PSEUDO-PARALLEL CR SUBMANIFOLDS OF A COMPLEX SPACE FORM

By

Mayuko Kon

Abstract. We classify pseudo-parallel proper CR submanifolds of a non-flat complex space form with semi-flat normal connection under the condition that the dimension of the holomorphic tangent space is greater than 2.

1. Introduction

There are many results about real hypersurfaces immersed in a complex space form with additional conditions for the second fundamental form A. It is well known that there are no real hypersurface in a complex space form $M^n(c)$, $c \neq 0$, of constant holomorphic sectional curvature 4c with parallel second fundamental form. Moreover, Maeda [6] showed that no real hypersurface in $M^n(c)$, c > 0, $n \ge 3$, satisfies semi-parallel condition, that is, $R(X, Y) \cdot A = 0$ for any X, Ytangent to the real hypersurface. Niebergall and Ryan [7] also proved the nonexistence of semi-parallel real hypersurface in $M^2(c)$, $c \ne 0$.

If the second fundamental form A of a submanifold M satisfies

$$R(X, Y)A = \alpha(X \wedge Y)A$$

for any $X, Y \in TM$, α being a function, then A is said to be *pseudo-parallel*, that generalize the notion of semi-symmetric. In [5], Lobos and Ortega obtained the classification of the pseudo-parallel real hypersurfaces in $M^n(c), c \neq 0$, $n \ge 2$.

A submanifold M of a Kählerian manifold \overline{M} is called a *CR submanifold* of \tilde{M} if there exists a differentiable distribution $H: x \to H_x \subset T_x(M)$ on Msatisfying the conditions that H is holomorphic, i.e., $JH_x = H_x$ for each $x \in M$,

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40, 53C55; Secondary 53C25.

Key words and phrases. CR submanifold, complex space form, pseudo-parallel second fundamental form.

Received May 19, 2011.

and the complementary orthogonal distribution $H^{\perp}: x \to H_x^{\perp} \subset T_x(M)$ is antiinvariant, i.e. $JH_x^{\perp} \subset T_x(M)^{\perp}$ for each $x \in M$. Any real hypersurface of a Kählerian manifold is a *CR* submanifold.

The main purpose of the present paper is to prove the following theorem.

THEOREM. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c = \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space > 2. If the second fundamental form A satisfies $R(X, Y)A = \alpha(X \land Y)A$ for any X and Y tangent to M, α being a function, then α is constant and M is one of the following hypersurfaces of totally geodesic $M^{(n+1)/2}(c)$ in $M^m(c)$;

- i) If c = +1, then $\alpha = \cot^2(r)$, for $0 < r < \pi/2$, and M is an open subset of a geodesic hypersphere of radius r.
- ii) If c = -1, then
 - a) $1 < \alpha = \coth^2(r)$, for r > 0, and M is an open subset of a geodesic hypersphere of radius r;
 - b) $\alpha = 1$, and M is an open subset of a horosphere;
 - c) $0 < \alpha = \tanh^2(r) < 1$, for r > 0, and M is an open subset of a tube of radius r over a totally geodesic $CH^{(n-1)/2}$.

2. Preliminaries

Let $M^m(c)$ denote the complex space form of complex dimension m (real dimension 2m) with constant holomorphic sectional curvature 4c. For the sake of simplicity, if c > 0, we only use c = +1 and call it the complex projective space $\mathbb{C}P^n$, and if c < 0, we just consider c = -1, so that we call it the complex hyperbolic space $\mathbb{C}H^n$. We denote by J the almost complex structure of $M^m(c)$. The Hermitian metric of $M^m(c)$ is denoted by G.

Let *M* be a real *n*-dimensional Riemannian manifold isometrically immersed in $M^m(c)$. We denote by *g* the Riemannian metric induced on *M* from *G*, and by *p* the codimension of *M*, that is, p = 2m - n.

We denote by $T_x(M)$ and $T_x(M)^{\perp}$ the tangent space and the normal space of M respectively.

