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REPRESENTATIONS OF THE NORMALIZERS
OF MAXIMAL TORI OF SIMPLE LIE GROUPS

By

Jun-ichi MATsuzawa* and Makoto TAKAHASHI

Abstract. We study the branching rule for the restriction from a
complex simple Lie group G to the normalizer of a maximal torus of
G. We show that the problem is reduced to the determination of the
Weyl group module structures induced on the zero weight spaces of
representations of semisimple Lie groups. The concrete formulas are
obtained for SL(n,C) in terms of generalized g-binomial coefficients
and Schur functions.

1. Introduction

The zero weight space of a representation V' of a complex semisimple Lie
group G naturally affords a representation of the Weyl group W of G, because
W is by definition the quotient group N/T, where T is a maximal torus of G
and N = Ng(T) is the normalizer of 7 in G. We call this representation of W
the zero weight representation for V, which gives interesting relationship
between the representations of G and those of W. In particular, the W-module
structure of the zero weight space has deep-rooted connection to various
problems in the representation theory of Lie groups such as the analysis of
the plethysm and generalized exponents, etc. ([2], [9], [13]). A natural extension
of this problem is to study the restriction of the whole representation of G to
N. This is what we pursue in this paper. We have a similar problem if we
replace G by its compact real form, which is really an equivalent problem (see

§9).
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This paper is organized as follows. In §§2-5 we discuss the parametrization
of irreducible representations of N. In §§6—10 we study the branching rules from
G to N.

In §2, we recall Clifford’s theory on the representations of an extension group
E of a group H by a finite group F over the field C of complex numbers ([3]),
which is a purely algebraic version of the method of little groups or Mackey
machine ([19], [11]). For an irreducible representation y of H, define E, to be the
subgroup leaving the equivalence class of y invariant and take an irreducible
representation 7 of E, such that |, is a multiple of y. Then the representation of
E induced from 7 is irreducible. Every irreducible representation of E is given in
this way. Furthermore it is shown in ([3]) that 7 is the tensor product of two
irreducible projective representations t; and 7, of E,, where 7; has the same
degree as y and satisfies 7;(gh) = 71(9)x(h) (9 € G,he H), and 7, is the pullback
of an irreducible projective representation of E,/H.

If y can be extended to an ordinary representation (by which we mean a
linear representation) of E,, then these two projective representations can be
replaced by ordinary representations. If E is a semidirect product of H and F,
then this condition holds for all y and therefore all irreducible representations of
E can be obtained from irreducible representations of A and subgroups of F. In
§3 we study the case where H is an abelian group and give a sufficient condition
for all irreducible representations y to be extended to ordinary representations of
E,. Under this condition, the equivalence classes of irreducible representations of
E are parametrized by the conjugacy classes, under the action of E, of the pairs
(x,#), where x is an irreducible character of H and ¢ is an irreducible character
of the factor group E,/H. The characters of E are given in §4.

These results hold for abstract groups and finite-dimensional representations
over algebraically closed fields. Also they are valid for complex simple Lie groups
and their holomorphic finite-dimensional representations, or compact simple Lie
groups and their continuous finite-dimensional representations in complex vector
spaces. In §5 we study the case where H is a maximal torus 7 of a connected
complex semisimple Lie group G and FE is its normalizer N in G, which is an
extension of 7' by the Weyl group W. Although N is not a semidirect product of
T and W in general, the equivalence classes of irreducible holomorphic rep-
resentations of N can be parametrized by the conjugacy classes of (y, ¢), where
x 1s a holomorphic character of 7 and ¢ is an irreducible representation of the
parabolic subgroup N,/T of W.

We show this in two ways. One method is to choose good representatives
in N of the elements of W and apply the results of §2. The other is to find
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a semidirect product group containing N and to apply the results of §3. The
former is canonical, but sometimes the latter is convenient for concrete cal-
culation.

In §6 we discuss the structure of the N-module Vlg obtained from a G-
module V' by restriction from G to N, by applying the results of the preceding
sections for a complex simple Lie group G and the normalizer N of a maximal
torus 7 of G. We show that the problem can be reduced to the determination of
the structure of “zero weight representations” for VLLG;’, where L), varies over the
derived groups of the Levi parts of parabolic subgroups of G. The same results
can also be formulated starting with the compact real forms of G (see §9).

In the last four sections we study in detail the case where G = SL(n,C) by
using Young diagrams and Schur functions. We calculate the multiplicity of an
irreducible representation of N in the restriction of an irreducible representation
of G to N in two ways.

In §7 and §8 we apply the results of §6 and determine the zero weight
representations for VLLG’,). The multiplicities can be written in terms of Littlewood-
Richardson’s coefficient, characters of parabolic subgroups of W and generalized
g-binomial coefficients.

In §9 we adopt the compact group formulation and consider the unitary
group U(n) and the normalizer N’ of a maximal torus of U(n). Since an element
of N’ is a product of a permutation matrix and a diagonal matrix, the restriction
of an irreducible character of U(n) to a connected component of N’ can be
regarded as a function on 7. This enables us to calculate the multiplicities
combinatorially in terms of the Schur functions and Weyl groups. The multi-
plicity formula for Sp(n) on this line is obtained by the second author ([18]).

In the last section we give a series of examples of irreducible modules V' for
GL(n,C) and their weights u such that @veW,, V', is irreducible as an N-module,
where ¥, denotes the v-weight space of ¥ and W, = N,/T. For the case where
=0, every irreducible representation of the symmetric group &, can be ob-
tained as the zero weight representation of a suitable irreducible representation of
SL(n,C). ([8], [9], see also [2]).

Naruse ([14]) and Nishiyama ([15]) have obtained the results in the case
where G = GL(n,C) and N is replaced by the symmetric group of degree n,
which are related to the plethysms and the representations of party algebras.

We would like to thank K. Koike and I. Terada for many conversations and
comments which were helpful in improving the first version of the material. We
are also grateful to H. Naruse and K. Nishiyama for showing their unpublished
papers, and to S. Kato for making us aware of the reference [3]. Finally, we
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would like to express our gratitude to M. Miyamoto for continuous encour-
agement.

