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PSEUDO-PARALLEL CR SUBMANIFOLDS
OF A COMPLEX SPACE FORM

By
Mayuko Kon

Abstract. We classify pseudo-parallel proper CR submanifolds of a
non-flat complex space form with semi-flat normal connection under
the condition that the dimension of the holomorphic tangent space is
greater than 2.

1. Introduction

There are many results about real hypersurfaces immersed in a complex space
form with additional conditions for the second fundamental form A. It is well
known that there are no real hypersurface in a complex space form M"(c), ¢ # 0,
of constant holomorphic sectional curvature 4c¢ with parallel second fundamental
form. Moreover, Maeda [6] showed that no real hypersurface in M"(c), ¢ > 0,
n > 3, satisfies semi-parallel condition, that is, R(X,Y)-4 =0 for any X, Y
tangent to the real hypersurface. Niebergall and Ryan [7] also proved the non-
existence of semi-parallel real hypersurface in M?(c), ¢ # 0.

If the second fundamental form A of a submanifold M satisfies

RX,Y)A=a(XAY)A

for any X,Y € TM, o being a function, then A is said to be pseudo-parallel,
that generalize the notion of semi-symmetric. In [5], Lobos and Ortega ob-
tained the classification of the pseudo-parallel real hypersurfaces in M"(c), ¢ # 0,
nx=2.

A submanifold M of a Kihlerian manifold M is called a CR submanifold
of M if there exists a differentiable distribution H :x — H, c T (M) on M
satisfying the conditions that H is holomorphic, i.e., JH, = H, for each x e M,
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and the complementary orthogonal distribution H* : x — H} = T\ (M) is anti-
invariant, ie. JH} < TX(M)L for each xe M. Any real hypersurface of a
Kaéhlerian manifold is a CR submanifold.

The main purpose of the present paper is to prove the following theorem.

THEOREM. Let M be an n-dimensional proper CR submanifold of a complex
space form M (c), ¢ = +1, with semi-flat normal connection. We suppose that the
dimension h of the holomorphic tangent space > 2. If the second fundamental form
A satisfies R(X,Y)A=a(X AY)A for any X and Y tangent to M, o being a
function, then o is constant and M is one of the following hypersurfaces of totally
geodesic M"V/2(¢) in M™(c);

i) If c = +1, then o = cot*(r), for 0 < r < n/2, and M is an open subset of a
geodesic hypersphere of radius r.
i) If ¢ =—1, then
a) 1< oc:cothz(r), for ¥ >0, and M is an open subset of a geodesic
hypersphere of radius r;
b) a =1, and M is an open subset of a horosphere;
¢) 0 <a=tanh’(r) <1, for r >0, and M is an open subset of a tube of

radius r over a totally geodesic CH"~V/2,

2. Preliminaries

Let M"™(c) denote the complex space form of complex dimension m (real
dimension 2m) with constant holomorphic sectional curvature 4c. For the sake
of simplicity, if ¢ >0, we only use ¢ =41 and call it the complex projective
space CP", and if ¢ < 0, we just consider ¢ = —1, so that we call it the complex
hyperbolic space CH". We denote by J the almost complex structure of M™(c).
The Hermitian metric of M™(c¢) is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed
in M"™(c). We denote by g the Riemannian metric induced on M from G, and by
p the codimension of M, that is, p =2m — n.

We denote by T(M) and T\ (M)~ the tangent space and the normal space of
M respectively.

We denote by V the covariant differentiation in M”(c), and by V the one in
M determined by the induced metric. Then the Gauss and Weingarten formulas
are given respectively by

VXY:VXY+B(X,Y), VxVifAVX+DxV
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for any vector fields X and Y tangent to M and any vector field V' normal to M,
where D denotes the covariant differentiation with respect to the linear connection
induced in the normal bundle 7(M)" of M. We call both 4 and B the second
Sfundamental form of M and are related by G(B(X,Y),V)=g(4yX,Y). The
second fundamental form A4 and B are symmetric.

For x e M, the first normal space Ni(x) is the orthogonal complement in
T (M)* of the set

No(x) = {V e T(M)" | 4y = 0}.
The covariant derivative (VyA4),Y of A is defined to be
(VyxAd), Y =Vy(AyY)— Ap,yY — Ay Vy Y.

