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PSEUDO-PARALLEL CR SUBMANIFOLDS

OF A COMPLEX SPACE FORM

By

Mayuko Kon

Abstract. We classify pseudo-parallel proper CR submanifolds of a

non-flat complex space form with semi-flat normal connection under

the condition that the dimension of the holomorphic tangent space is

greater than 2.

1. Introduction

There are many results about real hypersurfaces immersed in a complex space

form with additional conditions for the second fundamental form A. It is well

known that there are no real hypersurface in a complex space form MnðcÞ, c0 0,

of constant holomorphic sectional curvature 4c with parallel second fundamental

form. Moreover, Maeda [6] showed that no real hypersurface in MnðcÞ, c > 0,

nb 3, satisfies semi-parallel condition, that is, RðX ;Y Þ � A ¼ 0 for any X , Y

tangent to the real hypersurface. Niebergall and Ryan [7] also proved the non-

existence of semi-parallel real hypersurface in M 2ðcÞ, c0 0.

If the second fundamental form A of a submanifold M satisfies

RðX ;YÞA ¼ aðX5Y ÞA

for any X ;Y A TM, a being a function, then A is said to be pseudo-parallel,

that generalize the notion of semi-symmetric. In [5], Lobos and Ortega ob-

tained the classification of the pseudo-parallel real hypersurfaces in MnðcÞ, c0 0,

nb 2.

A submanifold M of a Kählerian manifold ~MM is called a CR submanifold

of ~MM if there exists a di¤erentiable distribution H : x ! Hx HTxðMÞ on M

satisfying the conditions that H is holomorphic, i.e., JHx ¼ Hx for each x A M,
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and the complementary orthogonal distribution H? : x ! H?
x HTxðMÞ is anti-

invariant, i.e. JH?
x HTxðMÞ? for each x A M. Any real hypersurface of a

Kählerian manifold is a CR submanifold.

The main purpose of the present paper is to prove the following theorem.

Theorem. Let M be an n-dimensional proper CR submanifold of a complex

space form MmðcÞ, c ¼G1, with semi-flat normal connection. We suppose that the

dimension h of the holomorphic tangent space > 2. If the second fundamental form

A satisfies RðX ;Y ÞA ¼ aðX5YÞA for any X and Y tangent to M, a being a

function, then a is constant and M is one of the following hypersurfaces of totally

geodesic M ðnþ1Þ=2ðcÞ in MmðcÞ;

i) If c ¼ þ1, then a ¼ cot2ðrÞ, for 0 < r < p=2, and M is an open subset of a

geodesic hypersphere of radius r.

ii) If c ¼ �1, then

a) 1 < a ¼ coth2ðrÞ, for r > 0, and M is an open subset of a geodesic

hypersphere of radius r;

b) a ¼ 1, and M is an open subset of a horosphere;

c) 0 < a ¼ tanh2ðrÞ < 1, for r > 0, and M is an open subset of a tube of

radius r over a totally geodesic CH ðn�1Þ=2.

2. Preliminaries

Let MmðcÞ denote the complex space form of complex dimension m (real

dimension 2m) with constant holomorphic sectional curvature 4c. For the sake

of simplicity, if c > 0, we only use c ¼ þ1 and call it the complex projective

space CPn, and if c < 0, we just consider c ¼ �1, so that we call it the complex

hyperbolic space CHn. We denote by J the almost complex structure of MmðcÞ.
The Hermitian metric of MmðcÞ is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed

in MmðcÞ. We denote by g the Riemannian metric induced on M from G, and by

p the codimension of M, that is, p ¼ 2m� n.

We denote by TxðMÞ and TxðMÞ? the tangent space and the normal space of

M respectively.

We denote by ~‘‘ the covariant di¤erentiation in MmðcÞ, and by ‘ the one in

M determined by the induced metric. Then the Gauss and Weingarten formulas

are given respectively by

~‘‘XY ¼ ‘XY þ BðX ;YÞ; ~‘‘XV ¼ �AVX þDXV
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for any vector fields X and Y tangent to M and any vector field V normal to M,

where D denotes the covariant di¤erentiation with respect to the linear connection

induced in the normal bundle TðMÞ? of M. We call both A and B the second

fundamental form of M and are related by GðBðX ;Y Þ;VÞ ¼ gðAVX ;YÞ. The

second fundamental form A and B are symmetric.

