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APERIODIC HOMEOMORPHISMS APPROXIMATE CHAIN
MIXING ENDOMORPHISMS ON THE CANTOR SET

By

Takashi SHIMOMURA

Abstract. Let f be a chain mixing continuous onto mapping
from the Cantor set onto itself. Let g be an aperiodic homeo-
morphism on the Cantor set. We show that homeomorphisms that
are topologically conjugate to g approximate f in the topology
of uniform convergence if a trivial necessary condition on periodic
points is satisfied. In particular, let f be a chain mixing con-
tinuous onto mapping from the Cantor set onto itself with a fixed
point and g, an aperiodic homeomorphism on the Cantor set. Then,
homeomorphisms that are topologically conjugate to g approx-
imate f.

1. Introduction

Let (X,d) be a compact metric space. Let H'(X) be the set of all con-
tinuous mappings from X onto itself. In this manuscript, the pair (X, f)
(f e HT(X)) is called a topological dynamical system. We mainly consider the
case in which X is homeomorphic to the Cantor set, denoted by C. For any
f,9€e H"(X), we define d(f,g) :=sup,.y d(f(x),9(x)). Then, (H"(X),d) is a
metric space of uniform convergence. Let H(X) be the set of all homeomor-
phisms from X onto itself. Let X be homeomorphic to C. SFT(X) denotes the
set of all f e H(X) that are topologically conjugate to some two-sided subshift
of finite type. T. Kimura [3, Theorem 1] and I [4] have shown that elements
in H(C) are approximated by expansive homeomorphisms with the pseudo-
orbit tracing property. SFT(C) coincides with the set of all expansive f € H(C)
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with the pseudo-orbit tracing property (P. Walters [6, Theorem 1]). Therefore,
SFT(C) is dense in H(C). Fix f e H(C). Homeomorphisms that are topolog-
ically conjugate to f will approximate some other homeomorphisms. Let (X, f)
be a topological dynamical system. x € X is called a periodic point of period n
if f"(x)=wx. Let Per(X,f):={neZ,|f"(x)=x for some xe X}, where Z,
denotes the set of all positive integers. Let (X, f) and (Y,g) be topological
dynamical systems. In this manuscript, a continuous mapping ¢ : ¥ — X is said
to be commuting if ¢ og = f o ¢ holds. We write (Y,g) = (X, f) if there exists a
sequence of homeomorphisms {l//k}keZ+ from Y onto X such that y, ogongl
— f as k — co. Suppose that (Y,g) = (X, f) and that g”" has a fixed point for
some positive integer n. Then, f” must also have a fixed point. Therefore, we
is a 0 chain from xy to x; if d(f(x;),xiy1) <o for all i=0,1,...,/—1. Then, /
is called the length of the chain. A topological dynamical system (X, f) is chain
mixing if for every 6 >0 and for every pair x,y e X, there exists a positive
integer N such that for all n > N, there exists a 0 chain from x to y of length
n. Let (A,0) be a two-sided subshift such that A is homeomorphic to C. Let
X be homeomorphic to C and f, a chain mixing element of H(X). In a
previous paper [5, Theorem 1.1], it was shown that the following conditions are
equivalent:
(1) Per(A,0) < Per(X, f);
(2) (Ao)e (X, /).

Let (Y,g) be a topological dynamical system and n € Z. In this manuscript, we
say that g is periodic of period n if ¢g" = idy, where idy denotes the identity
mapping on Y. We say that g is aperiodic if ¢ is not periodic. Suppose that
g € H(Y) is periodic of period n and that (Y,g) = (X, f) for some feH"(X).
Then, it is easy to check that f is also periodic of period n. Note that even if g is
aperiodic, all the orbits of g may be periodic. This may happen if g has periodic
points of least period n for infinitely many n € Z,. In this manuscript, we shall
show the following:

THEOREM 1.1. Let X and Y be homeomorphic to C; f e H'(X), chain
mixing; and g € H(Y), aperiodic. Then, the following conditions are equivalent:

(1) Per(Y,g) < Per(X, f);

2) (Y,9)= (X, /).