If (VxA), Y =0 for any vector fields X and Y tangent to M, then the second
fundamental form of M is said to be parallel in the direction of the normal vector
V. If the second fundamental form is parallel in any direction, it is said to be
parallel.

DEFINITION. A submanifold M of a Kihlerian manifold M is called a CR
submanifold of M if there exists a differentiable distribution H : x — H, < T.(M)
on M satisfying the following conditions:

(i) H is holomorphic, i.e., JH, = H, for each xe M, and

(ii) the complementary orthogonal distribution H*:x — H} = T(M) is
anti-invariant, i.e. JH < T(M)" for each x e M.

We call H, a holomorphic tangent space.

In the following, we put dim Hy =h, dm H =¢q. If ¢ =0 (resp. h=0)
for any x € M, then the CR submanifold M is a holomorphic submanifold (resp.
anti-invariant submanifold or totally real submanifold) of M. If a CR sub-
manifold satisfies # > 0 and ¢ > 0, then it is said to be proper.

In the sequel, we assume that M is a CR submanifold of M"™(c). The tangent
space Ty(M) of M is decomposed as Ty(M) = H, + HxL at each point x of M,
where H denotes the orthogonal complement of H, in Ty(M). Similarly, we see
that TX(M)l = JHxL + Ny, where N, is the orthogonal complement of JH; in
T.(M)*.

For any vector field X tangent to M, we put

JX = PX + FX,
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where PX is the tangential part of JX and FX the normal part of JX. Then P is
an endomorphism on the tangent bundle 7(M) and F is a normal bundle valued
1-form on the tangent bundle 7(M). We notice that P3+ P = 0.

For any vector field V' normal to M, we put

JV =1tV + [V,

where ¢V is the tangential part of JJ and fV the normal part of JV. Then we
see that FP =0, fF =0, tf =0 and Pt=0.

We define the covariant derivatives of P, F, ¢t and f by (VyP)Y =
Vy(PY) = PVyxY, (VxF)Y = Dx(FY) — FVyY, (Vxt)V = Vy(tV) — tDxV and
(Vxf)V = Dx(fV) — fDxV, respectively. We then have

(VyP)Y = ApyX +tB(X.,Y), (VxF)Y = —B(X,PY)+ fB(X,Y),
(Vxt)V = —PAyX + Ay X, (Vxf)V = —FAyX — B(X,1V).

For any vector fields X and Y in H = (T(M)" we obtain

(2.1) ApxY = ApyX.

We denote by R the Riemannian curvature tensor field of M. Then the
equation of Gauss is given by

R(X,Y)Z = c{g(Y,Z)X — g(X,Z)Y + g(PY,Z)PX — g(PX,Z)PY
—29(PX,Y)PZ} + Apiy,.2)X — Apix,2) Y,

for any X, Y and Z tangent to M.
The equation of Codazzi of M is given by

9(Vxd),Y,Z) = g((VyA)y X, Z)
=c{g(Y,PZ)g(X,tV) — g(X,PZ)g(Y,tV) —29(X,PY)g(Z,tV)}.
We define the curvature tensor R+ of the normal bundle of M by
RY(X,Y)V =DxyDyV — DyDyV — Dy y|V.
Then we have the equation of Ricci
G(RH(X,Y)V,U)+g([Ay, Av]X,Y)

=c{g(Y,tV)g(X,tU) — g(X,tV)g(Y,tU) = 29(X, PY)g(V, fU)}.
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If R' vanishes identically, the normal connection of M is said to be flar. If
R-(X,Y)V =2cg(X,PY)fV, then the normal connection of M is said to be
semi-flat (see [9]).

We put

(R(X,Y)A)yZ = R(X,Y)AyZ — Agi(x. vy Z — AvR(X, Y)Z.

If (R(X,Y)A),, =0 for any X, Y and Z tangent to M and any ¥ normal to M,
then the second fundamental form A is said to be semi-parallel. This condition is
weaker than VA =0. We call M a semi-parallel CR submanifold if its second
fundamental form A is semi-parallel. We proved the following theorem [4].

THEOREM A. Let M be an n-dimensional proper CR submanifold of a
complex space form M™(c), ¢ # 0, with semi-flat normal connection. If the dimen-
sion of the holomorphic tangent space is greater than 2, then the second funda-
mental form A is not semi-parallel.

On the condition that a CR manifold is proper, we note the following.

