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A SECOND LIMIT FORMULA FOR HIGHER RANK
TWISTED EPSTEIN ZETA FUNCTIONS AND SOME
APPLICATIONS

By

Keiju Sono

Abstract. In this paper, we give the second limit formula and an
analogue of the Chowla-Selberg formula for the twisted Epstein zeta
functions of rank n > 2. As an application, we compute the deter-
minant of the Euclidean Laplacian on the space of asymmetrically
automorphic functions on R” by using our second limit formula.

1. Introduction

Let Q be a positive definite symmetric n x n matrix, u,v € R"”, and let s be a
complex variable with Re(s) > n/2. Epstein [7] considered a kind of zeta function
defined by

(n (5, u,v, Q) = Z eZni’nHlQ[m + U]fs
meZ" , m+v#0
where Q[x] := 'xQx for x € R". This function admits the analytic continuation to
the whole s-plane, and satisfies the functional equation

R Tk se.0) = e 0 e o (5 )i, (50

where |Q| := det(Q). Further, he obtained so called the Kronecker limit formula
for {,(s; Q) := {,(5,0,0, Q). This is the computation of the constant term of the
Laurent expansion of {,(s; Q) around s =n/2 (see also Terras [12]). There are
many generalizations of the Epstein zeta function. For example, Siegel [11]
defined a generalized Epstein zeta function by

(s,u0,Q,P)= Y m P(m +v)

s+g/2
meZ" m+v#0 Q[m + U]\ o/
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for Re(s) > n/2. Here, u,v € R" are column vectors, Q is a positive definite
symmetric n X n matrix, and P(x) = P(xi,...,x,) is a homogeneous polynomial
of degree g satisfying

0 P(x)
E /70
ql‘/ ax,@xj

1<i,j<n

where (¢;) = O~!. He proved that this function admits the analytic continuation
to the whole s-plane and satisfies some functional equation. He introduced many
examples of applications of the Kronecker limit formula to algebraic number
theory, mainly on the quadratic fields.

On the other hand, Chowla and Selberg [4] obtained another important
formula called the Chowla-Selberg formula. Let ¢ and ¢ be positive numbers
and b be real. Assume that d = b> —4dac < 0. Then the Epstein zeta function
defined by

1
Z(s) == Z (am® + bmn 4 cn®)™*  (Re(s) > 1)
(m,n) e Z>\{(0,0)}

satisfies the following identity:

L 1-2s
Z(s) = a*{(2s) + aﬂ'ﬁr<s ] <ﬁ> {(2s —1) 4+ Rp(s),

I'(s) 2a
_ A4a (Vi
Ro(s) = 75T (s) < 2a )

for any se C, where K,(z) is the K-Bessel function. There are a lot of appli-

—s+1/2

L iy nny/|d nnb
S (2ol

n=1 dn

cations of this formula in number theory, for example, to investigate the dis-
tribution of zeros of Z(s).
In Section 2, we consider the Epstein zeta function defined by

Ca(s,u,0,0) = Z ¥ MU Q] (Re(s) > g)

meZ"\{0}

for general n > 2. It is known that if u ¢ Z", {,(s,u,0, Q) is entire and the identity
which expresses (,(n/2,u,0,Q) is known as the second limit formula. The case
of n=2 is classical, called the second Kronecker limit formula. In [6], Efrat
obtained the second limit formula for {53(s,u,0, Q) and applied this formula to
compute the determinant of the Dirac operators and Laplacians. We generalize
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his method to general n > 2 case, and obtain the second limit formula for
Co(s,u,0,Q), where u is the element of R"\Z" (Theorem 2.1). As a corollary,
we obtain a certain generalized Dedekind #-function which has some modular
properties (Corollary 2.2). Further, we give the K-Bessel expansion of {,(s,u, 0, Q)
with u € R" (Theorem 2.3), which is an analogue of the Chowla-Selberg formula.

In Section 3, we compute the determinant of Laplacian on the space of
asymmetrically automorphic functions by using our second limit formula, which
is also a generalization of Efrat’s result. This corresponds to the bosonic and
fermionic string theory, as explained in [1].

The auther wants to express his gratitude to the referee for his valuable
advices.

