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BERNOULLI-TYPE RELATIONS
IN SOME NONCOMMUTATIVE POLYNOMIAL RING

By

Shunsuke MURATA

Abstract. We find particular relations which we call “Bernoulli-
type” in some noncommutative polynomial ring with a single non-
trivial relation. More precisely, our ring is isomorphic to the uni-
versal enveloping algebra of a two-dimensional non-abelian Lie
algebra. From these Bernoulli-type relations in our ring, we can
obtain a representation on a certain left ideal with the Bernoulli
numbers as structure constants.

1. Introduction

Bernoulli numbers are rational numbers with connections to many branches
of mathematics. Especially, they are closely related to the values of the Riemann
zeta function at negative integers [1], [2]. In this paper, we show a certain
connection between some noncommutative polynomial ring and Bernoulli num-
bers. We let K[x, y] be a noncommutative polynomial ring in two indeterminates
x, y over a field K of characteristic zero. Now, we define 7 = (xy — yx — x) to
be the ideal of K[x, y| generated by xy — yx — x, and let 4 be K|[x, y|/I, the
quotient of K[x, y] by I. Again we use x, y as X = x+ I, y = y + I respectively
(if there is no confusion). We note that 4 is isomorphic to the universal
enveloping algebra of a two-dimensional non-abelian Lie algebra (cf. Remark
4.1). Then, our main result is the following:

THEOREM (Bernoulli-type relations). Let A be as above. We put
wer = ("= yx)x"ed (k=1,/>0).

Then, the following relations hold.
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ko rk
XWk, s = Z( ; >wi,/+1

i=1

k
k+1
VWi, s = Wi, — g ( >Bk+liwi‘/ O
—'k

Here, Bj.;_; are Bernoulli numbers defined in Definition 2.1. Hence, we call
the above relations “Bernoulli-type relations”. Put W = @m>l_n>0Kx”’y” C A,
which is a direct sum by PBW theorem. Then W becomes a two-sided ideal of A.
Using the Bernoulli-type relations, we see that W is generated by {wk /}i1 /50
We can also see that {wk /};5; /50 i @ basis of W.

To start with our motivation, we will explain Bernoulli-type relations in terms
of Lie algebras. We began this study from [3] on some factorizations in universal
enveloping algebras. In [3], they deal with universal enveloping algebras of three-
dimensional Lie algebras. Then they obtained certain general relations. Let €
be a three-dimensional Lie algebra over K and denote by U(L) the universal
enveloping algebra of £. Assume that £ is generated by two elements x, y. Then,
the general relations in U(L) are given as follows:

~
=

1 .
(Ar) yxyf = xyFH 4 Mly  (mod Uy),

k+1y

1 k
k k+1 k+1
(Bx) y'xy= Y e (mod Uy),

(Cx) YU € Ury1, Ury € Upyr, where

U = Z (Kxy™ + Ky"x+ Ky™) (k=0). I

0<m<k

The remainder terms, u =73 _, 4 @Xy’ +byyix+¢;y" +dx e Up with
ap, by, ¢, d € K, of (Ax), (Br) are determined by the generators x, y and types of
2. In the paper [3], they determine some exact forms of u along with a clas-
sification of £ in Jacobson’s book [6].

Here we introduce a rough classification. We put £ = Ke @ Kf @ Kg with its
basis (e, f,g). Let €' be the derived ideal of € and € be the center of €. Then
our classification is given as follows:

(a) If £ =0, € is abelian.
(b) If dim £’ =1 and £’ = €, the multiplication table of the basis is

[evf]:gv [eag]:[fvg]:
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(c) If dim &' =1 and £’ ¢ €, the multiplication table of the basis is

le./1=e, le,g] =f,9] =0
(d) If dim £’ =2, the multiplication tables of the basis are

(d)-(d) [8, f] = 03 [8, g} =e [fa g} - cha
(d)-(+) [e,f1=0, [egl=e+f, [f9]=1,

where o in K*. Different choices of o give different algebras unless
oo’ = 1.
(e) dim &' = 3, the multiplication table of the basis is

le./1=9, l9,el=2e, [g.f]=-2.