In the previous theorem, suppose that f has a fixed point. Then, Per(X, f) =
Z.,. Therefore, the following corollary is obtained:
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COoROLLARY 1.2. Let X and Y be homeomorphic to C; f e H"(X), chain
mixing; and g€ H(Y), aperiodic. Suppose that f has a fixed point. Then,
(Y,9) = (X, f).
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2. Preliminaries

Although many lemmas in this manuscript are listed in [5], we show the
proof here for completeness. A compact metrizable totally disconnected perfect
space is homeomorphic to C. Therefore, any non-empty closed and open subset
of C is homeomorphic to C. Let Z denote the set of all integers. Let V' =
{v1,v,...,v,} be a finite set of n symbols with discrete topology. Let (V) := V%
with the product topology. Then, X£(7) is a compact metrizable totally dis-
connected perfect space; hence, it is homeomorphic to C. We define a
homeomorphism o : (V) — Z(V) as

(a(2))(i) =t(i+1) for all ieZ, where t = (1(i)),;., € Z(V).

The pair (Z(V), o) is known as a two-sided full shift of n symbols. If a closed set
A € X(V) is invariant under o, i.e. o(A) = A, then (A,oa]|,) is known as a two-
sided subshift. In this manuscript, o|, is abbreviated to o. A finite sequence
ujuy - - - u; of elements of V is called a word of length /. For a word u of length /
and m e Z, we define the cylinder C,,(u) = A as

Cn(u) :={teAltim+j—1)=u for all 1 <j<I[}.

Let (X, f) be a topological dynamical system such that X is homeomorphic
to C. Let % be a finite partition of X by non-empty closed and open sub-
sets. In this manuscript, we consider partitions that are not trivial, i.e., they
consist of more than one element. We define a directed graph G = G(f, %) as
follows:

(1) G has the set of vertices V(f, %)=«

(2) G has the set of directed edges E(f, %) < % x % such that

(U,U"Ye E(f,%) if and only if f(U)NU’" # .

Note that all elements of V(f,%) have at least one outdegree and at least one
indegree. Let G = (V,E) be a directed graph, where V is a finite set of vertices
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and E< V x V is a set of directed edges. £(G) denotes the two-sided subshift
defined as

2(G) == {te V| (1(i),1(i+ 1)) e E for all ieZ}.

A two-sided subshift is said to be of finite type if it is topologically conjugate
to (X(G),o) for some directed graph G. Throughout this manuscript, unless
otherwise stated, we assume that all the vertices appear in some element of X£(G),
i.e., all the vertices of G have at least one outdegree and at least one indegree.
For the sake of conciseness, we write (2(f, %), o) instead of (X(G(f,%)),0). The
next lemma follows:

Lemma 2.1. Let (X, f) be a topological dynamical system such that X is

homeomorphic to C. Let U be a partition of X by non-empty closed and open
subsets of X. Then, Per(X, f) < Per(X(f,%),0).

Proor. Let x € X be a periodic point of period n under f. Then, there exists

,,,,, , of elements of % such that U, = Uy and f(U;) N Uiy #

& for all i=0,1,...,n— 1. Thus, (2(f,%),0) has a periodic point of period ».
[

LemmA 2.2 (Lemma 1.3 of R. Bowen [1]). Let G = (V,E) be a directed
graph. Suppose that every vertex of V has at least one outdegree and at least one
indegree. Then, X(G) is topologically mixing if and only if there exists an N € Z.,
such that for any pair of vertices u and v of 'V, there exists a path from u to v of
length n > N.

Proor. See Lemma 1.3 of R. Bowen [1]. O

Let K< X. The diameter of K is defined as diam(K) :=sup{d(x,y)]|
x,y € K}. We define mesh(%) := max{diam(U) | U € %}.