2. Twisted Epstein Zeta Functions

2.1. Definition of the Twisted Epstein Zeta Functions

Let n > 2 be an integer and Q € GL(n,R) be a positive definite symmetric
matrix. Let u,v € R". In this paper, any vector in R” is regarded as a column
vector in principle. For a € R”, we write Qla] := ‘aQa where ‘a is the transpose of
a. Then the Epstein zeta function {,(s,u,v, Q) is defined by

Cu(s,u,v, Q) = Z MU m 4 p] (Re(s) > g) (2.1)

meZ", m+v#0

It is known that {,(s,u, v, Q) admits an analytic continuation to the whole plane
and has a simple pole at s =n/2 if u e Z" and is entire if u ¢ Z". In this paper,
we call (,(s,u,v,Q) the twisted Epstein zeta function if u¢ Z". {,(s,u,v, Q)
satisfies the functional equation

T 0) el P (§ 5o (e o) 22)

where |Q| := det(Q). Throughout this paper we assume that u ¢ Z", v = 0 except
for the subsection 2.4 of Section 2.

2.2. Formulation of the Twisted Epstein Zeta Functions

Let Z(R) be the center of GL(n,R) which is isomorphic to R* and H, =
GL(n,R)/O(n)Z(R) be the upper half plane of degree n. By Iwasawa decom-
position, the element 7 € H, is uniquely expressed by
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Yiyz2e VYn-1 V1YV2:ocVYn-2X12 V1YV2:oVa-3X13 0 Xlan
0 VIV2 - Yn—2 VIV Yn—3X23 - X
0 0 Y1YV2: - Yn-3 T X3
T= (2.3)
0 0 0 Xn—1,n
0 0 0 1

with x; ;eR (1 <i<j<n), >0 (i=1,2,...n—1). Let Qe GL(n,R) be the
positive definite symmetric matrix. Then there exists a unique 7 € H, above such
that

=101 ) e (24)

Since the i-th component of ‘v-m is yiya--- yu_i(x1,im + x2,m2 + -+
Xi—1,imi—1 +m;) (f i=n, y1y2--- yp_i :=1), we have

Olm) = 101" (v~ y3 2 yue) " ('m-2) (' - m)

|Q‘l/”( 1 l Y 2. “Yn-1)” 2/m
ZJ’1J’2 V(e my A+ X, - X i +mp)’.

Therefore, we have
Cn (S’ u, Oa Q)

n n— n 2s/n
=0 (e )Y

2m mu{zyly2

meZ™ {0}

—S
X (Xl,iml + X2, imy + -+ X1, iMi—1 + mi)z} (2.5)
for Re(s) > n/2.

2.3. Second Limit Formula for {,(s,u,0, Q)

n [11], Siegel asked whether one can obtain the second limit formula for
Ca(s,u,0, Q), ie., evaluate this function at s =n/2 when u ¢ Z", in analogy with
the n =2 situation which is called the Kronecker limit formula. In [6], Efrat
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answered this question in case of n =3 and gave the second limit formula for
{3(s,u,0, Q). The following theorem is the answer in case of general n > 2 and
v=0.

THEOREM 2.1. We define Ay, A,,..., A, inductively by
Al = —Uy,

k
Apsr = —thie = Y _(Ai + M1 ) Xnknsr—i (k= 1).

i=1
For Q in (2.4) with © in (2.3), we put

n—1

f(Q7 u,my,... 7mn) = 27[iu1 + 2niZ(mn+l—j + Aj)xl,nJrl—j

J=1
el . X 12
—2ny1)2 0 Yoo Zﬁ(mn+lfj+14j) .
For u="(uj,us,...,u,) €R", we put u' ="(upy,us,...,u,) e R" 1.

For te H, in (2.3), we define v' € H,_; by

V1ya2:Vn—2 V1YV2r:VYn-3X23 V1V2:oc Vu-4X24 0 Xogp
0 VIV2 Yn=3  VIV2 o Yn-4X34 - X3
0 0 Yiya: VYn-a T X4
T = (2.6)
0 0 0 L Xaeln
0 0 0 1

For Qe GL(n,R) in (2.4), we define Q' € GL(n— 1,R) by
0/ = (325 ) e @)

Then we have

n _ _ _ _ _ n
(ﬂ<§7u707 Q) =10| 1/2y}/<" 1)y§/<” 1).'.yr(lrill)/(n I)Cn_l(i,u’,(), Q')

-1
_orr( -1/2 _ oS (Qumaimy)
21" r<2> 0 log [ N1 —e/@urmm),

(ma,...,my) €L n=1

(2.8)

Proor. We have
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7T (s)C,(s,u,0, Q)