For x A M, the first normal space N1ðxÞ is the orthogonal complement in

TxðMÞ? of the set

N0ðxÞ ¼ fV A TxðMÞ? jAV ¼ 0g:

The covariant derivative ð‘XAÞVY of A is defined to be

ð‘XAÞVY ¼ ‘X ðAVYÞ � ADXVY � AV‘XY :

If ð‘XAÞVY ¼ 0 for any vector fields X and Y tangent to M, then the second

fundamental form of M is said to be parallel in the direction of the normal vector

V. If the second fundamental form is parallel in any direction, it is said to be

parallel.

Definition. A submanifold M of a Kählerian manifold ~MM is called a CR

submanifold of ~MM if there exists a di¤erentiable distribution H : x ! Hx HTxðMÞ
on M satisfying the following conditions:

(i) H is holomorphic, i.e., JHx ¼ Hx for each x A M, and

(ii) the complementary orthogonal distribution H? : x ! H?
x HTxðMÞ is

anti-invariant, i.e. JH?
x HTxðMÞ? for each x A M.

We call Hx a holomorphic tangent space.

In the following, we put dim Hx ¼ h, dim H?
x ¼ q. If q ¼ 0 (resp. h ¼ 0)

for any x A M, then the CR submanifold M is a holomorphic submanifold (resp.

anti-invariant submanifold or totally real submanifold) of ~MM. If a CR sub-

manifold satisfies h > 0 and q > 0, then it is said to be proper.

In the sequel, we assume that M is a CR submanifold of MmðcÞ. The tangent

space TxðMÞ of M is decomposed as TxðMÞ ¼ Hx þH?
x at each point x of M,

where H?
x denotes the orthogonal complement of Hx in TxðMÞ. Similarly, we see

that TxðMÞ? ¼ JH?
x þNx, where Nx is the orthogonal complement of JH?

x in

TxðMÞ?.
For any vector field X tangent to M, we put

JX ¼ PX þ FX ;
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where PX is the tangential part of JX and FX the normal part of JX . Then P is

an endomorphism on the tangent bundle TðMÞ and F is a normal bundle valued

1-form on the tangent bundle TðMÞ. We notice that P3 þ P ¼ 0.

For any vector field V normal to M, we put

JV ¼ tV þ fV ;

where tV is the tangential part of JV and fV the normal part of JV . Then we

see that FP ¼ 0, fF ¼ 0, tf ¼ 0 and Pt ¼ 0.

We define the covariant derivatives of P, F , t and f by ð‘XPÞY ¼
‘X ðPYÞ � P‘XY , ð‘XFÞY ¼ DX ðFYÞ � F‘XY , ð‘X tÞV ¼ ‘X ðtVÞ � tDXV and

ð‘X f ÞV ¼ DX ð fVÞ � fDXV , respectively. We then have

ð‘XPÞY ¼ AFYX þ tBðX ;Y Þ; ð‘XFÞY ¼ �BðX ;PY Þ þ fBðX ;Y Þ;

ð‘X tÞV ¼ �PAVX þ AfVX ; ð‘X f ÞV ¼ �FAVX � BðX ; tVÞ:

For any vector fields X and Y in H?
x ¼ tTðMÞ? we obtain

AFXY ¼ AFYX :ð2:1Þ

We denote by R the Riemannian curvature tensor field of M. Then the

equation of Gauss is given by

RðX ;Y ÞZ ¼ cfgðY ;ZÞX � gðX ;ZÞY þ gðPY ;ZÞPX � gðPX ;ZÞPY

� 2gðPX ;Y ÞPZg þ ABðY ;ZÞX � ABðX ;ZÞY ;

for any X , Y and Z tangent to M.