In the type (d) or (e), we suppose that K is algebraically closed (just for
our rough explanation). As it is well-known, the type (b) gives a Heisenberg Lie
algebra $H and the type (e) gives a special linear Lie algebra sl;(K). In the paper
[3], they determined the exact forms of u for $, or sl(F) with the above
generators e, f including the case if F is a field of characteristic zero. They also
showed that £ can not be two generated if £ is the type (a) or the type (d)-
(¢ =1). Hence, we were interested in determining the forms in Uy for the
remaining type of £. For our purpose, we explain some results in the author’s
master thesis [10] written in Japanese. In [10], we obtained some properties
between u and the types of £, and determined the exact forms of u if € is the
type (d)-(+). The properties between u and the types of £ are given as follows:

+ We always have u = 0 regardless of the choice of generators if £ is the type

(b).

+ We always have u # 0 regardless of the choice of generators if € is the type

(e).
+ We can get u = 0 by some special generators if £ is the type (c) or (d). (We
also get u # 0 by another generators.)

The exact forms of u are determined if € is the type (d)-(+) with the
generators e and g. The formulas in U(L) are given as follows:

1 1 K k+1Y\
k_ k+1 k+1, k i
(Px) geg = 1Y 9 ey +k+1,~_o< ; )ge,
k 1 & (k1N
k. _ k+1 k+1 kel i k
Q) 9 =1 triY e+7k+1i§:0( 1) ( ; >€g +g"e.
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These are a brief summary of [10]. After we obtained these results, we could
establish the formulas if € is the type (c) with the generators e +g¢ and f +g¢ in
the above classification. Then we noticed that our formulas can be reduced to the
two-dimensional case. That is, we put L = Kx@® Ky as a two-dimensional Lie
algebra satisfying [x, y] = x and denote by U(L) the universal enveloping algebra
of L. Then, the formulas in U(L) are given as follows:

k 1
P k+l k+1
(Pe) yxy* =1t

Kk k
k+1 k+1
Z( )Bk+1 ixy' + Z( )Bk+1 v'x,
i

1 kel g ke
(Qu) yixy = PR T

k
i k+1 .
k+l i i
k+1 E ( ; )Bk+l—ixy
1 k 1 k+1—i k+1 B i
. E (=1 ; k+1-i) X. O

At first these formulas were shown without the Bernoulli-type relations. But
using the Bernoulli-type relations, we could simplify their proofs as in Proposition
4.2.

We will review the Bernoulli numbers B, with B; = 1/2 in Section 2. In
Section 3, we will show the Bernoulli-type relations and study W introduced
before. In Section 4, we will show the above formulas and explain a connection
to Lie algebras. We also mention that U(L) is isomorphic to 4, and that
A=@D,, -0 Kx"y" by PBW theorem.

2. Preliminaries

In this paper, K is a field of characteristic zero. We denote a left hand side
(resp: right hand side) by (LHS) (resp: (RHS)). We also denote by B, the
Bernoulli numbers.

In this section, we review the Bernoulli numbers with By =1/2. We
aim a self-contained explanation in this paper. Thus we confirm our setting
here.
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DeriNITION 2.1 (The Bernoulli numbers).  We define the Bernoulli numbers B,
recursively as follows:

i=0

REMARK 2.2. In general, the Bernoulli numbers are also given by a gen-
erating function. The generating function in our condition is given as follows:

o0

te! n
el — 1 :ZBHE. O

n=0

Here we describe the Bernoulli numbers up to n = 10.

Figure 1 The Bernoulli numbers

n 0 1 2 3 4 5 6 7 8 9 10
B, 1 % % 0 — %10 0 % 0 310 0 %

As well known, there are the other definition of the Bernoulli numbers. If
we denote by B, the Bernoulli numbers with B} = —1 /2, then B, are given by
(-1)"B, for n>0.