_ nf‘vl"(s)\Qrs/”(y” lygt 2, ynil)Zs/n

2mmu{zyly2

meZ"\{0}

X (x1,m1 + Xo,imy + - -+ Xi_1, iMi—) + mi)z} - (29

For m = '(my,my,...,m,) € Z", we put m' = '(my, ms, ...,m,) € Z"'. Firstly, the
part of m; =0 terms in (2.9) is equal to

TN A )™
Z 827'[1 m'-u {Z J/lzy% - yﬁf,‘(XZ,irnZ + -4 Xi—1,iMi-1 + mi) }
m'e2"~"\{0} i=2
=TI )

n—1
2n1’m'u’ 2.2 2
E { Y12 Y—1)—i

m' e Z" "\ {0} i=1
—S
2
X (X2, 01m2 + - -+ Xp 1My + Mgy }

=TI ()M

X (P12 ) e, (50,0, 07). (2.10)

Next, we compute the part of m; # 0 terms in (2.9). Since

Lr“) = J “ e—mctts? (o( > 0),

oS 0

The part of m; # 0 terms in (2.9) is expressed by
2

101" (P 2 )

§ : eZni(m]u]Jr--»mnun)

my € Z\{0},m’' e 2"~

2s/n

J —mt{Y L yiva e i (X X imig ) 13@_ (2.11)
0 t
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We transform the summation of (2.11) by applying the Poisson summation

formula
§ :efm n+oc _ § emex n? (212)
nel neZ
to the summations in my,, m,_i,...,m,. Firstly, we pick up the summation in m,.
Since

. 2
2nivu,my, — (X1 My + - - Xpo1, M1 + My)

2
wu,
= —ﬂf(mn +xl,nml + et X, ,nMp—1 _Tn>

— 27Tl'un<)€17nm1 +---+ anl,nmnfl) -

by applying the Poisson summation formula to the summation in m, in (2.11), we
have

. 2
§ : 8271114,,111,,—7zt(x1,,,m] oA X1 M1 1)

my, el

— €—2mun(r1 WP X Py ) — T2 [t

2
§ : e ™ (1, w1 it —itty /1)
myeZ

_ e—Zniu,,(xl‘,,ml+~-+x,171.nmn—1)*ﬂuf/t

§ : eZm X1, Xy | gy — iUy [ ), —Tm,, /t

\/_m,,eZ

Therefore, by rewriting the summation in m,, m; # 0 part (2.11) is rewritten as
follows:

—s/n/ n—1,n=2 2s/n
1O (™ pa ™ yn1)
> § : eZm'(mlul+-~+m,,,1un,1)727ziun(x1Anm1+~-+x,l,1,nm,,,1)

my € Z\{0},m' e Z""!

ezni(xlm'nl At X 1,1 )1y

J 7m{2” lly2 Y2 ey iy mg) P} e (@/0(= un+m,,)zls71/2£. (213)
0 t
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Similarly, by applying the Poisson summation formula to the summations in
My 1, M2, ..., M1y (1 <k <n—1), we have the following identity.

0 (s )P

E : eZni(mlul-o—mm,,u”)

my eZ\{0},m’ e Z"~"

*© no2 dl
. e—ﬂf{Z[z1}’1}’ V2 (XL my Xy g mg)
0

s o 2/n —(k—1) —(k-2 _
= |Q| j/n(y? lyg 2"'J’n71) j/nyl( )J’z< )"‘yk_ll

~ § e2milmin -ty i) | o 2mi(mytAr) (01 i X2, wha Xk k)

my eZ\{0},m’ e Z"~"

. ezn[('nn—l+A2)(xl,n—l"7l+X2.n—1’712+"'+xn—k,n—l’”n—k)

@2 M1kt Ai) (X1 pke P AX0, e 1 Xk et 1P k)

0
k
J e—m{Z,” YR yR (X imy e xisy imisymg) %}
0

o /332 )it at ) = (17 32 5) sz i Ag 1) == (1) (A1)
ry—kﬂ? (1<k<n-1). (2.14)

We prove (2.14) by induction with respect to k. We have already known that
(2.14) holds if k= 1. Suppose that (2.14) holds for ke Z such that 1 <k <

n—2. By applying the Poisson summation formula (2.12), the summation in
my_j is

E @2 A 270 (- A0 X PPt 200 (1 kot ) Xk ke 1 P

m,_x €L

2.2 ' 2
LT (X1 kP Xk 1 kP k1 TP k)

2 A1 (X1 Xkt ik )—mAZ, [y} v}

. 2
E 67HIY%“'}'13<’71n—k+x1,n—kml+“‘+xn—k—l.n—kmn—k—l‘i’lAkH/ty]z'“J/;%)

my_x€ZL
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) : 2 2.2
— 2 Akt (V1 g e Xkt k) =R 10

. 1 E ezﬂi<xl,n—k’71l+‘“+xn—k—l,n—/c’nn—k—l+iAk+l/[y]z'“y/%)””n—k_nn",%,/\./[ylz”‘y/%_
Vi v,y

Therefore, by rewriting the summation in m,_, the right hand side of (2.14)

becomes

n— n — k—1 _
O g2y )Py Ry D !