The equation of Codazzi of M is given by

gðð‘XAÞVY ;ZÞ � gðð‘YAÞVX ;ZÞ

¼ cfgðY ;PZÞgðX ; tVÞ � gðX ;PZÞgðY ; tVÞ � 2gðX ;PY ÞgðZ; tVÞg:

We define the curvature tensor R? of the normal bundle of M by

R?ðX ;YÞV ¼ DXDYV �DYDXV �D½X ;Y �V :

Then we have the equation of Ricci

GðR?ðX ;YÞV ;UÞ þ gð½AU ;AV �X ;YÞ

¼ cfgðY ; tVÞgðX ; tUÞ � gðX ; tVÞgðY ; tUÞ � 2gðX ;PY ÞgðV ; fUÞg:
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If R? vanishes identically, the normal connection of M is said to be flat. If

R?ðX ;Y ÞV ¼ 2cgðX ;PY Þ fV , then the normal connection of M is said to be

semi-flat (see [9]).

We put

ðRðX ;YÞAÞVZ ¼ RðX ;Y ÞAVZ � AR?ðX ;Y ÞVZ � AVRðX ;YÞZ:

If ðRðX ;Y ÞAÞV ¼ 0 for any X ;Y and Z tangent to M and any V normal to M,

then the second fundamental form A is said to be semi-parallel. This condition is

weaker than ‘A ¼ 0. We call M a semi-parallel CR submanifold if its second

fundamental form A is semi-parallel. We proved the following theorem [4].

Theorem A. Let M be an n-dimensional proper CR submanifold of a

complex space form MmðcÞ, c0 0, with semi-flat normal connection. If the dimen-

sion of the holomorphic tangent space is greater than 2, then the second funda-

mental form A is not semi-parallel.

On the condition that a CR manifold is proper, we note the following.

Remark 2.1. Let M be a complex n-dimensional ðnb 2Þ holomorphic

submanifold of a complex space form MmðcÞ. If the normal connection of M

is semi-flat, then M is either totally geodesic or M is an Einstein Kählerian

hypersurface of MmðcÞ with scalar curvature n2c. The latter case occurs only

when c > 0 (see Ishihara [2]). Then the second fundamental form of M is parallel.

Let M be an n-dimensional anti-invariant submanifold of a complex space

form MmðcÞ. If the normal connection of M is semi-flat, then the normal con-

nection of M is flat by P ¼ 0. There exists an anti-invariant submanifold with

flat normal connection and parallel second fundamental form. For example,

pðS1ðr1Þ � � � � � S1ðrnþ1ÞÞ,
P

ri ¼ 1, where p : S2mþ1 ! CPm is the standard

fibration, is an anti-invariant submanifold with flat normal connection and

parallel second fundamental form of CPm (c.f. Yano-Kon [9; p. 237, Theorem

3.17]).

3. Pseudo-Parallel CR Submanifolds

In this section, we prove our main theorem. First we prepare some lemmas.

Lemma 3.1. Let M be an n-dimensional proper CR submanifold of a complex

space form MmðcÞ, c ¼G1, with semi-flat normal connection. If the second
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fundamental form A satisfies RðX ;YÞA ¼ aðX5Y ÞA for any X and Y tangent to

M, a being a function, then, for any vector V normal to M, A satisfies

AfVX ¼ 0 for X A TxðMÞ;ð3:1Þ

gðAVX ;YÞ ¼ 0 for X A Hx; Y A H?
x :ð3:2Þ

Moreover, if the dimension h of the holomorphic tangent space > 2,

gðAVX ;Y Þ ¼ � 1

h
trðAVP

2ÞgðX ;YÞ for X ;Y A Hx;ð3:3Þ

PAV ¼ AVP;ð3:4Þ

where tr denotes the trace of an operator.

Proof. Since ðRðX ;YÞAÞVZ ¼ aððX5YÞAÞVZ for any tangent vectors

X ;Y ;Z A TxðMÞ, we have

RðX ;Y ÞAVZ ¼ AR?ðX ;YÞVZ þ AVRðX ;Y ÞZ þ aððX5Y ÞAÞVZð3:5Þ

¼ 2cgðX ;PY ÞAfVZ þ AVRðX ;YÞZ þ agðX ;AVZÞY

� agðY ;AVZÞX � agðX ;ZÞAVY þ agðY ;ZÞAVX :

Thus we have

tr RðX ;YÞAVAfV ¼ 2cgðX ;PY Þ tr A2
fV þ tr RðX ;Y ÞAfVAV

þ 2agðX ;AVAfVY Þ � 2agðY ;AVAfVXÞ:

By the equation of Ricci, we have AfVAV ¼ AVAfV . Thus we obtain tr A2
fV ¼ 0,

which proves (3.1).