REMARK 2.3. In the first half of eighteenth century, the Bernoulli numbers
were discovered around the same time by Jacob Bernoulli and Kowa Seki inde-
pendently. At first, both Bernoulli and Seki took B; = 1/2. Hence, historically,
our definition is an original version. O

3. Bernoulli-Type Relations and the Ideal W

In this section, we show the main theorem and some corollaries. Now, we set
A = K]|x, y]/I, where K[x, y] is a noncommutative polynomial ring in two inde-
terminates x, y and I = {xy — yx — x) is the two-sided ideal of K[x, y] generated
by xy — yx — x. At first, we confirm several elementary formulas for proving the
main theorem.

ProrosITION 3.1. (i) For integers k > i> j >0, we have

()G -GG



102 Shunsuke MURATA

(i) Let A be as above. Then the following formula holds.

ke (kY
xyt = ;( ; ) y'x
(i) Let A be as above. Then the following formula holds.

ykx:zk:(—l)“(];)xyi

i=0
Proof. (i) We can calculate

(k) <J) (K flf)!i! (i —i!j)!ﬂ

k! (k — j)!
(k= DYyt {tk = j) = (i = HIE = ))!

5

(ii) Since xy = yx+x= y(x+1),

xpF = (px + )y = (y+ D!

(y+1)fx= zl(:(l;)yfx.

i=0
(iii) Since yx =xy —x =x(y — 1),

k71<

Vix =yl xy—x) =y Ix(y - 1)

=x(y-1F= zk:(_l)k—’(]lf)xyf.

i=0

Therefore, we obtain the desired results.
Now, we prove the main theorem.

THEOREM 3.2. Let A be as above. We take
wi, = (k= yx)x"ed (k>=1,/>0).

Then, the following relations hold.
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k
k
(BR1) xwis= Z( i)wi/H

i=1
(BRY) Kk 1 i k+1Y
YW, r = kT 1wk+l,/ kil 2 ; k+1—iWi /

Proor. At first, we show (BR1). Using Proposition 3.1 (ii), we can compute
xwy., = x(xyk — y*x)x’

= {x(xy") = ()}’

(0G0
()3 (’;)yfx}xm

Next, we show (BR2) by computing from (RHS) to (LHS). Using Proposition 3.1
(i), we can compute

k 1 K/k+1
=S Bt wi
41kt k+1i1< i ) ktl-itlie

(RHS)

k 1 Gk+1 N
= (ka+l—yk+lx)x/—k—ﬂz< ; >Bk+1i(xy_yx)x{

ko k1N 1 &k+1 S
— i/ _ B _ J /+1.
k+1;( i )yx k+1;( i ) =i 2 (j)yx
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We divide (RHS) into three terms such as x’*! and y*x’*! and otherwise. Then

we have

_ k k+1 /+1 k — l/+1
(RHS)?< k > k+14 i

Since we can replace Bjy;_; with B; in the last term, we have
k+1 : k
RHS k k /+1 i /41 /+1
(RHS) = ky"x k+1z S R

e (') wi() ()

i=2 j=1

=

. ko S k+1\
kylx(+1+k+lz< . )y /+1
i=1

1 K k+1 = AN k
_ B. _ Jl+1 /+1
k+1,-22:< i ) vl <j)yx Tt

j=1
1 &K(k+1 , 1 (k+1

_ Bi /+1 /+l'
k+1120:< i ) ~ +k+1( 0 )x

In the fifth term, using Definition 2.1, we get

kK Srk+1y o,
RH k k /+l i /+1
(RHS) = ky"x k+1; i )7
1 G(k+1 (i jurtl
—IZ ; Bk+l—i2 A
i=2 J=1 J

k /+1 1 /+1 1 /+1
+k+1x k+1(k+1) k+1x '
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K
— kykx/H Z(k+1> i