% § ezm(mlul e gy U1

my eZ\{0},m' e Z"""
. @2 (A1) (1, p 40 g A Xkt 1)

@2 mu 1+ A2) (X1 1m0, 1 Xk i1 1)

@2 (M1 kb Ak) (N1 p ke VP AX2, e 1 Xk ke 1k 1)

. 82711‘("1”7/( F Ak 1) (X1, ne kP AX2, g2 A A1k Pp——1)

0
. J éfm{zn =y '%%—i(xlviml+"'+xi—l.in7iflJ"mi)z} . e’("/f}ﬁz"‘J’f)(m”*k*Ak“)2
0

o~ /T Ve ) skt A = (/12 yE ) (maga gt Ajn) == (/) (ma A1) Zs—<k+1>/2ﬂ,
This is what we changed k to k + 1 in the right hand side of (2.14). Therefore,

(2.14) holds for any k € Z such that 1 < k <n— 1. By inserting k =n — 1 in the
identity (2.14), (2.11) is equal to

1 2. 2 n—2) —(n-3) -1
01"y )y T Y
2mm1u1+2mmlz (M1 j+A7) X1, ns1-
<Y e )
my #£0,m' eZ"!
* _ntp2ep2 m2— 2.2 A, )= A2 L s—(n—1 zdl
. e Vi VoM (ﬂ/t}l },l,z)(m2+ n—l) (n/t>(’”n+ 1) Z‘S (n )/ — (2.15)
t
0

For a,b > 0, K-Bessel function K (a,b) is defined by

Ky(a,b) = J e—<azf+b2/f>zf?. (2.16)
0
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The value at s =1/2 is given by

T —2a
K]/z(a,b) = %6 2 b.

Since the integral in (2.15) is expressed by K, (,_1)/2(a,b), where
a=/almi|yr- yai,

1
b= ﬁ(ﬁ(mZ'FAnl)z
yl “'yn—Z

1 1/2
+ﬁ(m3+/ln2)2+"'+(mn+Al)2> )
yl e yn_3

we have

(The integral in (2.15)),_,/»

— 1 e_zn‘mllyl"'ynfl((]/}712"'}},3,2)(’712+An—1)2+"'+(mn+/41>2>1/2.
[mi|y1--- yui
Therefore, we have
(2'15)|S:n/2 — |Q|—1/2 Z eZnimlul-&-ZninnZ;';ll (M1 j+ A7) X1 ps1— )
my € Z\{0},m' e Z""!
: ! |ef2n\m1m--»yH<(I/y%-"y,?,z)<mz+AH>2+--'+<mn+A1>2>‘/2
m

_ -1/2 IR 1 myf(Q,u,ms,...,my)

Slor Y ared L
m'eZ"! my=1

=-210 " log J] [1—e/(@ummi|, (2.17)

m'eZ"!

In the above computation, we used the identity

0 n
Rezz— = —log|l — z|.
n
n=1

By combining m; = 0 part (2.10) and m; # 0 part (2.17), we obtain the second
limit formula (2.8). N
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We fix ue Z"\{0}. We define a function #,(z,u) of re H, by

| ——y n—1) 2/(n— n—1)/(n— n
77”(‘[,1/!) = eXp(—ETK /2r<§> yll/( l)yg/( K y}ifll)/( I)Cn—l (Eau/aoa Ql>)

™ H (1 _ ef(Q‘u,mg,...,m,,)). (218)
m'eZ"!
Since {,-1(%,u',0,Q") and f(Q,u,ms,...,m,) may be regarded as functions of

7 € H, (not functions of Q), this is well-defined. This is one of the generalizations
of the Dedekind #-function

o0
;7(2) — em‘z/lZ H(l _ eZm‘mz) (Z =x+ip,y> 0)
m=1

Some modular properties of |5(z)| are obtained from the original Kronecker limit
formula. In the same way, we can obtain some properties of |17,(z,u)| by using
our second limit formula. From the second limit formula (2.8), we have

| n n
5 ()01 (5.0.0,0) = togln (e ). 2.19)

Let
1: GL(n,R) — GL(n,R)/O(n) - Z(R) = H,

be the canonical projection and define the action of GL(n,R) on H, by
t—got:=1(gt) (g€ GL(n,R),7€ H,).