2. Representations of Finite Extensions of Groups

Throughout this paper, all representations are finite dimensional defined over
the field C of complex numbers.

We begin with recalling Clifford’s theory on the relationship of represen-
tations of a group and those of its normal subgroup ([3], see also [7] §11). We
include proofs for completeness as well as to confirm some delicate points (see
Remark 2.5 in particular).

The results in this section holds for abstract groups and finite-dimensional
representations over algebraically closed fields. Also they are valid for complex
(resp. compact) simple Lie groups and their holomorphic (resp. continuous) finite-
dimensional representations in complex vector spaces which we will study in the
subsequent sections (see Remark 2.7). In each of thse cases, all homomorphisms
and mappings are morphisms in the relevant category.

Let E be an extension of a group H by a finite group F, i.e. there is an exact
sequence of groups:

l1-H—E—F—1. (2.1)

A section ¢: F — E is a morphism in the relevant category not necessarily
preserving group multiplications. Since F' is finite, there always exists a section.
The group E acts on the representations of H by

g x(h) = x(g ' hyg),

where y is a representation of H, g € E, h € H. The representation g - y is called a
conjugate representation of y and denoted by x9. Let E, be the subgroup of E
leaving the equivalence class of y invariant:

E,={geE|y? is equivalent to y}.

We denote by Irr(G) a complete set of representatives of the equivalence
classes of irreducible representations of a group G and by Irr(G, o) a complete set
of representatives of the equivalence classes of irreducible projective represen-
tations of G with factor set o: G x G — C*.

For y e Irr(H) let

Irr(Ey), = {r e Irr(E,) [ 7| is a multiple of x} (2.2)
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THeoreM 2.1 (Clifford). Let y be an irreducible representation of H and t an
irreducible representation of E, such that the restriction t|y of © to H is a multiple
of x. Let 0, . be the induced representation of E afforded by

Vie= @ 9Uys, (2.3)
geE/E,

where U, . affords t and the summation is taken over a complete set of coset
representatives of E/E,. Then 0, . is irreducible and every irreducible representation
of E is given in this way. Two irreducible representations 0, . and 0, . are
equivalent if and only if the pair (x',7') is equivalent to a conjugate of (x,7): there
exists an element g’ of E such that y' is equivalent to 9" and t' is equivalent to the
representation T o (p;,I, where ¢, is the isomorphism of E, to E, defined by g —

g'99' .

An irreducible representation t of E, decomposes as the tensor product of
two irreducible projective representations of E,: one has the same degree as y, the
other is the pullback ¢ of an irreducible projective representation ¢ of E,/H. The
two projective representations are given as follows. Since y¢ is equivalent to y for
g € E,, there exists an invertible matrix 7;(g) of the same degree as that of y such
that

2/ (h) ==1(9)” 2 (9) (2.4)
for all e H. Since
t(h)e(g) = ©(9)t(g~ " hg)
for ge E,, he H, if we take the matrix representation such that
x(h) Tu(g) - Tulg)
2(h) = . and put 2(g) = | P
x(h) Ti(g) - Twl(g)
then we have
2 T;(9) = Ty(9)x(g™" hg),

and hence, together with (2.4), we have

2N Ty(g)t1(9)™" = Ty(g)t1(g)~ ().

By Schur’s lemma, for fixed g the matrix T,-j(g)rl(g)f1 is a scalar matrix:

Ti(g) = cj(g)ni(9),  cij(g) € C.
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Hence we have a matrix 7,(g) of degree k whose (i, j)-entry is ¢;(g) and obtain

7(g) = 11(9) ® 12(9). (2.5)

Consider two elements g,g’ € E,. Since 71(gg’) and 71(g)7i(g9’) both intertwine y,
they only differ by a scalar factor by Schur’s lemma:

t(9)ti(g’) = alg,g")11(99"), a(g,9") € C*.

Moreover, since

t1(99") ® 12(99") = 1(99") = ©(9)7(9") = 1(9)71(9") ® 12(9)72(9"),
we have
12(9)12(g') = a(g,9') ' 12(g9").

Hence 71 and 7, are both projective representations of E,, whose factor sets are
inverse to each other, and we have 7 =1 ® 1.

Since Tj;(h) =0 for i # j and Tj;(h) = x(h), we can assume that 7,(h) = y(h)
and that 7,(k) is the identity for # € H. Furthermore we can take 7; in such a
way that the factor set o depends only on the coset E,/H.

Let {s;|feF} be a complete set of coset representatives of E/H with

n(s;) = f and sy =1, where n: E — F is the projection. Let F, = n(E,). Let

71(s1) be the identity matrix and fix 7i(s;) (f € F;, f # 1) in any way. Define

ti(seh) = ri(sp)x(h),  wi(h) =x(h), [feF, heH.
Then we have

t1(gh) = ti(9)x(h), gekE, heH, (2.6)
and

t1(gh)ti(g'h") = 1 (9)x(h)t1(g")x(h")
= 71(9)n1(g")xlg’ " hg'x (')
= a(g,¢")e1(99" )19’ hg'h)

=a(g,9")t1(ghg’h’),

hence we have
a(gh,g'h") = a(g,g").

This shows that the factor set « is associated to the factor set of the coset E,/H.
Therefore, by (2.5), we have 1:(gh) =12(g9) (g € E,,h e H) provided that T,



Representations of the normalizers of maximal tori 195

satisfies (2.6). Hence 7, defines a projective representation of E,/H, whose factor
set is inverse to the factor set of E,/H given by o as above.

We next show o is essentially determined by y and the extension (2.1). We
explain this in terms of non-abelian cohomology ([4], [5], [6], [16]), which is
defined as follows.