1 K/ k+1 Ll AV AN
_ iy Jy/+1
Z< e ()

j=1
Replacing the index i with i+ 1 in the third term, we obtain

k+1 y
(RHS) kykx/Jrl k—/f_l ( + )ytx/+1

k— i .
k+1 i+1 :
- Jl+1
k+ Zﬁ (z+1> Z(j>yx '
— j=1
Then, changing addition method in the third term, we obtain

k+1Y\ .,
(RHS) = ky*x'*! + kil ( + )yzx/+1

k+12:{}:(fi:><itl>&H}yu“{

In the third term, using Proposition 3.1 (i), we get

: k k+1 ;
_ gkt i+
(RHS) = ky"x +k+112_1( ; >yx

1 & k+1\ (k+1— .
o Bi_; jx/Jrl.
k+1;{”( j ><i+1—j> Sl

Then, replacing the index i+ 1 — j with i, we get

(RHS) = ky*x"*1 +

k—1
k+1Y\ /4
k+1;< i )yx

1 “{’”(k+1><k+1_j) |
- . Bi—(ivj-1) ¢ y/x"T
ktl =\ !

105
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Since we have (k ) = (kk ]f{ll), we can replace Bj_;,1—; with B;,. Hence we

have

kK rk+1y
_ k /+1 i /+1
(RHS) = ky*x +EIT§ ( ; )yx

i=1

1 ""<k+l){’”(k j+1> }.“
T . Bi py/x’"
112:1: J i1

k i~ k+l t/+1
()

i=1

k k—j . .

1 - 1 - 1 .
Z<k+ ){ (k i+ )Bi_(k j+ )Bo}y_,xm.
= pary i 0

kk /+1

M7

In the third term, using Definition 2.1, we get

kK =/k+1y\
k /+1 i /+1
(RHS) = ky*x k+1,~§_1< ; )yx

k—
k+1 .
Z( * > (k—j+1) =1} p/x/*1
Then, replacing the index j with i in the third term, we have

k— k—
1 1
(RHS) = ky*x"*1 4 § <k+ ) I § <k+ ) (k —i)y'xt!
k—1 k
k+1 i k+1 N it
ik L Z( | ) Z( ) iyt

i=1

: 1 KR (k+1Y
:kykx/+1+k+ i( ‘l’ >yzx/+l
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Replacing the index i with i+ 1, we get

k=1 /N
(RHS) = Z( i>yl+1x/+1'

i=0

Regarding y*!x*! as y(p'x’*!), we have

= y(xp* = yEx)x’
= ywy,, = (LHS)
Therefore, we obtain desired results. O

From the theorem, we can get some corollaries. As has been mentioned in
the introduction, A is isomorphic to the universal enveloping algebra of a two-
dimensional non-abelian Lie algebra. Thus, using PBW theorem, we can put

W= &P K"y

m>1,n>0

Here we put

!/
W' = E Ck, Wk, ¢
k7

Then, the following statements hold.

k>1,/2>0, ¢k, €K,
¢r.r =0 for all but finitely many pairs (k,/) [

COROLLARY 3.3. Notation is as above. Then, W' is a two-sided ideal of A. In
particular, W = W'

Proor. From Theorem 3.2, it is clear that W’ becomes a left ideal of A.
Again using Theorem 3.2, we can see

W’ = Aw170 = Ax.
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Then, we have
Wi'x=(Ax)x = W'
and
W'y=(Ax)y=A(xy) =A(yx+x)=A(y+1)x = W'
Hence, W' is a two-sided ideal of 4. Using Proposition 3.1, we can obtain
n n ]
xmyn — xm—l(xyn) — xm—l (Z( )yl> X,
=0 \ !
which implies W = Ax and W = W'. Therefore, we obtain the desired result.
]

Next, we see that {wg /};~1 /50 1S @ basis of W'

COROLLARY 3.4.  Notation is as above. Then, {wk s}~ ;¢ is a basis of W,
that is, W = @kzl’[zol(wk,/.