Note that this is a group action. By the definition of Epstein zeta function,
Ca(s,u,0,Q) satisfies

Cu(s,1,0,90"9) = Cu(s,9~ 4,0, Q)
for Vg €e GL(n,Z). By combining this and the relation (2.19), as a corollary of

Theorem 2.1, we obtain the following formula for |y,(z,u)|:

COROLLARY 2.2. The function |n,(t,u)| satisfies

lta(g 0 7 u)| = |n,(v,97'u)| (Vg € GL(n, Z)). (2.20)

2.4. An Analogue of Chowla-Selberg Formula

We return to the identity (2.15) in the proof of the Theorem 2.1. From the
definition of A4;,...,4,_;, we can easily verify that the condition m, + A4, | =
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my+ Ay_3=---=m, + A; =0 is equivalent to u’ = (up,...,u,) € Z" " and m, =
Upy .o My = Uy.

Firstly, we consider the case of u’ ¢ Z"!. The integral in (2.15) is expressed
by

- 12
1
K (i-1))2 (\/aml |V1 - Yuets \/E< E [ER (Myy1-j + Aj)2>
I 1

=Y =

where K;(a,b) is the K-Bessel function defined by (2.16). Since u’ ¢ Z"~', for any
(my,...,m,) € Z"' we have Z]Zl(manjJrAj)z/ylz'~~yj2,1 > 0. For ¢ >0, we
define another K-Bessel function Ki(c) by

C ey s A
Ki(c) :J e (2t /)z“7. (2.21)

0

The relation between K;(c) and K,(a,b) is given by
b s
K(a,b) = P K;(2ab) (a,b > 0). (2.22)

Therefore, the integral in (2.15) is expressed by

ol 12 s—(n—1)/2

1 1 i
[my|y1--- yao (Z 2.2 (Mu1-j + 4)) )

=1 YT Vi

n—1 1/2
1
. Ks—(nfl)/Z (27l'|ml |y1 o Vn—1 ( E .2 (m,,+1__/ + A,‘)2> ) . (223)
1

=1 Y i
Thus the right hand side of (2.15) is expressed by

- e 2 —(n-2) —(n—3 _ —s+(n—1)/2
101" (a2 ) 07 " ) e ) Y
% Z e27zim1u1 +27zin112;1:11 (M= j+A;)X1 g1
ml;ﬁO,m’eZ”’l

)(1/2)(3('11)/2)

n—1
. 1
—s+(n—1)/2 2
<y | +(n=1)/ (ZyZ...yz (Muy1-j + 4))
R

n—1 1/2
1
. st(nfl)/z (27’5|Wll |V1- Yot < B R (mn+1_j + A,’)2> ) (2.24)
1



A second limit formula for higher rank twisted Epstein zeta functions 243

when Re(s) > n/2. Since this K-Bessel expansion converges absolutely for any
s € C, this becomes the entire function. Therefore, by combining m; = 0 terms
given by (2.10) and m; # 0 terms given by (24), we have the following formula.

SF(S)CVI(S7 u7 07 Q)
STy )M

(yn Zyn o yn—Z)_ZS/(n_l)Cnfl (Sa M,, Oa Ql)

- n—1_n— —(n-2) —(n-3 —
+|Q| S/”( 1y2 2 yl’l*l)ZS/n(yl (n )y2<n )...yn—IZ)

« (y] [ yn_l)—ﬁ—(n—l)/Z

% § : 2mm1u1+2mmlz 2y (M AN

my £0,m’ e 2"
n—1 1 (1/2)(s—(n=1)/2)
) |m1|—s+(n—l)/2 ﬁ(mn-kl—j + Aj)2
= yl e y]71
n—1 1 1/2
K-z | 27lmr |y yua Zﬁ(mnﬂq +4;) - (2.25)
= yl e yj*l