We denote by ∇ the covariant differentiation in $M^m(c)$, and by ∇ the one in M determined by the induced metric. Then the *Gauss and Weingarten formulas* are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + B(X, Y), \quad \tilde{\nabla}_X V = -A_V X + D_X V$$

for any vector fields X and Y tangent to M and any vector field V normal to M, where D denotes the covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of M. We call both A and B the second fundamental form of M and are related by $G(B(X, Y), V) = g(A_V X, Y)$. The second fundamental form A and B are symmetric.

For $x \in M$, the first normal space $N_1(x)$ is the orthogonal complement in $T_x(M)^{\perp}$ of the set

$$N_0(x) = \{ V \in T_x(M)^{\perp} \, | \, A_V = 0 \}.$$

The covariant derivative $(\nabla_X A)_V Y$ of A is defined to be

$$(\nabla_X A)_V Y = \nabla_X (A_V Y) - A_{D_X V} Y - A_V \nabla_X Y.$$

If $(\nabla_X A)_V Y = 0$ for any vector fields X and Y tangent to M, then the second fundamental form of M is said to be *parallel in the direction of the normal vector* V. If the second fundamental form is parallel in any direction, it is said to be *parallel*.

DEFINITION. A submanifold M of a Kählerian manifold \tilde{M} is called a CRsubmanifold of \tilde{M} if there exists a differentiable distribution $H: x \to H_x \subset T_x(M)$ on M satisfying the following conditions:

(i) H is holomorphic, i.e., $JH_x = H_x$ for each $x \in M$, and

(ii) the complementary orthogonal distribution $H^{\perp}: x \to H_x^{\perp} \subset T_x(M)$ is anti-invariant, i.e. $JH_x^{\perp} \subset T_x(M)^{\perp}$ for each $x \in M$.

We call H_x a holomorphic tangent space.

In the following, we put dim $H_x = h$, dim $H_x^{\perp} = q$. If q = 0 (resp. h = 0) for any $x \in M$, then the *CR* submanifold *M* is a holomorphic submanifold (resp. anti-invariant submanifold or totally real submanifold) of \tilde{M} . If a *CR* submanifold satisfies h > 0 and q > 0, then it is said to be *proper*.

In the sequel, we assume that M is a CR submanifold of $M^m(c)$. The tangent space $T_x(M)$ of M is decomposed as $T_x(M) = H_x + H_x^{\perp}$ at each point x of M, where H_x^{\perp} denotes the orthogonal complement of H_x in $T_x(M)$. Similarly, we see that $T_x(M)^{\perp} = JH_x^{\perp} + N_x$, where N_x is the orthogonal complement of JH_x^{\perp} in $T_x(M)^{\perp}$.

For any vector field X tangent to M, we put

$$JX = PX + FX,$$

Mayuko Kon

where PX is the tangential part of JX and FX the normal part of JX. Then P is an endomorphism on the tangent bundle T(M) and F is a normal bundle valued 1-form on the tangent bundle T(M). We notice that $P^3 + P = 0$.

For any vector field V normal to M, we put

$$JV = tV + fV,$$

where tV is the tangential part of JV and fV the normal part of JV. Then we see that FP = 0, fF = 0, tf = 0 and Pt = 0.

We define the covariant derivatives of P, F, t and f by $(\nabla_X P)Y = \nabla_X (PY) - P\nabla_X Y$, $(\nabla_X F)Y = D_X (FY) - F\nabla_X Y$, $(\nabla_X t)V = \nabla_X (tV) - tD_X V$ and $(\nabla_X f)V = D_X (fV) - fD_X V$, respectively. We then have

$$(\nabla_X P)Y = A_{FY}X + tB(X, Y), \quad (\nabla_X F)Y = -B(X, PY) + fB(X, Y),$$
$$(\nabla_X t)V = -PA_VX + A_{fV}X, \quad (\nabla_X f)V = -FA_VX - B(X, tV).$$

For any vector fields X and Y in $H_x^{\perp} = tT(M)^{\perp}$ we obtain

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$R(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y + g(PY, Z)PX - g(PX, Z)PY$$
$$- 2g(PX, Y)PZ\} + A_{B(Y, Z)}X - A_{B(X, Z)}Y,$$

for any X, Y and Z tangent to M.