Lemma 2.3. Let (X,d) be a compact metric space and f:X — X, a
continuous mapping. Then, for any ¢ > 0, there exists 6 =0(f,¢) > 0 such that

&
5 < =
<2,

if d(x,y) <9, then d(f(x),f(»)) <§ for all x,yeX.
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ProoF. This lemma directly follows from the uniform continuity of f.

O

For two directed graphs G = (V,E) and G' = (V',E’), G is said to be a
subgraph of G' if V< V' and E < E'.

LemMmA 2.4. Let (X,d) be a compact metric space; f: X — X, a continuous
mapping; and ¢ > 0. Let 6 = 0(f,¢) be as in lemma 2.3 and U, a finite covering of
X such that mesh(%) <. Let g: X — X be a mapping such that G(g,U) is a
subgraph of G(f,U). Then, d(f,g) < e

Proor. Let x € X. Then, x € U and g(x) € U’ for some U, U’ € %. Because
G(g,%) is a subgraph of G(f,%), there exists a y e U such that f(y)e U’
Therefore, from lemma 2.3, it follows that

d(f(x),9(x)) =d(f(x), f(¥) +d(f (), 9(x)) < §+ diam(U’) <. O

From this lemma, the next lemma follows directly.

LemMmA 2.5. Let (X,d) be a compact metric space; f: X — X, a continuous
mapping; and {Uy} ., , a sequence of coverings of X such that mesh(%y) — 0 as
k — co. Let {gr}iez, be a sequence of mappings from X to X such that G(gk, Ux)
is a subgraph of G(f,%y) for all k. Then, g, — [ as k — oo.

LEMMA 2.6. Let (X1, f1) and (X2, f2) be topological dynamical systems such
that both X, and X, are homeomorphic to C. Let {#U}y 7, be a sequence of finite
partitions by non-empty closed and open subsets of X\ such that mesh(%;) — 0
as k — oo. Let {mi}ycz, be a sequence of continuous commuting mappings from
X, to Xi. Suppose that for all ke L., mi(Xo) NU # & for all U e Uy. Then,

(szfz) = (Xl’fl)'

PrOOF. Let k€ Z,. Let U € Uy. Because m(X2) N U # &, n;'(U) is a non-
empty closed and open subset of X,. Both 7;!(U) and U are homeomorphic to
C. Therefore, there exists a homeomorphism ; : X2 — X such that ¢, (n;'(U))
= U for all U e . Because m; is commuting, mx(f>(n;'(U)))NU’' # & only
if A(UNU" # . Let g = wkofzoxp,:]. Then, from the construction of v,
G(gk,Uy) is a subgraph of G(fi,%). Because k € Z, is arbitrary, from lemma
2.5, we get the result. |
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Lemma 2.7. Let (X1, f1) and (Xa, f2) be topological dynamical systems.
Let (Yi,gx) (ke Zy) be a sequence of topological dynamical systems. Suppose
that there exists a sequence of homeomorphisms , : Yy — X1 such that
Vi ogko %:1 — f1 as k — oo and that (X», f) = (Y, gx) for all k€ Z,. Then,
(X2, f2) & (X1, /).

ProoF. Let ¢ > 0. There exists an N € Z, such that d(y, o gi o w;l,fl) <
¢/2 for all k> N. Fix k> N. Let 6 >0 be such that if d(y,y’) <J, then
dWi (), ¥ (¥") < /2. Because (X2, f>) = (Yk,gk), there exists a homeomor-
phism v':X; — Y, such that d(lp’ofzolp’*l,gk) < 0. Then, we find that
d((Yr o'y o fro (o) fi) <d(y o (W o oy ™o Yogiou!) +
dWiogrow;' fi) <e. O

LemMa 2.8. Let G=(V,E) be a directed graph. Suppose that every vertex
of G has at least one outdegree and at least one indegree. Suppose that X(G) is
topologically mixing and that X(G) is not a single point. Then, X(G) is homeo-
morphic to C.