Using the equation of Gauss and (3.5),

cðgðY ;AVZÞX � gðX ;AVZÞY þ gðPY ;AVZÞPXð3:6Þ

� gðPX ;AVZÞPY � 2gðPX ;Y ÞPAVZÞ

þ ABðY ;AVZÞX � ABðX ;AVZÞY

¼ cðgðY ;ZÞAVX � gðX ;ZÞAVY þ gðPY ;ZÞAVPX

� gðPX ;ZÞAVPY � 2gðPX ;Y ÞAVPZÞ

þ AVABðY ;ZÞX � AVABðX ;ZÞY þ agðX ;AVZÞY

� agðY ;AVZÞX � agðX ;ZÞAVY þ agðY ;ZÞAVX :
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We take an orthonormal basis fe1; . . . ; eh; tv1 :¼ ehþ1; . . . ; tvq :¼ eng of TxðMÞ,
where fe1; . . . ; ehg is an orthonormal basis of Hx and fv1; . . . ; vqg is an ortho-

normal basis of JH?
x . Then we have

c
X
i

ðgðPei;AVXÞgðei;YÞ � gðei;AVXÞgðPei;YÞ þ gðP2ei;AVXÞgðPei;YÞ

� gðPei;AVXÞðP2ei;Y Þ � 2gðPei;PeiÞgðPAVX ;Y ÞÞ

þ
X
i

gðABðPei ;AVXÞei;YÞ �
X
i

gðABðei ;AVXÞPei;YÞ

¼ c
X
i

ðgðPei;X ÞgðAVei;YÞ � gðei;X ÞgðAVPei;YÞ þ gðP2ei;X ÞgðAVPei;YÞ

� gðPei;X ÞgðAVP
2ei;Y Þ � 2gðPei;PeiÞgðAVPX ;Y ÞÞ

þ
X
i

gðAVABðPei ;X Þei;YÞ �
X
i

gðAVABðei ;XÞPei;Y Þ

� 2agðAVX ;PY Þ � 2agðAVPX ;Y Þ:

By the straightforward computation,

ðhcþ 2cþ aÞgðAVX ;PY Þ þ ðhcþ 2cþ aÞgðAVPX ;YÞð3:7Þ

�
X
a

gðAaPAaAVX ;Y Þ þ
X
a

gðAVAaPAaX ;Y Þ ¼ 0;

where Aa is the second fundamental form in the direction of va. Similarly,

putting Y ¼ ei, Z ¼ Pei into (3.6) and taking inner product with Y and sum-

mation,

c

�
1þ a

c

� �
gðPAVX ;YÞ � trðP2AV ÞgðPX ;Y Þ þ gðP2AVPX ;YÞð3:8Þ

� 2gðPAVP
2X ;YÞ � hþ 2þ a

c

� �
gðAVPX ;YÞ

�

þ
X
a

trðAaAVPÞgðAaX ;YÞ þ
X
a

gðAaPAVAaX ;YÞ

�
X
a

gðAVAaPAaX ;YÞ ¼ 0:

Since the normal connection of M is semi-flat, the equation of Ricci gives

AaAbX ¼ AbAaX
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for any X A Hx. So we have trðAaAVPÞ ¼ 0. Moreover, we obtain

gðAaPAVAaX ;Y Þ ¼ �gðX ;AaAVPAaYÞ ¼ gðX ;AVAaPAaYÞ

¼ gðAaPAaAVX ;Y Þ

for any X ;Y A TxðMÞ. Thus, using (3.7) and (3.8), we have

�ðhþ 1ÞcgðPAVX ;YÞ � c trðP2AV ÞgðPX ;YÞð3:9Þ

þ cgðP2AVPX ;Y Þ � 2cgðPAVP
2X ;Y Þ ¼ 0

for any X ;Y A TxðMÞ. When X A H?
x and Y A Hx, from (3.9),

gðPAVX ;Y Þ ¼ �gðAVX ;PY Þ ¼ 0:ð3:10Þ

So we have gðAVX ;Y Þ ¼ 0 for X A H?
x and Y A Hx.