The equation of Codazzi of M is given by

$$g((\nabla_X A)_V Y, Z) - g((\nabla_Y A)_V X, Z)$$

= $c\{g(Y, PZ)g(X, tV) - g(X, PZ)g(Y, tV) - 2g(X, PY)g(Z, tV)\}.$

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$R^{\perp}(X, Y)V = D_X D_Y V - D_Y D_X V - D_{[X, Y]} V.$$

Then we have the equation of Ricci

$$\begin{split} & G(R^{\perp}(X,Y)V,U) + g([A_U,A_V]X,Y) \\ & = c\{g(Y,tV)g(X,tU) - g(X,tV)g(Y,tU) - 2g(X,PY)g(V,fU)\}. \end{split}$$

If R^{\perp} vanishes identically, the normal connection of M is said to be *flat*. If $R^{\perp}(X, Y)V = 2cg(X, PY)fV$, then the normal connection of M is said to be *semi-flat* (see [9]).

We put

$$(R(X, Y)A)_V Z = R(X, Y)A_V Z - A_{R^{\perp}(X, Y)V} Z - A_V R(X, Y)Z.$$

If $(R(X, Y)A)_V = 0$ for any X, Y and Z tangent to M and any V normal to M, then the second fundamental form A is said to be *semi-parallel*. This condition is weaker than $\nabla A = 0$. We call M a *semi-parallel CR submanifold* if its second fundamental form A is semi-parallel. We proved the following theorem [4].

THEOREM A. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c \neq 0$, with semi-flat normal connection. If the dimension of the holomorphic tangent space is greater than 2, then the second fundamental form A is not semi-parallel.

On the condition that a CR manifold is proper, we note the following.

REMARK 2.1. Let M be a complex *n*-dimensional $(n \ge 2)$ holomorphic submanifold of a complex space form $M^m(c)$. If the normal connection of Mis semi-flat, then M is either totally geodesic or M is an Einstein Kählerian hypersurface of $M^m(c)$ with scalar curvature n^2c . The latter case occurs only when c > 0 (see Ishihara [2]). Then the second fundamental form of M is parallel.

Let *M* be an *n*-dimensional anti-invariant submanifold of a complex space form $M^m(c)$. If the normal connection of *M* is semi-flat, then the normal connection of *M* is flat by P = 0. There exists an anti-invariant submanifold with flat normal connection and parallel second fundamental form. For example, $\pi(S^1(r_1) \times \cdots \times S^1(r_{n+1}))$, $\sum r_i = 1$, where $\pi : S^{2m+1} \to \mathbb{C}P^m$ is the standard fibration, is an anti-invariant submanifold with flat normal connection and parallel second fundamental form of $\mathbb{C}P^m$ (c.f. Yano-Kon [9; p. 237, Theorem 3.17]).

3. Pseudo-Parallel CR Submanifolds

In this section, we prove our main theorem. First we prepare some lemmas.

LEMMA 3.1. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c = \pm 1$, with semi-flat normal connection. If the second Mayuko Kon

fundamental form A satisfies $R(X, Y)A = \alpha(X \wedge Y)A$ for any X and Y tangent to M, α being a function, then, for any vector V normal to M, A satisfies

(3.1) $A_{fV}X = 0 \quad for \ X \in T_x(M),$

(3.2) $g(A_V X, Y) = 0 \quad for \ X \in H_x, \ Y \in H_x^{\perp}.$

Moreover, if the dimension h of the holomorphic tangent space > 2,

(3.3)
$$g(A_VX,Y) = -\frac{1}{h}\operatorname{tr}(A_VP^2)g(X,Y) \quad \text{for } X, Y \in H_x,$$

$$(3.4) PA_V = A_V P,$$

where tr denotes the trace of an operator.