For groups G and A4, let k: G — Aut(4)/Int(4) be a homomorphism of
abstract groups (even if G and A4 are Lie groups), where Aut(A4) (resp. Int(A4)) is
the group of automorphisms (resp. inner automorphisms) of 4. Let Z*(G, 4, x)
denote the set of all pairs (y,0) of mappings

y:GxA— A((g,a) — y(g)a), 0:GxG— A4,

such that
»(g) mod Int(4) = x(g), geG, (2.7)
7(9")(7(9)(@) = 5(g,9") ' (v(99')(@))(9, 9", (2.8)
9(9.9'9")0(9",9") = (99", 9")v(9")(0(9.9")), (2.9)

for ae 4, g,9',9" € G.
An equivalence relation is defined as follows: (y,d) is equivalent to (y’,6") if
there exists a mapping % : G — A such that

V' (9)(a) = h(g)~' (7(9)(a))h(g), (2.10)
3'(9,9") = h(gg")"'3(g,9") (2(¢") (h(9)))h(g"), (2.11)

for ae 4, g,¢9' € G. The cohomology set H*(G, A,x) is the set of equivalence
classes in Z?(G, A,x), which is the set of equivalence classes of extensions of A4
by G,

l1-A4—-E—-G—1,
such that there exists a section s : G — E and « is the image in Aut(A4)/Int(4) of
the automorphism of A given by a — s(g) ' as(g).
In our case, let G =F,, A= GL(V,) and x =1 (sending F, to the identity),
where y : H — GL(V,) is the irreducible representation. Let f be the normalized
factor set of the extension (2.1) associated with the representatives {sy | f € F}:

spspr=sp LS, S f e F B S e H,
ﬂ(17f/) :ﬁ(f71) =L
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LemMa 2.2. Let y: F, — Aut(GL(V,)) be the mapping defined by y(f)(X) =
7] (sf)lerl(sf). Then
(i) (1o 'Iy),(y,x0B) € Z*(F,,GL(V,),1), where Iy, € GL(V,) is the iden-
tity transformation and (o 'Iy))(f, ') = o (f, f )y,
(it) (1,07'1y)) is equivalent to (y,y o p).

Proor. (i) Since o' satisfies the cocycle condition, (1,07'1y)) satisfies (2.7),

(2.8) and (2.9). Since p(f) € Int(GL(V,)), (2.7) is satisfied for y. For f,f’'€F,
and X € GL(V,), since

T (sp)Ti(syr) = alf, f")ei(spsyr)
O(<f7f/)‘[l (Sff’ﬁ(f7 fl))
a(f, [ i(sg)n(BUf, 1) (by (2.6)) (2.12)

we have
() OU)X)) = (@ls)ni(s) " X (@1 (s)msr)
= 2B /D) @ilsy )™ X (sy))x(BU L )
= (o B SN U X)) (o B -

Since f satisfies the cocycle condition

BUL LB ") = BUF' s BUE S s

we have
o BYL S o DS L") = 2B £ "N (B 1))
= 2B, LB 1)
= 2 (BUF" ")spd B )5y
B S ) (B £ )T (sp)

= (e B S () e BUF L))

(ii) Let h: F, — GL(V,) be the mapping defined by A(f) = 7i(ss). Then, for
feF, XeGL(V,), we have

P(N)(X) =71(s) " X1 (s7)

= h(f)" Xh(f).
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It follows from (2.12), we have

KBS =ails) ol S aa(sp)n(s), S0 € Fy
Thus (2.10) and (2.11) are satisfied. O

It follows from Lemma 2.2 that two cocycles (1,07 'y ), (7,10 p) € Z*(F,,
GL(V)),1) (7: F, — Aw(GL(V,)) is defined by y(f)(X) = 71(sy) ' Xri(s)) de-
fine the same cohomology class in H?(F,, GL(V,),1). If x is given by a
homomorphism G — Aut(4), then H?(G,A,x) is canonically identified with
H?*(G,Z(A),x), where Z(A4) is the center of A ([16] 1.17). If A is abelian,
H?(G,A,x) coincides with ordinary cohomology H?(G,A), where G acts on A
via k. Thus we have

HZ(F;(» GL(V}:)a 1) = HZ(FXaCX)v

since Z(GL(V,)) ~C*.

The discussion above shows that the factor set o is determined by the ir-
reducible representation y of H and the factor set of the extension (2.1).

The results are summarized as follows:

THEOREM 2.3 (Clifford).
(i) Let y, © be as in the Theorem 2.1. Then
T=1Q10

where t| and Ty are irreducible projective representations of E, such that
the degree of 1| is same as the degree of y and t(gh) =11(9)x(h),
72(gh) = 12(9) for all g€ E, and he H, so that t, can be viewed as a
projective representation of the factor group F, =E,/H. The represen-
tations Ty and t can be taken to be ordinary representations of E, if there
exists an ordinary representation t| such that t(h) = y(h) for all he H.
(i) Conversely, for a given y € lrr(H), there exists an irreducible projective
representation 11 of E, such that ©,(gh) =t(9)x(h) (9€ E,,he H) and
Tl = x. The factor set o of 1y is determined by the cohomology class of a
2-cocycle . € Z*(F,,C*), which is given by y and the extension (2.1). Let
7y be the pull back of an irreducible projective representation of F, = E,/H

with factor set @ '.

Then =1, ® 75 is an irreducible ordinary represen-
tation of E, such that t| is a multiple of y. Furthermore if T, is fixed, then
there is a one-to-one correspondence between Irt(E,), and Irr(F,, &) by

the relation that t is equivalent to t| ® 7.
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REMARK 2.4. If E is a semidirect product of H by F, then F is regarded as
a subgroup of E. We can write an clement of E uniquely in the form fh, f e F,
h e H. If furthermore H is an abelian group A4, then any linear character y can be
extended to a linear character 7; of E, by putting

t(fa) = y(a), feF, aeA, (2.13)

since (fa)(f'a’) = (ff")(a’'a’) and y(a’") = x/'(a) = y(a) if f’ € F,. Hence, by
Theorem 2.3 (i), the irreducible representations v of E, restricting to multiples
of y on A are given, up to equivalence, by the representations 7; ® 6, where
&:aon|EZ, ogelrr(F,). We will denote 71 ® 6 by x X o in the sequel. We
have

Irr(E) = {0,140

x € Hom(A4,C*)/F,0 € Irr(F,)},

where y e Hom(4,C*)/F means, by abuse of notation, that y varies over a
complete set of representatives of the F-orbits of linear characters of A.