By the theory of analytic continuation, the right hand side of (2.25) represents
T(5)L,(s,u,0, Q) over the whole s-plane.
Next, we consider the case of u' = (up,...,u,) € Z"!'. The computation of
m' = (my,...,my,) # (ua,...,u,) part is the same, that is, this part is expressed
by the series of K-Bessel functions which converges absolutely for general s e C
and becomes the entire function. The computation of (ma,...,my,) = (uz,...,uy)
part in the right hand side of (2.15) is given by

s/n 2s/n —(n-2) —(n-3 —
1Oy 2y )2 2y L)

« 2.2 a2 dt
E :627111711141. —7zty1~~~y’n711111‘ls—(n—l)/2_

my #0 t
_ o (1)) F(s _n- 1) PRE
s/ng —(n=2) —(n-3 - —Ds+n—
S ) T Y ) v ) !

i cos( 2nm1u1 (2.26)
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Now, the function > cos(2mmyuy)/m """V (Re(s) > n/2) in (2.26) is ex-
pressed by {Liss_(,—1)(€*™") + Liss_(,—1)(e”>")}/2, where Liy(z) is the poly-
logarithm originally defined by

o0
Zn

LiS(Z) = 2 ;

for Re(s) > 1 and |z| < 1. It is known that as a function of s, this function has
the analytic continuation to the whole s-plane. Therefore, we have the following
formula:

7T (5)¢,(s,u,0,0)
— 7T Q (g )P

X (Pp 23 )N (5,0, Q)

)@V“

25 —(n—-2) —(n-3 —
A € TRl P R i | (5 P

T (s n . !

O

. {Lizsf(n—l) (e2niu1) + Li25,(n,1) (e—Zniul )}

Vit )72S+n71

—s/n - - 2s/ns . —(n=2) —(n-3 —
O s ) P )
X (y1y2-e yaor) TR
% Z e2nim1u1+2nim12;;ll (Myg1—j+A)X1 nr1—j

my #0,m' e 2"\ {u'}

. 1 (1/2)(s—(n—1)/2)
[ <Zﬁ s 4) )
j:] 1 .j_l

n—1 1/2
1
Ky ez | 27l yr v | Y (Mg +4;)° - (227)
j=1 Vi yj—l

for any s e C. Summing up, we have the following theorem.

THEOREM 2.3. The twisted Epstein zeta function (,(s,u,0,Q) satisfies the
following identity.

D) If u' = (us,...,u,) ¢ 2", we have
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C” (S’ u} O; Q)
n—1 5 ]
= 101", 1 (s,u',0,0") [ w2/
i=1

n—1
+ 7 T(s) " oI Ty 22

l

i=1
X E eZnin11u1+27zimlz;:ll (M= A X1 1 j
my £0,m'e 2"
n-1 1 (1/2)(s—(n—1)/2)
—s+(n—1)/2 )
] e 2 2 (Mpy1—j + A))
j:l yl e yj—l
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n—1 1/2
1
Ky (n-1))2 2r|my|y1 - a1 ( S5 (Mpg1-j + Aj)2> . (2.28)
. 2

2) If ' = (uy,...,u,) € Z"", we have

Cn(s, u, 07 Q)
n—1
= |Q\7S/"Cn,1(s, u/’ 0, Ql) H yi21s/n(n—1)
i=1

+n“””wnlfG‘n§1)QW

n—1
1 miu : —2niu _is .
. {lesf(nfl)(ez 1) + L12547<n71>(e 2 1)} I | y; is/n+i

i=1
n—1 ) A
+ nsr(s)—l|Q|—S/n H yi((n72z)/n)sf(n72171)/2
=1
% Z Q2Emu+2mimy T (e A1

my #0,m' e 2"\ {u'}

n-l 1 (1/2)(s—(n—1)/2)

—s+(n—1)/2 )

S <2anﬂj+f1j)>
j=1 -

’ Ks—(n—l)/Z 27‘5|m1|y1 C Ve (
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Theorem 2.3 gives the relations between (,(s,u,0,Q) and {,_;(s,u’,0,Q’).
Assume that u = (uy,...,u,) = (0,...,0). In this case, the polylogarithms above
become the Riemann zeta function. By using (2.29) inductively, we can express
C,(s50) = (,(s,0,0, Q) by Riemann zeta function and K-Bessel series. To do this,
we need some notations.

For 7€ H, in (2.3), we define /) e H,_; by

YiY2eVn-1—j ViVaror Vu-2-Xjt1,j+2 0 Xjtln
0 YiyVa- - Yn-2-j o Xit2n
0 0 o Xjdn
() =
0 0 L Xt
0 0 1

(that is, we remove first j column vectors and j row vectors from 1)
(j=0,1,...,n—2) and 7"V := (1). For Q in (2.4), we define (n — j) x (n— j)
positive definite symmetric matrix Q) by

oW = (ypi~ lyg =z ynilij)d/(nff)f(./)tT(.f).