Proor. We show {wi /},~ 5o are linearly independent. We assume

n

m
Z ek (pF = yEX)x =0 (myn < )
=1 k=1

with ¢, € K. From Proposition 3.1 (ii), we obtain

n

m
(LHS) = Z e r(xp* = pFx)x’
/=1 k=1

Hence, we have
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m—lx/’-H

Then, the term y appears only in the first term. Using PBW theorem, we

get ¢, =0 for all /. Hence, the second term vanishes. That is, we have

n m—1
LHS ZZQ{/Z( ) z/+l

Continuing this operation, we get ci,, = 0 for all k. Namely, we get ¢, =0
for all k and /. Hence, {wi r};~; />0 1S @ basis of W. O

Next, we show a variation of the Bernoulli-type relations.

COROLLARY 3.5. Let A be as above. We take
wr =xyk —ykxed (k>1).

Then, the following relations hold.
(SBRI) Kk 1 z": k1),
YWi = kr 1wk+1 kr1 - ; k+1-ilWi

k &, ki (k+1
(SBR2) wyy = . LUk+]_k_—HZ(_1) ( ; )Bk+liwi

ProOF. In Theorem 3.2, if we take # =0, then (SBR1) holds.
Next, we show (BR2) by computing from (RHS) to (LHS). Using Propo-
sition 3.1 (iii), we can compute

k . leri=i k+1
(RHS) = k—Hwk+l g i Bk+1—[wi
k K1kt I &Gk+1 i
_ B . r__ l .
il YY) = 1; ) Beni =yl

_ kK RS ki [k +1 i
_k+1<xy 2 (=1 i)Y

i=0

1 & etoi [k +1 - AN
) (ke Bioi| i = ST (1) J
k+1 iil( ) < i ) k+1 Xy . 0( ) (])xy

Jj=
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Kk Ek:( e k+1\
Tkt 14 i)Y

k i—1
—1 k+l l
E kH < ; )Bk+li E (-1) : ](])xy

J=0

We divide (RHS) into three terms such as x and y*x and otherwise. Then we
(=) %k [k +1 oy k =l k1
RHS) =——— - i
RES) =77 & Z:: w
D (k+1\
A I N

1 & et [(k+1 . i .
= N (e By (=1)71 J

i=2 j=1

1 kri-i(k+1 ‘ i-1-0 1\ _ o
_7k+12(—1) ( ; Biy1-i(—1) 0

Since we can replace Byyi_; with B; in the last term, we have

have

k& kTN, (=DF
_ k _ k—i i
(RHS) = kxy +_k+1 g (-1) ( ; )xy +k+1x

i=1

1 & kri—i (kK +1 ll 1)t ' j
—7_‘_12(—1) ( i >Bk+1 —i (]) Xy

J:1

G Y2 AR C S
e e s )BT g )R
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In the fifth term, using Definition 2.1, we get

i

k& kY
(RHS) = kxyk +k—_’_12(—1)k ( )xy
i=1

- (=n* (-n*

M e E G
ko &L (k+1

_ k 1\ k=i i

= kxy +—k+1 1:1( 1) ( ; >xy

Then, changing addition method in the third term, we obtain

1

1 SIS i k+1 i+1 ;
- —1)k Bii syl
k+1;{;( ) <i+1>( j ) ol

In the third term, using Proposition 3.1 (i), we get

k k—1 » k+ 1 ;
i=1

k-1
o k+1 .
(RHS) = kxy* JrkL (1)’“( i >xy’

111
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Then, replacing the index i+ 1 — j with i, we get
= ) k+1\
(RHS) = kxy* + Z . l( ; )Xyl
k+1 k+1-— .
< ) ( ])Bk(i+jl)}xy'/
0t 1)
= k k - ] + 1 ;
Z - Bi_jy1-i pxy’.