REMARK 2.5. The condition (2.6) is worth special attention. We cannot
replace 7; by another projective representation 7| of E, equivalent to 7; if 7]
doesn’t satisfy (2.6).

For example, if y is one-dimensional, e.g. if H is abelian, the projective
representation 7; of E, is also one-dimensional, and hence equivalent to any one-
dimensional linear representation 7, e.g., the trivial representation. However, this
does not mean that y can be extended to a linear representation of E,, unless
71|y = x honestly holds. Accordingly, the condition that H is abelian does not
assure that 7, can be taken to be linear representations.

In fact, let E= Qg = {a,b|a* =1,a*> = b*,b~'ab=a"') be the quaternion
group and H its center Z = {a?), which is the cyclic group Z, of order 2. If y
is the trivial representation 1 of Z, then E, = Og and we can take 7; to be
the trivial representation of Qs. Since the factor group Qs/Z is isomorphic to
Zy ® Z», Irr(Qs/Z) consists of 4 one-dimensional representations, which, together
with 7;, define 4 one-dimensional representations of Qg by Theorem 2.3 (ii). If y
is non-trivial representation —1 of Z, then E, = Qg. Since Irr(Qs) consists of 4
one-dimensional representations obtained as above and a two-dimensional faithful
representation, there is no one-dimensional representation of E, = Qg such that
its restriction to Z is —1.

In §5, we will study the case where H is a maximal torus 7 of a complex
simple Lie group G and E is its normalizer N in G. Any character y of T can be
extended to N, (Theorem 5.1). This follows not only from the commutativeness
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of T but also from special conditions for the representatives in N of the elements
of the Weyl groups.

REMARK 2.6. Theorem 2.1 and 2.3 show that the irreducible representations
of E can be parametrized by the equivalence classes of pairs (y,7,) with
yelrr(H) and 7, € Irr(F,, o), where o e H?*(F,,C*) is determined from the
non-abelian cohomology class 8 € H?(F,, H, k) attached to the extension (2.1) by
the condition

Here y : H — GL(V)) and iy, : C* — GL(V/) is the isomorphism from C* to the
center of GL(V).

ReMARK 2.7. If E and H are complex (resp. compact) Lie groups, then this
parametrization nicely “restricts” to that of the irreducible holomorphic (resp.
continuous) representations of E by those pairs (y,7,) in which y is holomorphic
(resp. continuous). This can be verified by checking that each operation used in
the proof of Theorem 2.1 and 2.3 “preserves” the kind of the representations
considered. We observe this in the paragraphs below for complex Lie groups and
holomorphic representations. The other case is utterly parallel.

Under our assumption, the groups £ > E, > H form a chain of open sub-
groups. A representation of such a group is holomorphic if and only if its
restriction to an open subgroup is holomorphic. Also, subrepresentations, direct
sums and conjugates of holomorphic representations are holomorphic. (By a
conjugate we mean a conjugate of a representation of H or E, by an element g of
E, which is a representation of H or E,, respectively.)

Now if y and t are holomorphic in Theorem 2.1, then the induced rep-
resentation 0, . is also holomorphic since 0, .| is a direct sum of conjugates of y.
In the other direction, if 0 € Irr(E), then y and t such that 0 ~ 0, . are obtained
as subrepresentations of 0|, and 0| . Hence if ¢ is holomorphic, then y and 7 are
holomorphic. Note also that the equivalence of (y,t) as defined in Theorem 2.1
preserved holomorphicity.

Moreover if y is holomorphic, then any 7 € Irr(E,), is holomorphic since its

restriction to H is a multiple of y by definition. Hence,xin this case, Theorem 2.3
readily gives a parametrization of the irreducible holomorphic representations of
E, restricting to multiples of y on H by the irreducible projective representations
of E,/H with cocycle &~!. Note that, in this case, any projective representation

71 of E, which extends y and satisfies (2.6) is a holomorphic map from E, to
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GL(V,) since it is so on each of the cosets of H, which form a (disjoint) open
covering of E,; and that the pullback 7, of a projective representation of E,/H is
also a holomorphic map since it is constant on each coset of H.

3. Relation to Semidirect Products

We will study the representations of normalizer N of a maximal torus of
SL(n,C) in the last four sections of this paper. The representations are closely
related to those of the normalizer N of a maximal torus of GL(n, C). The group
N is the semidirect product of the subgroup consisting of the diagonal matrices
by the symmetric group of degree n and contains N. With this example in mind,
we consider, more generally, the case where H is an abelian group and study the
relationship between the representations of a semidirect product group and its
subgroups.

Let us keep the notation of §2.

AsSUMPTION 3.1. Let E be the semidirect product of an abelian group 4 by
a finite group F:
|l A—ELF 1
and E a subgroup of E satisfying 7(E) = F. Putting 7 = il and 4 = ker n, we
have an extension

l-4—-ELSF—1,

which is not split in general.

For ae A, feF, the element s;lasf is independent of the choice of a
representative s, with n(ss) = f, because A4 is abelian. Thus we denote it by a’.

Since E is a subgroup of E, an element of E is written in two ways: sra in E
and fa' in E with a,a’ € A, f € F. These are related as follows. For each f € F,
there exists a unique element & € 4 which satisfies

S/' = fgf, (31)
thus we have

a' =éa.

LemMA 3.2. The factor set [ is given by

&'e

pUS) =T
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Proor. By (3.1), we have

spsp = s B ")
= f'&r B, 1)

We also have

spspr = fef e

=1'g

Thus we have

,..f’., .
By =LL 0
Sk

The action of E on the character group X of 4 induces an action of F on X.

For a character y of A, let F, be the stabilizer subgroup of y in F.

By Remark 2.4, the irreducible representations of E are given, up to equiv-

alence, by the representations 0y y«, where 7 € Hom(y,C*)/F and o € Irr(F,).

THEOREM 3.3. Let y be a linear character of A, and suppose that there exists

a linear character 7 of A such that Zl4=x and F; = F,.

(i)
(i)

(i)

Every irreducible representation 0; 3. of E remains irreducible upon
restriction to E.