For m= (m,...,m,) €Z", we define mY)eZ"7/ by m) = (myy,...,m,)
(j=1,...,n—=1). For teH; in (2.3) (we replace n by /), we define
AY),Aél),...,A,(I_)I inductively by

k
! ()

A{): 0, k+1_ Z + )X - (K=1)
(1=2,3,...,n). For seC, my,...,myeZ, € H; in (2.3), we define an entire
function Kj(s,my,...,m;,t) by

K[(S,Wl],...,”’l],f)

2mmlz 1m1+1 ]+A )VHH,/-
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(1=2,3,...,n). Finally, for seC, y,...,y-1 >0, we define three functions
ar(s, y1, -, yi-1)s bi(s, yi,. o, vie1), a(s, yi,..., yie1) by

-1
2is/1(1-1 —2is/I+i
al(svylv-“aylfl):||y,‘m/( ), b](S,y],...,y],l):Il)}[.2/+7

i=1 i=1

-1 _ A
(s, yi,- o yie1) = H yl((lizl)/l)k(lizlfl)/z-
i=1

Then the identity (2.26) becomes

1017"8,(5: Q) = au(s, 1, -+, Yue1) 1 (5501

n—1

+aawwqm)w(s )mcyhuwmlx@wﬁn—w>

+7°0(s) " en(s, ¥iy ey Yut) Z K,(s,my,...,my,, 7).
my #0,m) eZ”"\{O}

Note that {, ;(s; Q'V) also satisfies a similar identity. By using this formula
inductively, we obtain the following identity:

k
|Q|S/nCn(S§ Q) = {Haiz(il)(s7 Viseons yni>}an(S; Q(k))
i=1

k
+2

~ (J-1
i — n—
g j)/ZF(s) 11"<s - T]> {Han(il)(s, Plyovnes y,1_,~)}
= i—1

by ey (S, Y15 Yae )28 = (n = )

-1
+7T(s) ! Z{ ap—(i—1)(8, y1,- - -, yni)}

j=1 Li=1

'Cn—(j—l)(SJ/ly---aJ’n—j) Z

m;#0,m() e 2"\ {0}
X Ky (j-1y(s,mj, ..., my, T(jfl)). (2.30)

(1 <k <n-—1). In particular, since ;(s; Q""~V) = 2{(2s), we have the following
expansion formula by letting k =n — 1.

COROLLARY 2.4. The Epstein zeta function (,(s; Q) = (,(s,0,0,Q) satisfies
the following identity:
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|Q|s/nCn {Han (i— 1) S, yl»"‘ﬂyni)}C(zs)

){Han (= Sy1,...7yn[)}

' b,1,(j,1)(s, Viyeeos yn—/)c(zs - (n - .]))

n—1
+2)° n<"f>/2r(s)‘1r<

J=1

n—1

j—1
T S)71 {Hai1—(i—l)(5,yla"'ayni)}

J=1

'cn*(j*l)(saylw--vynfj) Z

m;#0,m() e 2"\ {0}

X Kn_(‘,-_l)(s,mj,...,mn,r(j’l)). (2.31)

REMARK 2.5. The auther thinks this formula is useful to investigate the real
zeros of {,(s; @), since the term of K-Bessel series becomes sufficiently small when
Vis--., Va1 > 0 are sufficiently large. For example, Bateman and Grosswald [3]
established a sufficient condition for the existence of real zeros of Epstein zeta
functions in case of n =2 by using the Chowla-Selberg formula.

3. Determinant of Laplacian

Let A be a positive self-adjoint elliptic operator on L? functions of some
closed connected Riemannian manifold with non-zero eigenvalues 0 < 4} < Ay <
/3 < ---. (The eigenvalues 0 are excluded if they exist). For such A, we associate
the Dirichlet series

1
Eﬁ

1

It is shown in [9] that this series converges when Re(s) is sufficiently large, and
has a meromorphic continuation to the entire plane, which is regular at s = 0.
Formally, we have

= d
—log Hl 7= 2 La(8) g
Therefore, we define the determinant of A by
det(A) = ¢ %),
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We compute the determinant of the Euclidean Laplacian A on some functional
space dependent on u € R"\Z" by using the second limit formula we obtained.
Let ' be a lattice in R" with basis aj,...,a, € R" and 7" =R"/T" be a
n-dimensional torus. We put M = (a;---a,) € GL(n,R). For u= (uy,...,u,) €
R"™\Z", we define a space of asymmetrically automorphic functions on R” by

SU(T") = {f : R" — C, smooth |f(x+aj) = e¥"f(x),j=1,...,n}.

