1 ¢

=Gyt Atoll), e
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which satisfies

4|

2nv/1)

and so does not satisfiy (1.3), if we choose ug e L'(R") such that

lu” (1, —4RdRbt,0)| >

A:J 1J ef|cf’\272i§)?bg”%bg”fdy,,u0(y) dé'dy;éO
RV JR

and the support of (&', x,,) contained in the set {|¢'| < e}. Thus we have proved
Theorem 1.4.

Finally we remark that (1.21) with k=1, p=1,00 in general does not
hold if Rd > 0 in the case of (3d)? = (Rd)?> # 0. We shall give an example. Let
B=0, +1+i Then we have {y=d =1+i and 2y = —|&'|* +2i. Hence we
have from (5.4)

ok (1,0 = |

J 2R (1,8 X0 + Yo (&', yu) dy,dE’
Rn—l

0

[}
:J IJ 21 + ) et 2iny (£ 3y dEl dy,
R*=1J0

N 1+k i i)x
_2(1+0) e (HWJ Jw oW A Dy (3 3,) dy'dy,
(4nur)n D2 Rt Jo

If we take uy such that e™uy =1, we see
o0
Ok (0 =241 [ e an, 20,
0

On the other hand (1.21) with p = oo implies

C C
LISII‘%HuO”Lm: . 1>0, k=1

0% uf? (£,0)] < ||Vt (1)] &2

The above two inequalities contradict.
Besides if we take up e L' such that e~ ()i (y') y,) = e we see

0
J |0 ue (1, x)| dx = 2|1 + i‘HkJ e dx,
Rt o

1 J x4 /J Iy
X — e " dx e T ay'd "
(4m)("*1)/2 R R" ra

4

0
=2|1 + i\l+kJ e dan e dy'dy, £0, >0
0

R
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which contradicts to (1.21) with p =1, k > 1. However in this example

[[uy (2)]

o < Clluollp,, t>0,1<p<o0

holds. Because

d e
J |K(t, x’,xn)| dx = | — J e—\.’» 12 dx/J e dx,
R \/}E Rn-1 0

is finite.

6 Proof of Theorem 1.5

In this section we shall prove Theorem 1.5. We may assume ¢ = 1 without
loss of generality. We shall show that u9, given by (1.19) satisfies (1.23). The
Fourier transform u9,(¢,&’, x,) of u, is given by

1 o (C=IE1) =t yu)C
[ e —
R{=c

i€ = | =%

o % dCuo(f/7y;1) dym (61)
where ¢ > max{0,R{y}. Applying (2.7) to e ")} we get for x,+ y, >0,
Ry >0

e_('xn+y;x)C —

1 s} iy (Xu+yn)
J e dé, (6.2)

2n)_, C+iE,

and inseting the above relation into (6.1) we obtain

d&,dCug(&', yn) dyn, (6.3)

(£, x4) = J

OCJ 26, JOC o (C—IE 1) it yn)&,
0 Jne=é(

2% ) - C— G+ i)

which implies

07,07 uf, (t,x) = e (ie") oL uly (1, xy) d&’

il
(2m)" ! e

x 1 . e(cz_‘é/|2)7+i}"rz§n

= xcEny | 20 (—
(2m)" R"e (i) Jo 27IiJ9<e¢_E f(=0) (=) +i&,) ac
X uO(flv yn) dyndé

= (27‘[)" o eixff(-i,-(la E)F(eup)(&) dé, (6.4)
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where euy(y) =0, y, >0, = up(y', —wu), yu <0, F(eup)(£) means Fourier image
of eup(x) and

(&) (=) el KT
(- Q)C+ig)

_ 1 J
27 R¢{=c>max{R¢y,0}

K. (1,¢) 26y dc. (6.5)

Let x(f) be in Cj°(R) such that y(r) =1, |t <1, =0, || > 2 and put for ¢ >0

20 =1 —X(M>, 118 =x<%)

¢¢]
Then takng account that |07[(y + i&,|| < G, holds if & < % <2, we
can see easily that y; satisfies
05 < Gilel ™™, j=0,1,¢eRM0 (6.6)

PROPOSITION 6.1.  uY,(1,x) given by (6.4) satisfies

o7 ul, (1, x) = (zi)n Ln e 10(E) (K (1,8) — K_(1,))F(euo) (&) d&

1

o @Jm eixCZCOXl (f)(lf,)y L (j(—Cg)j_l 4 2(_§0)./+1t)eé,§t do
X e*\é'\lfp(euo)(é) dé, (6.7)

where (g =00y — (1 — 0)i&, and
L (1E) = (i) (=) el
Ke1,8) = 2ni Jm—u 2o (=) + i)

here we choose ¢y such that ¢— < min{0,R(y} and ¢, > max{0, Ry}

de, (6.8)