ProoF. Suppose that X(G) is topologically mixing. Then, by lemma 2.2,
there exists an N € Z, such that for any pair # and v of vertices of G, there exists
a path from u to v of length n for all n > N. Then, it is easy to check that every
point 7€ X(G) is not isolated. Hence, X(G) is homeomorphic to C. ]

LemmA 2.9 (Krieger’'s Marker Lemma, (2.2) of M. Boyle [2]). Let (A, o) be
a two-sided subshift. Given k > N > 1, there exists a closed and open set F such
that

(1) the sets o'(F), 0 <1< N, are disjoint, and

(2) if te A and t_y---tx is not a j-periodic word for any j < N, then

Proor. See M. Boyle [2, (2.2)]. ]

The next lemma is essentially a part of the proof of the extension lemma
given by M. Boyle [2, (2.4)]. Although the next lemma is slightly strengthened
from Lemma 3.4 in [5], the proof is quite similar. In spite of the similarlity of the
proof, we show all of the proof here again for completeness.
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LemMa 2.10. Let (X,0) be a mixing two-sided subshift of finite type. Let W
be a finite set of words that appear in some elements of X. Then, there exists an
M e Z, that satisfies the following condition:

*if (A,0) is a two-sided subshift such that Per(A,o) < Per(X,0) and A has

either a non-periodic orbit or a periodic orbit of least period greater than
M, then there exists a continuous shift-commuting mapping ©: A — X such
that there exists a ten(A) in which all words in W appear as segments

of t.

ProOOF. X is isomorphic to X(G) for some directed graph G = (V,E).
Therefore, without loss of generality, we assume that ¥ = X(G). Because (X(G), o)
is a mixing subshift of finite type, there exists an n > 0 such that for every
pair of elements v,v’ € V' and every m > n, there exists a word of the form
v---v" of length m. In addition, there exists an element 7€ X(G) such that 7
contains all words of W as segments. Let wy be a segment of 7 that contains
all words of W. Let ny be the length of the word wy. Let N =2n+ny. If
v,v' € V and m > N, then there exists a word of the form v---wg---v" of length
m. Let k>2N. Let M > N. Note that N depends only on X%(G) and W.
Therefore, M also depends only on X(G) and W. Let A be a two-sided subshift
such that Per(A,o) < Per(X,0) and A has either a non-periodic orbit or a
periodic orbit of least period greater than M. Using Krieger’s marker lemma,
there exists a closed and open subset ' = A such that the following conditions
hold:

(1) the sets ¢/(F), 0 <l < N, are disjoint;