PROOF. Since $(R(X, Y)A)_V Z = \alpha((X \wedge Y)A)_V Z$ for any tangent vectors $X, Y, Z \in T_x(M)$, we have

$$(3.5) \quad R(X,Y)A_VZ = A_{R^{\perp}(X,Y)V}Z + A_VR(X,Y)Z + \alpha((X \wedge Y)A)_VZ$$
$$= 2cg(X,PY)A_{fV}Z + A_VR(X,Y)Z + \alpha g(X,A_VZ)Y$$
$$- \alpha g(Y,A_VZ)X - \alpha g(X,Z)A_VY + \alpha g(Y,Z)A_VX.$$

Thus we have

$$\operatorname{tr} R(X, Y)A_V A_{fV} = 2cg(X, PY) \operatorname{tr} A_{fV}^2 + \operatorname{tr} R(X, Y)A_{fV}A_V$$
$$+ 2\alpha g(X, A_V A_{fV}Y) - 2\alpha g(Y, A_V A_{fV}X).$$

By the equation of Ricci, we have $A_{fV}A_V = A_V A_{fV}$. Thus we obtain tr $A_{fV}^2 = 0$, which proves (3.1).

Using the equation of Gauss and (3.5),

$$(3.6) \qquad c(g(Y, A_VZ)X - g(X, A_VZ)Y + g(PY, A_VZ)PX - g(PX, A_VZ)PY - 2g(PX, Y)PA_VZ) + A_{B(Y, A_VZ)}X - A_{B(X, A_VZ)}Y = c(g(Y, Z)A_VX - g(X, Z)A_VY + g(PY, Z)A_VPX - g(PX, Z)A_VPY - 2g(PX, Y)A_VPZ) + A_VA_{B(Y, Z)}X - A_VA_{B(X, Z)}Y + \alpha g(X, A_VZ)Y - \alpha g(Y, A_VZ)X - \alpha g(X, Z)A_VY + \alpha g(Y, Z)A_VX.$$

We take an orthonormal basis $\{e_1, \ldots, e_h, tv_1 := e_{h+1}, \ldots, tv_q := e_n\}$ of $T_x(M)$, where $\{e_1, \ldots, e_h\}$ is an orthonormal basis of H_x and $\{v_1, \ldots, v_q\}$ is an orthonormal basis of JH_x^{\perp} . Then we have

$$\begin{split} c\sum_{i}(g(Pe_{i},A_{V}X)g(e_{i},Y) - g(e_{i},A_{V}X)g(Pe_{i},Y) + g(P^{2}e_{i},A_{V}X)g(Pe_{i},Y) \\ &- g(Pe_{i},A_{V}X)(P^{2}e_{i},Y) - 2g(Pe_{i},Pe_{i})g(PA_{V}X,Y)) \\ &+ \sum_{i}g(A_{B(Pe_{i},A_{V}X)}e_{i},Y) - \sum_{i}g(A_{B(e_{i},A_{V}X)}Pe_{i},Y) \\ &= c\sum_{i}(g(Pe_{i},X)g(A_{V}e_{i},Y) - g(e_{i},X)g(A_{V}Pe_{i},Y) + g(P^{2}e_{i},X)g(A_{V}Pe_{i},Y) \\ &- g(Pe_{i},X)g(A_{V}P^{2}e_{i},Y) - 2g(Pe_{i},Pe_{i})g(A_{V}PX,Y)) \\ &+ \sum_{i}g(A_{V}A_{B(Pe_{i},X)}e_{i},Y) - \sum_{i}g(A_{V}A_{B(e_{i},X)}Pe_{i},Y) \\ &- 2\alpha g(A_{V}X,PY) - 2\alpha g(A_{V}PX,Y). \end{split}$$