For an irreducible representation 0, . of E, the projective representations
71 and t; of Theorem 2.3 can be taken to be ordinary representations in
the following way. Let T be a linear character of Ex defined as in (2.13)
and ty = T1|g . Then 1y is a linear character of E, with t\(a) = y(a) for all
a € A. Hence 7t is an ordinary representation, which defines the irreducible
representation ¢ of F,=1F; Put ©o=6 and T=71 @7, where ¢ =
oodt|g. Then

Oz, 7210l = Oy . (3.2)

Suppose that such y exists for every linear character y of A. Fix the choice
of such a linear character } for every y. Then the representations 0, . =
O3.3%0|,, parametrized by the pairs (y,o) in the following way, form a
complete set of representatives of the equivalence classes of irreducible
representations of E: y varies over a complete set of representatives of
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the F-orbits of linear characters of A, and T =7, ® 6, where 7| is deter-
mined from 7 as in (2.13) and ¢ varies over Irt(F,), a complete set of
representatives of the equivalence classes of irreducible representations of
F; =F,

Proor. (i) Since

(fa) (aef ) (*S?f')v f& € E/7

a 7(E,)-invariant subspace is also #(E,)-invariant. Hence 7 = 7| g, is irreducible
and ei‘f|E = 0;{77.

(i) We have 71|, =y, since 7i|; =%, A=E,NA and y = y|,. Since 7| is a
linear character of E,, 7, is also an ordinary representation by (2.5). By con-
struction, we have 7| E =TI and 7| E, = T2, SO that 7| E =T Hence

9)?,%|E = HX-T'

(iii) Now suppose that the assumption at the beginning of this Theorem
holds for every linear character y of A. Let R(4, E) be a complete set of repre-
sentatives of conjugacy classes of linear characters of 4 under the action of
E.

It follows from Theorem 2.1 that every irreducible representation of E is
equivalent to some 0, ., where y € R(4, E) and 7 € Irr(E,),. By (ii), we have =
11 ® (gon|g ). Here 7 is given by x as in (ii) and ¢ is an irreducible repre-
sentation of F,. Let ¢’ be an element of Irr(F,) which is equivalent to o. Then
0, is equivalent to 0, ;& (o'omly )> since 7 is equivalent to 71 @ (¢’ 07|y ). By
Theorem 2.1 again, 0, (conly) and 0, g romly ) (x:x' € R(4,E), 0 € Irt(F,),
o' e lrr(F,)) are equlvalent if and only if y =y /and o=a'.

Conversely, let y be an element of R(4,E) and o € Irr(F,). Then we obtain
an irreducible representation 0; ; with T = y X ¢ as in Remark 2.4. By restricting
03z to E, we have an irreducible representation 0, .. O

For 7 we define a function e¢; on F by
() = 2(&)- (33)
COROLLARY 3.4. For sraek,,
(sya) = ez(Nr(a)a(f), (34)

where ¢ € Irr(F,) is defined as in Theorem 3.3 (ii).
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Proor. For fae E; we have
i(fa) =u(/a) ®n(fa)
= 2(a)a(f).
It follows that

(sra) = T(facr)

since y(a) = y(a) for ae A. U

ExampLE 3.5. (1) Let T (resp. T) be the group of all diagonal matrices in
G = GL(n,C) (resp. G = SL(n,C)) and N (resp. N) its normalizer in G (resp. G).
The extensions

1 T—-N—-W-—=1
and
l-T—=N—->W-=1

satisfy the conditions in Assumption 3.1, where W is the Weyl group of G with
respect to T (resp. of G with respect to T) isomorphic to &,.

Any character y of T is the restriction of a character 7 of T. For a sequence
of integers m = (my,...,my,), let g, : diag(fi,...,5,) — & --- 1 be a character
of T. Then two characters 7=y, and 7' =7, of T restrict to the same
character of 7 if and only if m’ =m+ (k,...,k) or equivalently 7' = 7 ® (det)".
Therefore if x|, =y, then W; =W, and the assumption of Theorem 3.3 is
satisfied.

For n =2,
~ tn 0 ~ ~ 0 f
T = ,eC*y, N=TU
{6 o)l w=ro{(, 5)
h 0 0 A
T = x =T
{6 e wv=rof (L 0)

l,’ECX}
151 ECX}.
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Let
- n 0 ~ 0 ¢ t 0 0 t
= ! s t = ! y = ! 1 ) [, = 1 1 3
0 ©n th 0 0 0 —h 0
P - 0 1
=19, 9= 1 0)

For an integer m let y(¢) = ¢/" and j(f) = /" ;" with m = m; — my, m; € Z. Then
Xlr =1
(i) If m#0, then N, =T and W, is trivial. Let 7 = y. Then

V}(.r = U)(,r @ gU){,‘r

Take a non-zero vector e € U, ;, and put e; = ge; € gU, .. The matrix
representation of ¢, . with respect to the basis {e;,e;} has the form

tm 0 , 0 (—ll)m
0Z»T(t) = < (l) [m)’ HXaT(t ) = (tm 0 )
1 1

(ii) If m=0, then Ny=N and W,=W ~&,. Let )Z(f):(tltz)k and
‘El(f) = f](l’) = (lllz)k. Define 71 = %1|N: then Tl(l‘) =1 and

w=a((6 8 )ACE D)o

(a) For the trivial representation of W, ~ ©,, we have 7, =1 and
O,.=1=11®n=1®1L
Hence we have
Op:() =1, O,:(1") = (=1)".

(b) For the sign representation of W, ~&,, we have 1(f) =1,
75(¢') = —1. In this case we have

O:(0) =1, 0,.(t) = u()na(t') = (=1)".

We next consider the representations of N.
(iii) If m; # my, then Ny = T. Let ¥ = 7. Then

VX“'_’-[— = U)E’f (—B gUX“'ﬁf.
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Take a non-zero element é; € U; ;, and put é, = gé;. Then we have the
matrix representation with respect to the basis {e},e;}

. T ) ~ 0 (=)™ 83"
0;:(F) =" 2 07:(t') = 2 ).
w0=("5 ) 5O ("

The restriction 0; ;|y is the representation in (i).
(iv) If my = my =k, then Ni =N and W; =W ~ &,. Then 71(f) = x(f) =
(lllz)k and

=a((§ (5 )43 -

(a) For the trivial representation of W; ~ &,, we have 7, = 1 and 0; ; =
71 ® 7,. Hence

05.:() = 05.:(t') = (h12)".