PrOOF. Since we can write K, (1,&) = (xo + 1)K, (t,¢), in order to get (6.7)
it suffices to prove that ){JL([, &) satisfies

| ek e ae

—— |k LOFEn@ di- | ()

Rn

1
8 JO (=)™ + 2(=Co) 1 1)ebi dbe ™ T F (euy) (€) dE. (6.9
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In fact, it follows from (2.19) with ¢; = ¢4, ¢ = ¢ that we obtain
| ernkeineriem)@ ae
Rn
= | enk e Fen) @) de - | 2ty (@
n Rn

1
8 J ((=o)" ™" 4+ 2(=Co) 1)1t dbe 1 F (euo) () dE. (6.10)
0

On the other hand, since it follows from (2.7) that for R{ <0, x, >0 and
V>0

1 [® el 1 [® eixemm)cu
—o0 C+ lén 2mi — o0 én - ZC

2n
_ _efé(xﬁyn)H(_(xn + ) =0,

we can see by use of (6.8)

J ,, ey K_(1,&)F (eu) (&) d&

e 1 (if')y(—é)je@z*\é’\zy
_ e &' ix,é, é
JRn 11(6)

2ni L‘%{c 260 (i - CO)(C + ién)

_ Cwve L J o ) () T
JRn—l Jo ¢ 27 Jpree. % (C—&o) ¢

dCF(euo)(f) di/dfn

e ei(x”ern)éu , ,
X J_‘ Xl(f)m d&,ug(E', yu) d&

e 1 (ié')y(_g)fe(ézflé’\z)t
— ix'& +ix, &, 1) — )
JR" ¢ o =1) 2mi L%g—c o (=) +ig,)

d{F (eup)(<) d&,

which implies (6.9) together with (6.10). Q.E.D.

Decompose

1 1 1 1
(=00 (C+i&)  Co+ié, {C—Co _C+ién}'



Time decay estimates of solutions to the mixed problem 301

We can write

2 g2 1
HoK+(t,8) = 2C°) (é)J(_O, e““f{ ! —M}dg (6.11)

27”(CO + lén Re—e, C— 4,0
Put
- 20
G(1,¢) = m%o(f% (6.12)
Ky, (1,¢) =LJ (i) (=¢) eI L (6.13)
e 27 Jpe—c. (-
and
02, (1,6) = N7 () el _L
R0 = | G0t g
= e KT g, (1,E,), (6.14)

2
where g4(t,¢,) =55 LRK @ ett c+zcn d( Moreover we put

1 . . 2 w12
R(1,&) = =200(i€") %, (&) L G(=C0) " 4+ 2(=8p) 1)k doe™ T (6.15)
Then the relation

K+(t, é) = G(tv é){KOl+(ta f/) - Kolf(f, él) + K()Zf(ta é) - K()2+(ta f)} + R(tv é) (616)

holds. Therefore in order to prove that u,, satisfies (1.23) it suffices to show the

following lemma.

Lemma 6.1, G(1,¢), K0+(t &, g4(1,¢,) and R(1,¢) satisfy the following
estimates.

(1) 102G(1,0)| < Culel ™™,
for £(#0)eR" and for all o e N".

(2) 02K, (1, < Cue D2 1,
for &'(#0)eR" and for all « e N""",

3) (L) g+(t &l < G PiE 7k, k=0,1,...
for &,(# )

(4) WR(t 9| < Gy,
for £(#0)eR" and for all o e N".
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Proor. (1). Noting that & in the support of y, implies |{y + i&,| = ¢|£| and
that {, = ib¢’ +d is valid, we can see easily

G e
aé{éﬁién}’sma . Va (6.17)

holds and so we get (1) by use of (6.6).
(2). It follows from (2.12) with y =0 that

K (1,8") = (") (=) @1 L K (1,E") (6.18)

If Ry >0, we get from (2.11) with y =0

Le1Ny 0
Kl (1,¢ :ﬁeqc’ﬁj o002 pie== /4 gy 6.19
0—( é) 27_[\/4% 0 z Z ( )

It follows from (2) of Theorem 1.1 that R(2 — |&'|* = 4o < —co|&'|* for &’ e R"1.
Hence we can see by use of Lemma 2.4