By the straightforward computation,

(3.7)
$$(hc+2c+\alpha)g(A_VX,PY) + (hc+2c+\alpha)g(A_VPX,Y) -\sum_a g(A_aPA_aA_VX,Y) + \sum_a g(A_VA_aPA_aX,Y) = 0,$$

where A_a is the second fundamental form in the direction of v_a . Similarly, putting $Y = e_i$, $Z = Pe_i$ into (3.6) and taking inner product with Y and summation,

$$(3.8) \qquad c\left(\left(1+\frac{\alpha}{c}\right)g(PA_VX,Y) - \operatorname{tr}(P^2A_V)g(PX,Y) + g(P^2A_VPX,Y)\right) - 2g(PA_VP^2X,Y) - \left(h+2+\frac{\alpha}{c}\right)g(A_VPX,Y)\right) + \sum_a \operatorname{tr}(A_aA_VP)g(A_aX,Y) + \sum_a g(A_aPA_VA_aX,Y) - \sum_a g(A_VA_aPA_aX,Y) = 0.$$

Since the normal connection of M is semi-flat, the equation of Ricci gives

$$A_a A_b X = A_b A_a X$$

for any $X \in H_x$. So we have $tr(A_a A_V P) = 0$. Moreover, we obtain

$$g(A_a P A_V A_a X, Y) = -g(X, A_a A_V P A_a Y) = g(X, A_V A_a P A_a Y)$$
$$= g(A_a P A_a A_V X, Y)$$

for any $X, Y \in T_x(M)$. Thus, using (3.7) and (3.8), we have

(3.9)
$$-(h+1)cg(PA_VX, Y) - c \operatorname{tr}(P^2A_V)g(PX, Y) + cg(P^2A_VPX, Y) - 2cg(PA_VP^2X, Y) = 0$$

for any $X, Y \in T_x(M)$. When $X \in H_x^{\perp}$ and $Y \in H_x$, from (3.9),

(3.10)
$$g(PA_VX, Y) = -g(A_VX, PY) = 0.$$

So we have $g(A_V X, Y) = 0$ for $X \in H_x^{\perp}$ and $Y \in H_x$.

Next we consider the case that $X, Y \in H_x$. Since $PX, PY \in H_x$, using (3.9),

$$-(h-1)cg(PA_VX, Y) - cg(A_VPX, Y) - c \operatorname{tr}(P^2A_V)g(PX, Y) = 0,$$

$$-(h-1)cg(A_VPX, Y) + cg(A_VX, PY) - c \operatorname{tr}(P^2A_V)g(PX, Y) = 0.$$

From these equations and the assumption that h > 2, we get

$$g(PA_VX, Y) - g(A_VPX, Y) = 0.$$

From this and (3.10), we have $PA_V = A_V P$ for any V normal to M.

Thus we obtain

$$g(A_V X, Y) = -\frac{1}{h} \operatorname{tr}(A_V P^2) g(X, Y)$$

for $X, Y \in H_x$.

By the similar method of Lemma 2.2 of [8], we have

LEMMA 3.2. Let M be a CR submanifold of $M^m(c)$ with semi-flat normal connection. If $A_{fV} = 0$ and $PA_V = A_V P$ for any vector field V normal to M, then

$$g(A_UX, A_VY) = cg(X, Y)g(tU, tV) - cg(FX, U)g(FY, V)$$
$$-\sum_i g(A_UtV, e_i)g(A_{Fe_i}X, Y).$$

Using these lemmas, we prove

LEMMA 3.3. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c = \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space > 2. If the second fundamental form A satisfies $R(X, Y)A = \alpha(X \wedge Y)A$ for any X and Y tangent to M, α being a function, then dim $H_x^{\perp} = 1$.