(2) if te A and 1¢ ) ,_,_yo'(F), then 1(—k)---1(k) is a j-periodic word

for some j < N;
(3) the number k is large enough to ensure that if ;j is less than N and a
j-periodic word of length 2k + 1 occurs in some element of A, then that
word defines a j-periodic orbit that actually occurs in A.
The existence of k follows from the compactness of A. Let re A. If ¢'(¢) € F,
then we mark t at position i. There exists a large number L > 0 such that whether
c'(t) e F is determined only by the 2L+ 1 block ¢(i—L)---t(i+L). If ¢ is
marked at position i, then ¢ is unmarked for position / with i </<i+ N.
Suppose that (i) --- #(i’) is a segment of 7 such that ¢ is marked at / and i’ and ¢
is unmarked at / for all i </ <i'. Then, i’ —i> N.If t € U—N<1<NOJ(F)7 then ¢
is marked at some i where —N < i < N. Suppose that {(—N +1)---¢(N —1) is
an unmarked segment. Then, 7 ¢ () ,_,_, o'(F), and according to condition (2),
t(=k)---t(k) is a j-periodic word for some j < N. Suppose that #(i)---#(i') is an
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unmarked segment of length at least 2N — 1, i.e., i’ — i > 2N — 2. Then, for each
I with i+ N-1<I<i'"-N+1, t(I-k)---t(l+k) is a j-periodic word for
some j < N. Therefore, it is easy to check that t(i+ N—1—k)---t(i' = N+
1+ k) is a j-periodic word for some j < N. In this proof, we call a maximal
unmarked segment an interval. Let t€ A. Let ---#(i) be a left infinite interval.
Then, it is j-periodic for some j < N. Similarly, a right infinite interval #(i) - - - is
Jj-periodic for some j < N. If ¢ itself is an interval, then it is a periodic point with
period j < N. If an interval is finite, then it has a length of at least N — 1.
We call intervals of length less than 2N — 1 as short intervals. We call intervals of
length greater than or equal to 2N — | as long intervals. If ¢ has a long interval
t(i)---t(i"), then t(i+N—-1—k)---t(i' =N+1+k) is j-periodic for some
j < N. We have to construct a shift-commuting mapping ¢ : A — X. Let V' be
the set of symbols of A. Let ®: V' — IV be an arbitrary mapping. Let 7€ A.
Suppose that ¢ is marked at i. Then, we let (¢())(i) be @(#(i)). We map periodic
points of period j < N to periodic points of X. Then, we construct a coding of
#(¢) in three parts. For any (v,0',/) e Vx Vx{N—-1,N,N+1,...,2N — 2}, we
choose a word W(v,v',/) in G of length / such that the word of the form
v (v,v’,/)v" is a path in G.

(A) Coding for short interval: Let t(i)---t(i") be a short interval. Then, 7 is
marked at i — 1 and i’ + 1. We have already defined a code for positions i — 1
and i’ +1 as ®(#(i — 1)) and ®(#(i' + 1)), respectively. The coding for {i,i+ 1,
i+2,...,i'} is defined by the path W(®(z(i — 1)), ®(¢(i’ + 1)),i’ — i+ 1).

(B) Coding for periodic segment: For an infinite or long interval, there exists
a corresponding periodic point of A. The periodic points of A are already
mapped to periodic points of X. Therefore, an infinite or long periodic segment
can be mapped to a naturally corresponding periodic segment.

(C) Coding for transition part: To consider a transition segment, let
t(i)---1(i'") be a long interval. Then, #(i—1) has already been mapped to
®(#(i — 1)), and ¢(i + N — 1) is mapped according to periodic points. Assume that
t(i+ N —1) is mapped to vg. The segment #(i —1)---#(i+ N — 1) has length
N+ 1. We map the segment #(i)---#(i + N —2) to ¥(®(¢#(i — 1)),v9,N —1). In
the same manner, the transition coding of the right-hand side of a long interval is
defined. Similarly, the transition coding of the left or right infinite interval is
defined.

It is easy to check that there exists a large number L’ > 0 such that the
coding of (¢(¢))(i) is determined only by the block #(i—L")---t(i+ L’).
Therefore, ¢ : A — X is continuous. Because A has either a 1 € A, which is not a
periodic point, or a ¢’ € A, which is a periodic point of least period greater than
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M, there appears a short interval or transition segment in some elements of A. In
the above coding, we can take W such that both short intervals and transition
segments are mapped to words that involve wy. O

3. Proof of the Main Result

Lemma 3.1. Let X be homeomorphic to C and f, a chain mixing element
of HY(X). Let {Witiez, be a sequence of non-trivial finite partitions by non-
empty closed and open subsets of X such that mesh(#}) — 0 as k — co. Then,
there exists a sequence {Y;},.p of homeomorphisms from X(f, W}) to X such
that lpkoaow,:] — f as k — oo. Furthermore, if [ is chain mixing, then all
(E(f,Wi),0) (keZy) are mixing.