The restriction 0; |y is the representation in (ii)(a).
(b) For the sign representation of Wj; ~ S,, we have 0;:(f) = (n16)*

and

0r.+(t') = x((? (1>><Zé 2))
()G 2)e=((C )G )

=~ ()"

Hence 0; ;|y is the representation in (ii)(b).

(2) We may realize the symplectic group Sp(2n,C) as the set of matrices X
of GL(2n,C) satisfying 'XJX = J, where J is the matrix

JﬁOI,,
T\ -1, 0)

Let T be the group of all diagonal matrices in Sp(2n,C) and N the normalizer of
T in Sp(2n,C). The Weyl group W = N/T, faithfully represented as a group of
automorphisms of 7 acting by conjugation, is generated by the permutations
of the indices {1,2,...,n} of the elements ¢ = diag(t1, ...,y t;',...,2,') (which
permute f,...,%, and ;!,... £ 1 in a parallel manner) and the transposition that
exchange f, and f,;!. This naturally gives an embedding 1: W — &,, as the
permutations that commute with (1 2r)(2 2n—1)---(n n+1).
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Let T be the group of all diagonal matrices in GL(2n,C). The group W can
be realized as a subgroup of GL(2n,C) consisting of the permutation matrices
representing the elements of (W) < S,,. Let N be the subgroup of GL(2n,C)
generated by 7 and W, which is isomorphic to the semidirect product of T by
W. Then N is a subgroup of N, and (W,T,N,T,N) satisfies Assumption 3.1.
For a character y of T given by y(t) =¢/" --- /", define a character y of T by
(&) =1t"---f". Then we have y|; =y and W; = W,.

(3) The orthogonal group SO(m,C) is realized as the set of matrices X of
SL(m,C) satisfying ‘XJX = J, where J is the matrix

o
Eo

0 1,

J =
I, 0

for m =2n+1, J( > for m = 2n.

o ™~
o o
—_— O O

Let T be the group of all diagonal matrices in SO(m,C) and N the normalizer of
T in SO(m,C). If m =2n+ 1, the Weyl group W = N/T, as in (2), is generated
by the permutations of the indices {1,2,...,n} of the elements ¢ = diag(t, ..., ,,
il 1) of T (which permute #,...,14, and #;!,...,7,! in a parallel manner)
and the transposition that exchange 1, and #;!. If m = 2n, the Weyl group is
generated by the permutations of the indices {1,2,...,n} of the elements ¢ =
diag(t1, ..., ty, 27", ... ;') of T (which permute 7,...,7, and ;!,...
parallel manner) and products of even numbers of transpositions that exchange #;

671 in a
and 7!, This naturally gives an embedding 1 : W — &,, as the permutations that
commute with (1 2n)(2 2n—1)---(n n+1).

Let T be the group of all diagonal matrices in GL(m,C). The group W can
be realized as a subgroup of GL(m,C) consisting of the permutation matrices
representing the elements of (W) c S,,. Let N be the subgroup of GL(m,C)
generated by 7 and W, which is isomorphic to the semidirect product of 7' by
W. Then N is a subgroup of N, and (W,T,N, T, ]\7) satisfies Assumption 3.1.

m|

For a character y of T given by y(¢) = ¢/" --- )™, define a character y of T by
(&) =1¢"---". Then we have x|, =y and W; = W,.

4. Formula for Irreducible Characters of Finite Extensions

of Abelian Groups

In this section, we calculate the character , . of 0, . for the case where E is
an extension of an abelian group A by a finite group F:

l-A4A—-ESF—1.
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The notation is as in the preceding sections. Let 7 be an irreducible representation
of E, whose restriction to 4 is a multiple of y. Let ¢, . be the character of 7. By
(2.3), we have

Vo)=Y 9,09 99",
g'€E/E,
999’ €E,

where the summation is taken over a complete set of coset representatives of
E/E,. Since E/E, = F/F,,

lp}{af(g) = Z ¢Z,r(f~_lgf)7
feF/F,
f'nlg) feF,

where the summation is taken over a complete set of coset representatives of
F/F, and f is an element of n~!(f).
For ge E, put

I(g)={feF|f'n(g)f eF,}

Then I(g)F, =1(g) and

Z (1)), (4.1)

el(g

where [ is an element of 7~ '(f).

Let Ky be the conjugacy class of feF in F. If koe F and ky'n(g)ko =
fo € Ky(g) N F,, then, for k € F, k-'n(g)k = f; if and only if kk;' is an element of
the centralizer Zr(n(g)) of n(g) in F.

Let ®y: F — F be the mapping given by k — k~fk. Note that Im Dy =
K. We have

I(g) =@, 4(F)= || @)(/o) (disjoint union) (4.2)
\ Jo € Kaig)NFy

and, for each fye Ky, NF,, we have
(I>;<1g)(f0) = Zr(n(g))ko if we pick any ko e(I);(;)(fo). (4.3)

Now we have the following.
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ProPOSITION 4.1. Let g€ E.

(i) For each fye F,N\ Ky, fix an element ko€ F with fo = ky'n(g)ko, then
1 1
l//)(,‘[(g) = ﬁ Z Z wx,r(x 1gx)7
XV fo € FyNKr(g) x€ Zp(n(g))ko

where ¢, . is the character of © and X is an element of 7 (x).
(i) Suppose E is a semidirect product of A by F and t is given by y X g (see
Remark 2.4). Let g= fac E with fe€F and ac A. Then we have

> %(ﬁ))( > x(xlax>>,

| ,{|f0eF NKy xe®;'(fo)

v, (fa) =
where ¢ is the character of o.