02((i&)7e @ < €, 3 1| A eI < |l

o <o
_ v _ 72
< Gl¢| |l =171/2 = (co/B)IE| ‘Yo
Moreover we see
A —(pz 722 oz —z2
[ - O P
_2 of _.2
< Gylz|Me=" /% < Co/1"e7 /8

and so we get from (6.19)

02K, (1,E)] =

212 1 » - 2
0%4 (i&")7e 1€ Z—J e 0 plem M dz}’
e :

0
o ey, —|E ) | e —lozAj ,—22 /4t
< Z Cow|05{(i") e H—| [05 " e >0l | dz
o' <o \/E 0
n=le| =12\t e == G, 1 —lo
< ¢ Y1 e 0P < —le™,

7+
=, \/Z‘ \
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for %y > 0. Hence IA<01+(Z75') also satisfies (2) for R, = 0 from (6.18). When
Ry < 0, we can take ¢, =0 in (6.13) and so we get by use of the first term of
(2.8) with y=0
oY (0 ,
K} (1,8 = tic)” e"é/"’J e ple /M gz,
0 (1:8) = B ;

Therefore we can prove analogously to K] in the case of ¢y > 0 that IA(OI L (1,E)
satiafies (2) for R¢, < 0 and consequently we can see that K} (¢,¢’) satiafies (2)
for Ry < 0 from the relation (6.18). Thus we have proved (2).

(3). Let us consider g,. By use of the first term of (2.11) with y = 0 and with
{o = i&, we can write

_ 1 2t (76)]'
g+(ten) = %Jm Ty, a

1 0 iE 7 2
= e nr gl o= /A .
] e

— 0

and consequently we see

d 1 b iy ai o2
(dé) gAJr(t’fn) = 47_[[J (_iZ) eilgnza‘z]eih /4t dZ

= \/jm (—ig,) Jom { (%)kf’f"f}{<—iz>"6«;e‘*/4’} d:
1

0 ) d k o R
- —(—ifn)fkj ez (— d_) {(—iz)ké’;,’a;.’e’z /4’} dz.

z

Moreover we can see
d\ A
(&) o=

which implies (3) for g.. Analogously we can see that g_ satisfies (2).
(4). Since |{o + i&,| < 2¢|¢] for & in the support of y,, we see |{o] < (1 + 2¢)|&],
|Co] < C|¢| and moreover

RiE,0— (1-0))” — €]
= R(i&, — (1= 0)(& +i&,)* — &)
= — &2 — R{20E,(1 — 0)(o + i&,) — (1 — 0)*(&o +i&,)7)

—j 2
< Ck\/z ]eiz /Stv

1
< | + 821" < =5 1el’,
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if we choose ¢ > 0 such that 1 — 8¢% > % Hence we get by use of Lemma 2.4

Jo— x\ —(1/3)|¢)*t
02" e zf,,0+1()cot\§\’|<c \f Y
\,Mf' o = (1/4) e
\/

and consequently we can estimate

1
55{50 L((]((—Ce)j_l 4 2(=8y) )+ 1-00) - P dﬁ}‘

(1) + &7 20 e 1P < \[;|5| l (6.20)

for ¢ in the support of y; and for ¢ > 0. Therefore we get by use of (6.6)

D UEIED e
1

o {t [ (U=t + 2ty et -oarer gy
0

1027 (") |

< Ca|¢:|b’|+j*|‘1\ —(1/5)|¢|*t N ot \ xeN",

\/—\VHJ

which means (4). Thus we have completed the proof of Lemma 6.1. Q.E.D.

Let Ky(t,x), G(t,x), K[, (,x"), (I=1,2), g+(t,x,) and R(z,x) be Fourier
inverse transform of K (1, &), G(t, 5) 01 (1, ) g4 (t,&,) and R(1,&) respectively
and denote by G(r), Kj (1) (I=1,2), g+(r) and R(s) the singular integral
operators with the kernel G(t,x), Koi( ,x’) (I=1,2), g.(t,x,) and R(t,x)
respectively, where (6.14) means K§, (1) = Di’,eA/’gi(t, Xn). Then it follows from
Lemma 6.1 and Lemma 2.3 that all singular integral operators G(1), K/, (?)
(I=1,2) and R(¢) are bounded in L?(R") and consequently it follows from
(6.16) and Lemma 6.1 that 07/uy = K, (1) (eup) = {G(1)(Ki, (1) — K_(¢) + KZ_(1)
— K§. (1) + R(1)}(euo) satisfies (1.23). Thus we have proved Theorem 1.5.
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