ReMarRk 2.1. Let M be a complex n-dimensional (n >2) holomorphic
submanifold of a complex space form M™(c). If the normal connection of M
is semi-flat, then M is either totally geodesic or M is an Einstein Kéhlerian

hypersurface of M™(c¢) with scalar curvature n?

¢. The latter case occurs only
when ¢ > 0 (see Ishihara [2]). Then the second fundamental form of M is parallel.

Let M be an n-dimensional anti-invariant submanifold of a complex space
form M"™(c). If the normal connection of M is semi-flat, then the normal con-
nection of M is flat by P = 0. There exists an anti-invariant submanifold with
flat normal connection and parallel second fundamental form. For example,
n(S'(r) x -+ x SY(ry1)), Sori=1, where n:S*"*! — CP™ is the standard
fibration, is an anti-invariant submanifold with flat normal connection and
parallel second fundamental form of CP™ (c.f. Yano-Kon [9; p. 237, Theorem

3.17)).

3. Pseudo-Parallel CR Submanifolds

In this section, we prove our main theorem. First we prepare some lemmas.

Lemma 3.1.  Let M be an n-dimensional proper CR submanifold of a complex
space form M™(c), ¢ =41, with semi-flat normal connection. If the second
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Sfundamental form A satisfies R(X,Y)A = a(X A Y)A for any X and Y tangent to
M, o being a function, then, for any vector V normal to M, A satisfies

(3.1) Ay X =0 for X e T(M),
(3.2) g(AyX,Y)=0 for XeH,, YeH!.

Moreover, if the dimension h of the holomorphic tangent space > 2,
1
(33) g(AVX7 Y):_Ztr(Asz)g(Xv Y) fOV X7Y6HV7

(3.4) PAy = AyP,

where tr denotes the trace of an operator.

Proor. Since (R(X,Y)A),Z=oa((XAY)A),Z for any tangent vectors
X,Y,ZeTy(M), we have

(3.5) R(X,Y)AyZ = Ag-(x.vypZ + AyR(X, Y)Z + a(X A Y)A), Z
=2cg(X,PY)AyyZ + AyR(X,Y)Z + ag(X,AvZ)Y

—og(Y, Ay Z)X —og(X,Z2)AyY +ag(Y,Z)Ap X.

Thus we have
tr R(X, Y)Ay Ay =2cg(X,PY) tr A}, + tr R(X, Y) Ay Ay
+ 20(g()(7 AVAfV Y) - 20!g( Y, AVAfVX).

By the equation of Ricci, we have AyyAy = Ay Apy. Thus we obtain tr A}V =0,
which proves (3.1).
Using the equation of Gauss and (3.5),

(3.6) c(g(Y, AyZ)X — g(X, AyZ)Y + g(PY, AyZ)PX
— g(PX, Ay Z)PY — 2g(PX, Y)PAyZ)
+ Apy,4y2)X — Apx. 4,20 Y
— c(g(Y, Z)AvX — g(X,Z)AyY + g(PY,Z)AyPX
— g(PX,Z)AyPY — 2g(PX, Y)AyPZ)
+ Ay Ay X — ApAgy.p Y +0g(X, AyZ) Y

—og(Y, Ay Z)X —og(X,Z2)AyY +ag(Y,Z)Ap X.
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We take an orthonormal basis {ei,...,en, t01 == epy1,...,10, :=e,} of T (M),

where {ej,...,e,} is an orthonormal basis of H, and {vi,...,v,} is an ortho-
normal basis of JH. Then we have

¢ (g(Pei, Ay X)g(ei, Y) — gler, Ay X)g(Pe;, Y) + g(P?e;, Ay X)g(Pe;, Y)
i
— g(Pe;, Ay X)(P?e;, Y) — 2g(Pe;, Pe;)g(PAy X, Y))
+ ZQ(AB(Pei,AVX)eh Y) - ZQ(AB(L',-,AVX)PEIH Y)
= ¢ (9(Pei, X)g(Ave, Y) — glei, X)g(AyPe;, Y) + g(Pe;, X)g(Ay Pe;, Y)

— g(Pei, X)g(Ay P?e;, Y) — 2g(Pe;, Pe;)g(AyPX, Y))