Next we consider the case that X ;Y A Hx. Since PX ;PY A Hx, using

(3.9),

�ðh� 1ÞcgðPAVX ;Y Þ � cgðAVPX ;YÞ � c trðP2AV ÞgðPX ;YÞ ¼ 0;

�ðh� 1ÞcgðAVPX ;Y Þ þ cgðAVX ;PY Þ � c trðP2AV ÞgðPX ;YÞ ¼ 0:

From these equations and the assumption that h > 2, we get

gðPAVX ;YÞ � gðAVPX ;Y Þ ¼ 0:

From this and (3.10), we have PAV ¼ AVP for any V normal to M.

Thus we obtain

gðAVX ;YÞ ¼ � 1

h
trðAVP

2ÞgðX ;Y Þ

for X ;Y A Hx. r

By the similar method of Lemma 2.2 of [8], we have

Lemma 3.2. Let M be a CR submanifold of MmðcÞ with semi-flat normal

connection. If AfV ¼ 0 and PAV ¼ AVP for any vector field V normal to M,

then

gðAUX ;AVY Þ ¼ cgðX ;Y ÞgðtU ; tVÞ � cgðFX ;UÞgðFY ;VÞ

�
X
i

gðAUtV ; eiÞgðAFeiX ;Y Þ:
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Using these lemmas, we prove

Lemma 3.3. Let M be an n-dimensional proper CR submanifold of a complex

space form MmðcÞ, c ¼G1, with semi-flat normal connection. We suppose that the

dimension h of the holomorphic tangent space > 2. If the second fundamental form

A satisfies RðX ;Y ÞA ¼ aðX5YÞA for any X and Y tangent to M, a being a

function, then dim H?
x ¼ 1.

Proof. We suppose dim H?
x b 2. We can take an orthonormal basis

fv1; . . . ; vq; vqþ1; . . . ; vpg of TxðMÞ?, where v1; . . . ; vq A FH?
x and vqþ1; . . . ; vp A Nx.

Since Av1 is symmetric, taking a suitable orthonormal basis fe1; . . . ; eh; ehþ1; . . . ;

ehþqg of TxðMÞ, where e1; . . . ; eh A Hx and ehþ1; . . . ; ehþq A H?
x , Av1 ¼ A1 can be

represented by a matrix form

A1 ¼

a1 0

. .
.

0

0 a1

b1 0

0 . .
.

0 bq

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;ð3:11Þ

where a1 ¼ �ð1=hÞ trðA1P
2Þ. In the following, we use integers s; t; . . . for

A1es ¼ a1es and x; y; . . . for A1ex ¼ bxex, respectively.

Putting X ¼ ex, Y ¼ ey and Z ¼ ey in (3.5) and taking an inner product with

ex, by the straightforward computation,

ðby � bxÞðgðRðex; eyÞey; exÞ þ aÞ ¼ 0:ð3:12Þ

Using (2.1), (3.2) and the equation of Gauss, for any x0 y,

gðRðex; eyÞey; exÞ

¼ cþ gðABðey; eyÞex; exÞ � gðABðex; eyÞey; exÞ

¼ cþ
X
a

gðAaex; exÞgðAaey; eyÞ �
X
a

gðAaey; exÞgðAaex; eyÞ

¼ cþ
X
a

gðAFex tva; exÞgðAFeytva; eyÞ �
X
a

gðAFey tva; exÞgðAFextva; eyÞ

¼ cþ gðAFeyey;AFexexÞ � gðAFeyex;AFexeyÞ:
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From Lemma 3.2 and (2.1), we have

gðAFeyex;AFexeyÞ ¼ gðAFexey;AFexeyÞ

¼ c�
X
i

gðAFextFex; eiÞgðAFei ey; eyÞ

¼ cþ gðAFexex;AFeyeyÞ:

From these equations, we see that gðRðex; eyÞey; exÞ ¼ 0. By (3.12) and Theorem

2.1, we have bx ¼ by for any x0 y, that is, A1X ¼ b1X for any X A H?
x .