Since we have (/‘ ”’1) (k 4l ), we can replace Bj_j;(—; with B;. Hence we

'Z{i

= kxy* + ——

7
HM* »
HM*‘

k—j+1-i
have

kol i k+1
_ k _ k—i i
(RHﬁ—km/+EIT§‘ 1) ( i )w

&k [H k-1
S (B )
k+14 J ; i

k—1
S k+1 )
:kxyk+L (l)kl< + )xy’

1 & kN [ k-4 k—j+1 .
s (NS ) ()
j i=0

In the third term, using Definition 2.1, we get

(RHS) = kxy* + kZ (k 1 )xyi

1 k—1

k+1 A
S0 e

Then, replacing the index j with / in the third term, we have
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k-1
(RHS) = kxy* +L (—l)kl< T )xy’

Regarding y*!x/*! as y(pix’*!, we have

k—1 k ,
RHS (Z k+1 1( )xyz>y
i=0

= (xyk - g(—l)ki<§>xyf>y

= (xp* = yFx)y
=wyy = (LHS).
Therefore, we obtain desired results. |

We can easily see that wy is wg,o in Theorem 3.2. We will investigate
connections between Bernoulli-type relations and Lie algebras in the next sec-
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tion. Using Corollary 3.5, we will show the formulas with respect to Lie
algebras.

4. A Connection between Bernoulli-Type Relations and Lie Algebras

In this section, we consider a connection between the Bernoulli-type relations
and Lie algebras. In the introduction, we roughly reviewed the classification of
three-dimensional Lie algebras. We let € be a three-dimensional Lie algebra over
a field K of characteristic zero and denote by U(L) the universal enveloping
algebra of £. Then we also explain that if £ is the type (c), we have a two-
dimensional Lie subalgebra L of £. Then, L is a non-abelian two-dimensional Lie
algebra. That is, we can write L = Kx @ Ky with [x, y] = x.

Now, we recall our settings in Section 3. We let K[x, y] be a noncommutative
polynomial ring generated by x, y and define 7 =<xy — yx —x) to be the
ideal of K[x, y] generated by xy — yx —x. We let 4 be K[x, y]/I. Then, if we
denote by U(L) the universal enveloping algebra of L, then we can see the
following:

REMARK 4.1. Notation is as above. Then we have 4 = U(L). O

From Remark 4.1, we can use the Bernoulli-type relations for U(L).
Conversely, it is the reason that we can use PBW theorem in A4. Using the
relations in Section 3, we will show the next formulas in U(L).

PropoOSITION 4.2.  Let L be as above. Then in U(L), we have

k 1
P k_ kel g k+1
(Pe) yxy k1Y k+1)C ~

1 S (k+1 N LA | .
-— By +—— Beor 'y,
K1 ( i )k“ AR ( i )"*‘ yx

i=1 i=1

1 k
k _ k+1
(@)yw—mjy et
k
k+1 i+ 1 i
_ Bii1_i
k g ( ; > k+1—iXY

I M»

(k1 -
k+1 ( i >Bk+1—iylx-



Bernoulli-type relations in some noncommutative polynomial ring 115

Proor. Using the Corollary 3.5, we see that (SBRI1) implies (P;) and
(SBR2) implies (Qy). O

ReMArRk 4.3. The above formulas (P;) and (Q,) completely give the
remaining terms of (A;) and (Bg) in case of the type (c) if we replace x, y by
e+g, f+g respectively.

REMARK 4.4. Using the theory of linear algebras, we can establish two-
dimensional Lie algebras as follows:

Let V' be a vector space over K, and End(V) be its endmorphism ring. Put
g=End(V)@® V, and we define

i+ o1, fa v = (fifa = 1) + (fi(v2) = fa(v1))

for all fi,f> € End(V) and v;,v; € V. Then g becomes a Lie algebra. Suppose
that /' € End(V) and v € V satisfy f(v) = cv for some c € K. Put a = Kf @ Kv as
a Lie subalgebra of g. Then, we have

a is abelian (if ¢ =0),
ax L (if ¢ #0).

Remark 4.5. If K is algebraically closed, then three-dimensional Lie
algebras of type (d) corresponding to ((1) /f) in Jacobson’s book [6], on page 12,
are not according to f. Hence, in this paper, we introduce the exact one type as
(d)-(+) at the introduction.

REmARK 4.6. The following equation is pointed out by Mitsuhiro Takeuchi:

Y (C S DL WL S VR LS BV

k+1
k
Z < ; )Bk+1—i{(y+ ' =y}
which gives another proof of (BR2) in Theorem 3.2.
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