Proor. (i) This follows from (4.1), (4.2) and (4.3).
(i) By (4.1), (4.2), we have

V) = 3 > 0l ()

| 7|ﬁ)eF NKr xed, " (/)

Since x~!(fa)x = (x~'fx)(x 'ax) = f~*a*, we have

0. (X" (fa)x) = x(a*)g, (/)
and hence

1

v, (fa) = Y 2@,

| 7|foeFﬂK/Aeq> ')

: S d@)d,(h)

|Fx|ﬁ, €F,NKs xed, ()

- Y %(fo)( 3 x(ax)) 0
Jo)

| X'/ﬁ)EFXﬂKf xe(I)/’l( 0

ExampLE 4.2. Let T be the group of all diagonal matrices in GL(n,C) and
N the normalizer of T in GL(n,C). Then W = N/T is isomorphic to the
symmetric group &, of degree n and N is a semidirect product of T by S,:

1= T—-N-W=C,—1
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(i) For t=diag(ti,...,t,) €T, let x(¢t) =" ---t, where my,...,m, are
distinct integers. Then W, is trivial and the trivial representation is the
only irreducible representation of W,. Hence 7=y X1 (see Remark
2.4). Since W,NK, = for any non-trivial element w of W. Hence
Y, (wt) =0 forwe W, w#1,teT. For w=1, we have W,NK; = {1}
and

Hence we have

weS,

— Z l . my,
weS,
(i) Let (1) =(t;---t,)". Then W, =&, and W,NK,, =K, for all we &,.
Hence we have

Dpev) = 3" g, 3 ),

‘uek, ve®;, (1)

5. Case of the Normalizers of Maximal Tori

Let G be a connected complex simple Lie group. We apply the results of
preceding sections to the case where A4 is a maximal torus 7 of G, E the
normalizer N of T in G and F the Weyl group W of G:

1= T—>NZSW 1.

In the following sections we write u for a weight of a representation of G
with respect to 7 and regard u as a linear character of 7. Thus, for the sake
of brevity, we use the letter u, instead of y which is used for an irreducible
representation of H or A in the previous sections, for a linear character of T
when H or A is a maximal torus 7 of G.

When G is the classical group SL(n,C), Sp(2n,C) or SO(m,C), if we take T
and N as in Example 3.5, then (W,T,N, T,N ) satisfies Assumption 3.1 and the
assumption of Theorem 3.3 (iii). Thus we can apply the results of §3. In general
we can extend a linear character u to a linear character 7; of N, by choosing
good representatives in N of the elements of W and apply the results of §2.

We first recall some results about the representatives in N of the elements of
W ([17] 9.3).
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Let ® be the root system of G with respect to T and (,) the inner product
induced on the character group of 7 or the weight lattice by the Killing form. Let
B be a Borel subgroup containing 7', IT = {a,..., 0} the corresponding basis of
® and O the set of positive roots. For each « € @, let u, be an isomorphism of
C into G such that

tu,(x)t = u,(a(t)x), teT,xeC. (5.1)
We can choose u, and u_, for each o e ®' in such a way that
ny = ty(D)u_y(—1)u, (1)

is an element of N and represents the reflection s, € W associated to «. Then nf
lies in 7. We denote it by ¢,, which is given by «¥(—1), where o” is the coroot
with (o, 0¥ = 2.

The normalizer N is generated by T'U{ny,,...,n,} and determined by the

relations:
=1t t,t'eT (5.2)
n2=o"(-1), aell (5.3)
nutn,' =s,(t), teT,oell (5.4)
Ry My My, = =+ = Ny My g - (5.5)
my my

where my; is the order of s,.s,.

Forwe W, let w=s, ---s, be a reduced expression of w with y; € IT. Then
the element n, ---n, of N is independent of the choice of the reduced expression
of w. Denote this by n,. Hence we have a set of representatives {n, |we W} in
N of the elements of W provided that we fix {u,|ox e ®} and a basis IT of ®.

THEOREM 5.1. (i) Let u be a linear character of T and N, the stabilizer of u
in N. Let t; be the mapping of N, to C defined by t\(n,t) = u(t), we Wy, teT.
Then Ty is a linear character of N, satisfying ti|; = w

Let A" denote the set of the linear characters of T which are dominant with
respect to L If pe A" and o € Irt(W,,), then we write t(u,a) for the represen-
tation 11 @ 12 of N, where 11 is defined from p as in (i) and 1, =6 =go (7T|N,,),
Le.

(1, 0) (1) = (o (w).
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(i) The representations t(u,c) of N, just defined above, where g varies over
Irr(W,), form a complete set of representatives of the equivalence classes of ir-
reducible representations of N, whose restrictions to T are multiples of p. More-
over, the representations 0, (., of N with ue A" and o € Irt(W,) form a com-
plete set of representatives of the equivalence classes of irreducible representations
of N.

If ©elrr(Ny),
that T = t(u, o) in the parametrization currently discussed (using the representatives
{ny,|weWw}).

(see §2), then there exists a unique element o € Irr(W,) such

Proor. (i) Since y is dominant, W), is a standard parabolic subgroup. Thus
N, is determined by the relations (5.2)~(5.5) for Il, = {a € IT| (o, #) = 0}. Thus
we have to check

11 (n,)* = 1 (a¥(—=1)), aell,
T ()t ()t (ny) " = 11 (s,(2)), teT,aell,

1 (15,71 (1) T1 (1) -+ = T1 (1 )T1 (15, )T1 (1) -+ i, 05 € T

mi; mi;

The last equation is obvious since 7;(n,) =1 for a e Il,. Since <{a*,u) =0,
we have

(2 (=1)) = p(@'(=1) = (=) =1,

which is equal to rl(na)z. Since 7;(n,) = 1, we have

11(n,)11 ()11 (n,) " = 71 (1) = wlt).

On the other hand, we have

T1(52(2)) = p(so(1)) = p(0),

since s, € W,.

(ii) By (i) every character x of T can be extended to a character 7; of N,.
Since every W-orbit of linear characters of T contains a unique element of A™,
the statement follows from Theorem 2.1 and 2.3. O

The proof of Theorem 5.1 (i) is based on the special properties of the
representatives {n,, | w € W}. The next proposition gives a necessary and sufficient
condition for the existence of 7; for a finite extension of a complex algebraic
torus:
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PROPOSITION 5.2. Let E be an extension of a complex algebraic torus A by a
finite group F:

l—A—-ESF—1.