PROOF. We suppose dim $H_x^{\perp} \ge 2$. We can take an orthonormal basis $\{v_1, \ldots, v_q, v_{q+1}, \ldots, v_p\}$ of $T_x(M)^{\perp}$, where $v_1, \ldots, v_q \in FH_x^{\perp}$ and $v_{q+1}, \ldots, v_p \in N_x$. Since A_{v_1} is symmetric, taking a suitable orthonormal basis $\{e_1, \ldots, e_h, e_{h+1}, \ldots, e_{h+q}\}$ of $T_x(M)$, where $e_1, \ldots, e_h \in H_x$ and $e_{h+1}, \ldots, e_{h+q} \in H_x^{\perp}$, $A_{v_1} = A_1$ can be represented by a matrix form

(3.11)
$$A_{1} = \begin{pmatrix} a_{1} & 0 & & \\ & \ddots & & 0 & \\ 0 & a_{1} & & \\ & & b_{1} & 0 & \\ & 0 & & \ddots & \\ & & & 0 & b_{q} \end{pmatrix},$$

where $a_1 = -(1/h) \operatorname{tr}(A_1 P^2)$. In the following, we use integers s, t, \ldots for $A_1 e_s = a_1 e_s$ and x, y, \ldots for $A_1 e_x = b_x e_x$, respectively.

Putting $X = e_x$, $Y = e_y$ and $Z = e_y$ in (3.5) and taking an inner product with e_x , by the straightforward computation,

(3.12)
$$(b_y - b_x)(g(R(e_x, e_y)e_y, e_x) + \alpha) = 0.$$

Using (2.1), (3.2) and the equation of Gauss, for any $x \neq y$,

$$g(R(e_x, e_y)e_y, e_x)$$

$$= c + g(A_{B(e_y, e_y)}e_x, e_x) - g(A_{B(e_x, e_y)}e_y, e_x)$$

$$= c + \sum_a g(A_a e_x, e_x)g(A_a e_y, e_y) - \sum_a g(A_a e_y, e_x)g(A_a e_x, e_y)$$

$$= c + \sum_a g(A_{Fe_x}tv_a, e_x)g(A_{Fe_y}tv_a, e_y) - \sum_a g(A_{Fe_y}tv_a, e_x)g(A_{Fe_x}tv_a, e_y)$$

$$= c + g(A_{Fe_y}e_y, A_{Fe_x}e_x) - g(A_{Fe_y}e_x, A_{Fe_x}e_y).$$

From Lemma 3.2 and (2.1), we have

$$g(A_{Fe_y}e_x, A_{Fe_x}e_y) = g(A_{Fe_x}e_y, A_{Fe_x}e_y)$$
$$= c - \sum_i g(A_{Fe_x}tFe_x, e_i)g(A_{Fe_i}e_y, e_y)$$
$$= c + g(A_{Fe_x}e_x, A_{Fe_y}e_y).$$

From these equations, we see that $g(R(e_x, e_y)e_y, e_x) = 0$. By (3.12) and Theorem 2.1, we have $b_x = b_y$ for any $x \neq y$, that is, $A_1X = b_1X$ for any $X \in H_x^{\perp}$.

By the similar computation, we see that $A_x X = b_x X$ (x = 2, ..., q) for $X \in H_x^{\perp}$, where $b_2, ..., b_q$ are functions. Thus we have

$$A_x t v_y = b_x t v_y$$

On the other hand, since $A_V t U = A_U t V$ for any $U, V \in FH_x^{\perp}$, we have

$$A_x t v_y = A_y t v_x = b_y t v_x$$

Since tv_x and tv_y are linearly independent, we have $b_1 = \cdots = b_q = 0$. So we have $[A_U, A_V]X = 0$ for any U and V normal to M and $X \in H_x^{\perp}$. Thus, by the equation of Ricci, we have

$$0 = c\{g(Y, tV)g(X, tU) - g(X, tV)g(Y, tU)\}$$

for any $X, Y \in H_x^{\perp}$. Since dim $H_x^{\perp} \ge 2$, we can take U and V orthogonal to each other. Putting X = tU and Y = tV, we have c = 0. This is a contradiction. Consequently, we obtain dim $H_x^{\perp} = 1$.

LEMMA 3.4. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c = \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space > 2. If the second fundamental form A satisfies $R(X, Y)A = \alpha(X \wedge Y)A$ for any X and Y tangent to M, α being a function, then M is a hypersurface of totally geodesic $M^{(n+1)/2}(c)$ in $M^m(c)$.

PROOF. We prove that the first normal space has constant dimension and it is parallel with respect to the normal connection.