By the similar computation, we see that AxX ¼ bxX ðx ¼ 2; . . . ; qÞ for

X A H?
x , where b2; . . . ; bq are functions. Thus we have

Axtvy ¼ bxtvy:

On the other hand, since AVtU ¼ AUtV for any U ;V A FH?
x , we have

Axtvy ¼ Aytvx ¼ bytvx:

Since tvx and tvy are linearly independent, we have b1 ¼ � � � ¼ bq ¼ 0. So we

have ½AU ;AV �X ¼ 0 for any U and V normal to M and X A H?
x . Thus, by the

equation of Ricci, we have

0 ¼ cfgðY ; tVÞgðX ; tUÞ � gðX ; tVÞgðY ; tUÞg

for any X ;Y A H?
x . Since dim H?

x b 2, we can take U and V orthogonal to each

other. Putting X ¼ tU and Y ¼ tV , we have c ¼ 0. This is a contradiction.

Consequently, we obtain dim H?
x ¼ 1. r

Lemma 3.4. Let M be an n-dimensional proper CR submanifold of a complex

space form MmðcÞ, c ¼G1, with semi-flat normal connection. We suppose that the

dimension h of the holomorphic tangent space > 2. If the second fundamental form

A satisfies RðX ;Y ÞA ¼ aðX5YÞA for any X and Y tangent to M, a being a

function, then M is a hypersurface of totally geodesic M ðnþ1Þ=2ðcÞ in MmðcÞ.

Proof. We prove that the first normal space has constant dimension and it

is parallel with respect to the normal connection.

If AV ¼ 0 for V A FH?
x , then (3.1) implies that M is totally geodesic. This

contradicts c0 0. Thus we have AV 0 0. We see that N0ðxÞ ¼ Nx and the first

normal space N1ðxÞ ¼ FH?
x is of dimension 1. For V A FH?

x and U A Nx, we

have

gðDXV ; fUÞ ¼ �gðV ; ð‘X f ÞUÞ ¼ �gðV ;�FAUX � BðX ; tUÞÞ ¼ 0:
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Thus we see that DXV A FH?
x . So the first normal space is parallel with respect to

the normal connection.

Thus we see that M is a hypersurface of totally geodesic M ðnþ1Þ=2ðcÞ in

MmðcÞ (see [9; p. 77]). r

To prove our main theorem, we use the following theorem given by Lobos

and Ortega [5].

Theorem B. Let M be a connected real hypersurface in MnðcÞ, nb 2,

c ¼G1 which satisfies RðX ;YÞA ¼ aðX5Y ÞA for any X and Y tangent to M, a

being a function. Then a is constant and positive, and M is one of the following real

hypersurfaces;

i) If c ¼ þ1, then a ¼ cot2ðrÞ, for 0 < r < p=2, and M is an open subset of a

geodesic hypersphere of radius r.

ii) If c ¼ �1, then

a) 1 < a ¼ coth2ðrÞ, for r > 0, and M is an open subset of a geodesic

hypersphere of radius r;

b) a ¼ 1, and M is an open subset of a horosphere;

c) 0 < a ¼ tanh2ðrÞ < 1, for r > 0, and M is an open subset of a tube of

radius r over a totally geodesic CHn�1.

From Lemma 3.4 and Theorem B, we obtain our main theorem.

Theorem 3.5. Let M be an n-dimensional proper CR submanifold of a

complex space form MmðcÞ, c ¼G1, with semi-flat normal connection. We suppose

that the dimension h of the holomorphic tangent space > 2. If the second fun-

damental form A satisfies RðX ;Y ÞA ¼ aðX5YÞA for any X and Y tangent to M,

a being a function, then a is constant and M is one of the following hypersurfaces

of totally geodesic M ðnþ1Þ=2ðcÞ in MmðcÞ;

i) If c ¼ þ1, then a ¼ cot2ðrÞ, for 0 < r < p=2, and M is an open subset of a

geodesic hypersphere of radius r.

ii) If c ¼ �1, then

a) 1 < a ¼ coth2ðrÞ, for r > 0, and M is an open subset of a geodesic

hypersphere of radius r;

b) a ¼ 1, and M is an open subset of a horosphere;

c) 0 < a ¼ tanh2ðrÞ < 1, for r > 0, and M is an open subset of a tube of

radius r over a totally geodesic CH ðn�1Þ=2.
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