Proor. Consider a sequence {#j};.z of non-trivial partitions of X by
non-empty closed and open subsets such that mesh(#%) — 0 as k — c0. Assume
that ke Z,. Let Gy = G(f,#%). Let 6 >0 be such that if x, x’ € X satisfy
d(x,x") <0, then both x and x’ are contained in the same element of #}. Let
{x0,x1} be a J chain. Let U, U’ € #} be such that xo e U and x; € U’. Then,
f(U)NU’ # . Therefore, (U, U’) is an edge of Gi. Let U,V € #}. Let xe U
and y € V. Because f is chain mixing, there exists an N > 0 such that for every
n > N, there exists a ¢ chain from x to y of length n. Therefore, for every n > N,
there exists a path in Gy from U to V of length n. From lemma 2.2, (£(Gy), o) is
topologically mixing. By lemma 2.8, X£(G)) is homeomorphic to C. Therefore,
there exists a homeomorphism v, : £(Gx) — X such that for any vertex u of Gy,
Y (Co(u)) = u. Let gx = Y, oo o', Then, by construction, we obtain G(gx, %)
= G(f, ). Because mesh(%;) — 0 as k — oo, we conclude that gy — f as
k — oo by lemma 2.5. |

PrROOF OF THEOREM 1.1

Proor. Let X and Y be homeomorphic to C. First, suppose that (Y,g) >
(X, f). Then, it is easy to see that Per(Y,g) < Per(X, f). Conversely, suppose
that /e H"(X) is chain mixing; ge H(Y), aperiodic; and that Per(Y,g) <
Per(X, f). Let {#i};.z, be a sequence of non-trivial finite partitions by non-
empty closed and open subsets of X such that mesh(#;) — 0 as i — c. By
lemma 3.1, there exists a sequence of homeomorphisms ; : X(f, #;) — X such
that Y, 000y, ' — f as i — oo and that all (X(f,#;),0) (i€ Z,) are mixing.
Fix ieZ,. Let Z=X(f, ;). Let {#Ur}; .z, be a sequence of finite partitions
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of ¥ by non-empty closed and open subsets. Let %, = {U;:1<j<m} for
keZ,. Then, there exists a sequence uy; (keZ;,1< j<n;) of words and
a sequence m(k,j) (1 < j<ng) of integers such that the following condition is
satisfied:

Cotjy(unj) S Uy (keZy, 1 < j<m).

Fix keZ,. Let W= {u;|1<j<mn}. We shall show the following:
(1) there exists a continuous commuting mapping ¢, : ¥ — X such that
#,(Y) contains an element 7€ X that contains all words of W.
Then, ¢,(Y)NU # & for all U e %. Because k € Z, is arbitrary, we conclude
that (Y,g)=2Z by lemma 2.6. Then, by lemma 3.1 and lemma 2.7, we can
conclude that (Y,g) = (X, f).

Let M be a positive integer that satisfies the condition in lemma 2.10. Let
¥" be a partition of Y by non-empty closed and open subsets. Then, for each
y € Y, there exists a unique #, € £(g, 7") such that g’(y) e ,(I) € ¥~ for all / € Z.
Therefore, there exists a commuting mapping ¢, : Y — Z(g,7") such that
¢, (y) =t, for all ye Y. Because all elements of 7~ are open, it is easy to see
that ¢, is continuous. Let A = ¢, (Y). Then, A is a two-sided subshift. Because
Y is mixing, there exists an m € Z, such that for all integer n > m, there exists
a periodic point f, € £ of period n. If 7" is sufficiently fine, then the period
n € Per(X(g, 77),0), where n < m, has a real periodic point of (Y,g) of period n.
Therefore, because Per(Y,g) < Per(X, f), we get Per(X(g,7"),0) < Per(Z, o) for
all sufficiently fine ¥". Let M > max{m, M} be an arbitrary positive integer.
Because ¢ is aperiodic, if 7 is sufficiently fine, then A is not a set of periodic
points of period less than M. Therefore, by lemma 2.10, there exists a continuous
commuting mapping 7 : A — X such that 7m;(A) contains an element that
contains all words of W. Finally, let ¢, = m; o ¢, this concludes the proof.

O
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