If $A_V = 0$ for $V \in FH_x^{\perp}$, then (3.1) implies that M is totally geodesic. This contradicts $c \neq 0$. Thus we have $A_V \neq 0$. We see that $N_0(x) = N_x$ and the first normal space $N_1(x) = FH_x^{\perp}$ is of dimension 1. For $V \in FH_x^{\perp}$ and $U \in N_x$, we have

$$g(D_X V, fU) = -g(V, (\nabla_X f)U) = -g(V, -FA_U X - B(X, tU)) = 0$$

108

Thus we see that $D_X V \in FH_x^{\perp}$. So the first normal space is parallel with respect to the normal connection.

Thus we see that M is a hypersurface of totally geodesic $M^{(n+1)/2}(c)$ in $M^m(c)$ (see [9; p. 77]).

To prove our main theorem, we use the following theorem given by Lobos and Ortega [5].

THEOREM B. Let M be a connected real hypersurface in $M^n(c)$, $n \ge 2$, $c = \pm 1$ which satisfies $R(X, Y)A = \alpha(X \land Y)A$ for any X and Y tangent to M, α being a function. Then α is constant and positive, and M is one of the following real hypersurfaces;

- i) If c = +1, then $\alpha = \cot^2(r)$, for $0 < r < \pi/2$, and M is an open subset of a geodesic hypersphere of radius r.
- ii) If c = -1, then
 - a) $1 < \alpha = \coth^2(r)$, for r > 0, and M is an open subset of a geodesic hypersphere of radius r;
 - b) $\alpha = 1$, and M is an open subset of a horosphere;
 - c) $0 < \alpha = \tanh^2(r) < 1$, for r > 0, and M is an open subset of a tube of radius r over a totally geodesic $\mathbb{C}H^{n-1}$.

From Lemma 3.4 and Theorem B, we obtain our main theorem.

THEOREM 3.5. Let M be an n-dimensional proper CR submanifold of a complex space form $M^m(c)$, $c = \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space > 2. If the second fundamental form A satisfies $R(X, Y)A = \alpha(X \wedge Y)A$ for any X and Y tangent to M, α being a function, then α is constant and M is one of the following hypersurfaces of totally geodesic $M^{(n+1)/2}(c)$ in $M^m(c)$;

- i) If c = +1, then $\alpha = \cot^2(r)$, for $0 < r < \pi/2$, and M is an open subset of a geodesic hypersphere of radius r.
- ii) If c = -1, then
 - a) $1 < \alpha = \coth^2(r)$, for r > 0, and M is an open subset of a geodesic hypersphere of radius r;
 - b) $\alpha = 1$, and M is an open subset of a horosphere;
 - c) $0 < \alpha = \tanh^2(r) < 1$, for r > 0, and M is an open subset of a tube of radius r over a totally geodesic $CH^{(n-1)/2}$.

Mayuko Kon

References

- T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental form, Ramanujan Math. Soc. 11 (1996), 103–107.
- [2] I. Ishihara, Kaehler submanifolds satisfying a certain condition on normal bundle, Atti della Accademia Nazionale dai Lincei LXII (1977), 30–35.
- [3] M. Kon, Ricci recurrent *CR* submanifolds of a complex space form, Tsukuba J. Math. **31** (2007), 233–252.
- [4] M. Kon, Semi-parallel CR submanifolds in a complex space form, Colloquium Mathematicum 124 (2011), 237–246.
- [5] G. A. Lobos and M. Ortega, Pseudo-parallel real hypersurfaces in complex space form, Bull. Korean Math. Soc. 41 (2004), 609–618.
- [6] S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
- [7] R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), 227–234.
- [8] K. Yano and M. Kon, CR submanifolds of a complex projective space, J. Diff. Geom. 16 (1981), 431–444.
- [9] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing, Singapore, 1984.

Faculty of Education Shinshu University 6-Ro, Nishinagano Nagano City 380-8544, Japan E-mail address: mayuko_k@shinshu-u.ac.jp