+ ZQ(AVAB(Pe,,X)eia Y) - ZQ(AVAB((»,-,X)P&', Y)

i i

—20g(Ay X, PY) — 209(AyPX,Y).
By the straightforward computation,

(3.7) (he+2c+ 0)g(AvX,PY) + (hc + 2¢ + 0)g(AvPX, Y)
— > g(APAAVX,Y) + > g(ArAPAX,Y) =0,
where A, is the second fundamental form in the direction of wv,. Similarly,

putting Y =¢;, Z = Pe; into (3.6) and taking inner product with Y and sum-
mation,

(3.8) c(<1 + %) g(PAyX,Y) —tr(P?Ay)g(PX,Y) + g(P*AyPX,Y)
—2g(PAyP?X,Y) — (h +2+ %)g(A PX, Y))
+ 3 tr(Ag Ay P)g(AX, Y) + > g(APAy A X, Y)
—> g(ArA,PAX,Y) =0.

Since the normal connection of M is semi-flat, the equation of Ricci gives

A ApX = ApA X
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for any X € Hy. So we have tr(4,4yP) = 0. Moreover, we obtain
g(A,PAyAX,Y) = —g(X,A,AyPAY) = g(X, Ay A, PAY)
= g(4,PA,AyX,Y)

for any X,Y € Ty(M). Thus, using (3.7) and (3.8), we have

(3.9) —(h+ 1)eg(PAyX,Y) — c tr(P*A4y)g(PX,Y)
+¢g(P?AyPX,Y) — 2cg(PAyP*X,Y) =0

for any X,Y e Ty(M). When X e H: and Y € H,, from (3.9),

(3.10) g(PAyX,Y)=—g(4yX,PY) =0.

So we have g(AyX,Y)=0 for X e H- and Y € H,.
Next we consider the case that X,Y e H,. Since PX,PY € H,, using
(3.9),

—(h—1)cg(PAyX,Y) — cg(AyPX,Y) — c tr(P*Ay)g(PX,Y) =0,
—(h—1)cg(AyPX,Y) + cg(AyX,PY) — ctr(P?Ay)g(PX,Y) = 0.
From these equations and the assumption that /> 2, we get
g(PAyX,Y) = g(AyPX,Y) = 0.

From this and (3.10), we have P4y = Ay P for any V normal to M.
Thus we obtain

1
g(ArX,Y) = =4 {4y P)g(X, ¥)
for X,Y e H,. [
By the similar method of Lemma 2.2 of [§], we have

LemMa 3.2. Let M be a CR submanifold of M™(c) with semi-flat normal
connection. If Ay =0 and PAy = Ay P for any vector field V normal to M,
then

g(AuX, AyY) = cg(X, Y)g(tU,1V) — cg(FX, U)g(FY, V)

— Y g(AutV,e)g(ApX, Y).
i
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Using these lemmas, we prove

Lemma 3.3. Let M be an n-dimensional proper CR submanifold of a complex
space form M™(c), ¢ = +1, with semi-flat normal connection. We suppose that the
dimension h of the holomorphic tangent space > 2. If the second fundamental form
A satisfies R(X,Y)A=a(X AY)A for any X and Y tangent to M, o being a
function, then dim H} = 1.

PrOOF. We suppose dim H} >2. We can take an orthonormal basis

1 I

{vi,..., 04,0441, ...,0,} of T (M)~, where vy,...,0,€ FH; and vg1,...,0, € Ny.
Since A,, is symmetric, taking a suitable orthonormal basis {ey,..., e 1, .-,
eniq} of Ty(M), where ey,...,e;€ Hy and eji1,...,ep40 € HE, A, = A can be

represented by a matrix form

aj 0
' 0
0 aj
3.11 A = ,
.11 : bi 0
0 -
0 by
where a; = —(1/h) tr(4,P*). In the following, we use integers s,¢,... for
Are; = ayeg and x, y,... for Ajex = bye,, respectively.