For any meZ", we define o, €R” by o, ="M (m+u). Then the set
{e¥™ "X | m e Z"} forms a basis of S“(T"). Moreover, these > are the

eigenfunctions of the Laplacian

2 2

0 0

A = - — cee R
<6x12 Tt 0x2>

n

since
o TV
QeZTEl Oy X 47_[2 tOCm X ameZm O+ X
_ iy
= 47> ("M - M) [m + u]e>™ ',

Therefore, if we put Q ='M - M and define the zeta function attached to A by

als) =" O M m+u]” =,(5,0,u,07"),
meZ"
the determinant of Laplacian A on S*(T") is given by e~%(). (We normalized Q
by 1/4%, which does not change the value {}(0)). From the functional equation
(2.2), we have

7T ()60 (5, 0,u, 0~1) = |Q|/2a /291 (g - s> ¢ (g — 51,0, Q) . (31)
Since the right hand side of (3.1) is regular at s = 0, the left hand side of (3.1)
is also regular at s=0. But since I'(s) has a simple pole at s=0 (I'(s) =
1/s+ O(1)), the function ,(s,0,u, Q~') must vanish at s = 0. (This is the reason
why the value {}(0) is not changed by the normalization of Q). In other words,
£,(s,0,u,07") has a Taylor expansion

La(5,0,u,07") = £1(0,0,u, 0 ")s + O(s?) (3.2)

around s = 0. Therefore, by using the functional equation (3.1) and the second
limit formula (2.8), we have
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4(0) = lim 16,(5,0.1,07")

= lim 7 T(5){,(5.0,1,07")

_ |Q|l/2 —11/2r< )Cn( u, 0 Q)

_ n/zr(z) Y-, 2/-1) 0/ 1( u.0, Q)

m'eZ"!

Therefore, we have the following result.

THEOREM 3.1. The determinant of Laplacian A:f( s+ - +fxzz) on
SU(T") is given by

det(A) - exp{_n_n/zr(g> yll/(n71>y§/<n71> U yr(znfill)/(niwgfl—l (g ) ula 07 Ql> }

H = ef(Q.,u,mz,».u,mn)|2. (3.3)

m'eZ"!

References

[1] L. Alvarez-Gaume, G. Moore, C. Vafa, Theta functions, modular invariance and strings,
Commun. Math. Phys. 106 (1986), 1-40.

[2] T. Asai, On a certain function analogous to log|n(z)|, Nagoya Math. J. 40 (1970), 193-211.

[3] P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365-373.

[4] S. Chowla, A. Selberg, On Epstein’s zeta-function, J. Reine Agnew. Math. 227 (1967),
86-110.

[5] 1. Efrat, On a GL(3) analog of |7(z)|, J. Number. Theory 40 (1992), 174-186.

[6] 1. Efrat, Determinants of Laplacians and a second limit formula in GL(3), Duke Math. J. 55
(1987), 349-360.

7] P. Epstein, Zur Theorie allgemeiner Zetafunktionen I, Math. Ann. 56 (1903), 614-644.

[8] S. Friedberg, A grobal approach to Rankin-Selberg convolution for GL(3,Z), Trans. of the
Amer. Math. Soc. 300 (1987), 159-174.

[9] S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator

on Riemannian manifolds, Canad. J. of Math. 1 (1949), 242-256.

[10] T. Oda, K. Hiroe, Hecke-Siegel’s pull-back formula for the Epstein zeta function with a
harmonic polynomial, J. Number Theory 128 (4) (2008), 835-857.

[11] C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research,
Bombay (1980).

[12] A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation,
Trans. of the Amer. Math. Soc. 183 (1973), 477-486.



A second limit formula for higher rank twisted Epstein zeta functions 251

[13] A. Terras, The Chowla-Selberg method for Fourier expansion of higher rank Eisenstein series,
Canad. Math. Bull. 28 (3) (1985), 280-294.

Graduate school of Mathematical Sciences
University of Tokyo

Komaba, Meguro

Tokyo, Japan

E-mail address: souno@ms.u-tokyo.ac.jp