Putting X =e,, Y =¢, and Z = ¢, in (3.5) and taking an inner product with
ey, by the straightforward computation,

(3.12) (by — by)(g(R(ex, ey)ey, ex) + o) = 0.
Using (2.1), (3.2) and the equation of Gauss, for any x # y,
g(Rex,ey)ey, ex)
=c+ g(AB(Ey,ey)eX? ex) - g(AB(eney)eya ex)

=c+ Z g(Aaex, ex)g(Aaey, ey) — Z g(Aaey, ex)g(Aqex, ey)

=c+ Y g(Are,1va,ex)g(Are,10a,)) = > G(AFe, 100, €x)g(Are, 10a, €y)
a

a

=c+ g(AFeyeya AFexex) - g(AFeyex; AFexey)-
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From Lemma 3.2 and (2.1), we have
g(AFe},.exa AFexey) = g<AF€,\»eya AFexey)

=c— Z 9(Ape tFey, €;)g(Apeey, ey)

=c+ g(AFerex; AFeyey>-

From these equations, we see that g(R(ey,ey)e,,e,) = 0. By (3.12) and Theorem
2.1, we have b, = b, for any x # y, that is, 4| X = b X for any X € H{.

By the similar computation, we see that A, X =bX (x=2,...,q) for
XeH!

X

where b,...,b, are functions. Thus we have

Aytv, = bytv,.

On the other hand, since AytU = AytV for any U,V € FH}, we have
Aytv, = Aytog = bytoy.
Since tv, and tv, are linearly independent, we have by =---=b, =0. So we

have [Ay, Ay]X =0 for any U and V normal to M and X € H}. Thus, by the
equation of Ricci, we have

0=c{g(Y,tV)g(X,tU) —g(X,tV)g(Y,tU)}

for any X, Y € H}. Since dim H} > 2, we can take U and V orthogonal to each
other. Putting X =tU and Y =1V, we have ¢=0. This is a contradiction.
Consequently, we obtain dim H} = 1. O

LemMA 3.4. Let M be an n-dimensional proper CR submanifold of a complex
space form M™(c), ¢ = +1, with semi-flat normal connection. We suppose that the
dimension h of the holomorphic tangent space > 2. If the second fundamental form
A satisfies R(X,Y)A=a(X AY)A for any X and Y tangent to M, o being a
function, then M is a hypersurface of totally geodesic M"+V/2(¢) in M™(c).

PrOOF. We prove that the first normal space has constant dimension and it
is parallel with respect to the normal connection.

If Ay =0 for V e FH{, then (3.1) implies that M is totally geodesic. This
contradicts ¢ # 0. Thus we have 4, # 0. We see that No(x) = N, and the first
normal space Nj(x) = FH{ is of dimension 1. For V € FH} and U e N,, we
have

g(DxV, fU) = —g(V,(Vxf)U) = —g(V,—FAyX — B(X,tU)) = 0.
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Thus we see that Dy V € FH . So the first normal space is parallel with respect to
the normal connection.

Thus we see that M is a hypersurface of totally geodesic M *1)/2(¢c) in
M"(c) (see [9; p. 77]). O

To prove our main theorem, we use the following theorem given by Lobos
and Ortega [5].

THEOREM B. Let M be a connected real hypersurface in M"(c), n > 2,
¢ = +1 which satisfies R(X,Y)A = (X A Y)A for any X and Y tangent to M, o
being a function. Then o is constant and positive, and M is one of the following real

hypersurfaces;

i) If c = +1, then o = cot*(r), for 0 < r < n/2, and M is an open subset of a
geodesic hypersphere of radius r.
i) If c=—1, then
a) 1 <ua :cothz(r), for r>0, and M is an open subset of a geodesic
hypersphere of radius r;
b) o =1, and M is an open subset of a horosphere;
c) O<a= tanhz(r) <1, for r >0, and M is an open subset of a tube of
radius r over a totally geodesic CH" !

From Lemma 3.4 and Theorem B, we obtain our main theorem.

THEOREM 3.5. Let M be an n-dimensional proper CR submanifold of a
complex space form M™(c), ¢ = +1, with semi-flat normal connection. We suppose
that the dimension h of the holomorphic tangent space > 2. If the second fun-
damental form A satisfies R(X,Y)A = a(X A Y)A for any X and Y tangent to M,
o being a function, then o is constant and M is one of the following hypersurfaces
of totally geodesic M"*V)/2(c) in M™(c);

i) If ¢ = +1, then o = cot*(r), for 0 < r < /2, and M is an open subset of a
geodesic hypersphere of radius r.
i) If ¢c=—1, then
a) 1 <u :cothz(r), for r>0, and M is an open subset of a geodesic
hypersphere of radius r;
b) a =1, and M is an open subset of a horosphere;
¢) 0 <a=tanh’(r) <1, for r >0, and M is an open subset of a tube of
radius r over a totally geodesic CH"~1/2,
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