For a linear character y of A, there exists a linear character vy of E, such that
T1| 4 = x if and only if there is a complete set {ef}fer of coset representatives of
E,/A such that efef«ef}% ekery for any f,f'€F,.

Proor. The result is obvious if y is trivial. Suppose y is not trivial and
hence Imy = C*. Denote by I'(F,), the set of complete sets {e/},. of coset
representatives of E,/A satisfying the condition efefrej}l, ekery, f,f'€F, and
by Hom(E,,C"),

{er}rer, €T(F,),, let 71 be the mapping of £, to C* defined by 7i(esa) = x(a),

the set of linear characters 7; of E, with 7|, =y. For

ae A. Since
t1(era)ti(epa’ )t (egraa’) ™ = y(a)y(a')y(aa") ™ =1,

we have 13 e€Hom(E,,C"),. This induces a mapping @:I(F), —
Hom(E,,C"),.

Conversely given 7 € Hom(E,,C”),, we have 7' (f)Nker 7y # F, since
71 (n71(f)) = C* for every f eF, Taking an element e; e n~!(f)Nkert, for
every f eF, we have {¢/},.p €I'(F,),, since efefrejgf% €A and )((efef/e_l}}) =
ti(ererer) = 1. Hence @ is surjective. O

REMARK 5.3. The set of representatives {n, |w e W} satisfies the condition
in Proposition 5.2.

ReEMARK 5.4. (i) We may choose {u,|ze ®} in such a way that every
element n, (o€ ®) lies in a compact real form of G. Let g be the Lie algebra of G
and b the Cartan subalgebra corresponding to 7. For the root space decom-
position g=h+ >, 46, let {H, X,|H,eh, X,eq,,0e® be a Chevalley
basis. Then

8. =Y RW-IH,)+ > RX,—X,)+ Y RV=I(X,+X,)

aell ae®t ae®™

is a compact real form. Let G, be the compact real form of G corresponding to
8., Ie=TNG, and N, its normalizer in G.. Then W = N/T = N./T..
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Let us take

uy(x) = exp(xXy).

Then (5.1)~(5.5) are satisfied ([17] 8.1, 9.3).

Let
X,_Ol H,_IO Y,_OO
~\0 0/’ S \0 —1)’ ~\1 0
be a Chevally basis of sl(2,C) and u : C — SL(2,C) the mapping defined by

1 x

u;(x):exp(xX’):(O 1), u’(x)zexp(xY’):<1 (1)>

X

Then we have
0 1
o =ut e - = (20,

which is an element of the compact real form SU(2) of SL(2,C).

For o € @7, there exists an isomorphism, sending H', X', Y' to H,, X,, X_,
respectively, of sl(2,C) to the subalgebra of g generated by H,, X,, X_,. This
induces a homomorphism ¢ of SL(2,C) to G such that ¢(SU(2)) = G,. Since

p(n') = p(exp(X') exp(—Y') exp(X"))
= eXP(Xa) exp(—Xﬂ) exp(Xy)

= Ny,

we have n, € G.. Hence the same statement of Theorem 5.1 is hold for a compact
real form of G.
(i) By (5.1) we have

tu ()1 1 (%) 71 = (1) — 1)x).
Hence the image of u, is in the commutator subgroup of G ([17] 7.3).

6. Branching from G to N: Reduction to Zero Weight Representations

The notations are as in §5. In this section we consider the restriction of a
holomorphic representation of G to N.
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Let p be an irreducible representation of G afforded by V. Let I, be the
weight space of 7" on V' corresponding to a dominant weight 4. Let N, and W,
be the stabilizer subgroups of x in N and W respectively.

Put ®, ={xe®|(a,u) =0}. Let P be the parabolic subgroup of G cor-
responding to I, = IIN®, and Gp its Levi subgroup, which is reductive. The
commutator subgroup G, of Gp is a semisimple Lie subgroup whose root system
can be identified with @,,.

Let

Plg, = Z v

velrr(Gp)

be the decomposition of the restriction of p to Gp into irreducible representations
of Gp.

LEMMA 6.1. If the weight u is a weight of an irreducible representation v in
Plg,» then w is the only weight of v that W, fixes.

ProoOF. Suppose W, fixes a weight 4’ of v. Let v be afforded by V'. By the
irreducibility of v, V'V is spanned by a weight vector of weight 1 under the action
of the Lie algebra gp of Gj. Then ' must be in the form

u+ Z myoL.

oell,

Thus W), fixes 3, .qy, mao(€ Z®,), which must be 0. Thus we have pu=u'.
O

Put

pu= 3 . (6.1)
veM,
where M, is the set of irreducible representations of Gp appearing in p|;, of
which u is a weight.

PROPOSITION 6.2.  The weight space V, of weight u in p is the zero weight
space of p, as a Gp-module.

Proor. Since the zero weights of Gp-module are those that are fixed by the
action of the Weyl group W, of Gp, V), is the zero weight space of p, by Lemma
6.1. O
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Since the Weyl group acts on the zero weight space, V), can be regarded as a
W,-module. Let

vy = Z dﬁaa (6.2)
gelrr(W),)
be the decomposition of the zero weight space of V|G;, into the irreducible repre-
sentations of W,. Then (p,), is decomposed as a W,-module:

(py)o = Z Cé)VO

veM,

= > dd)o. (6.3)
veM, '
gelrr(W,)

If we take the complete set of representatives
{0, 2400 |10 € AT 0 € I (W)}

of the equivalence classes of irreducible representations of N, as given in Theorem
5.1 using {n, |we W}, then we have the decomposition of the restriction of p
to N.

THEOREM 6.3. Let G be a connected complex simple Lie group and T, N, W
as in §5. If p is an irreducible representation of G, then the restriction of p to N
decomposes as

p|N = Z Z dﬂ,r(y,a)gy,r(u.o')a

,ueA; oelr(W,)

where A; is the set of dominant weights of p and
0
dlhf(ﬂﬂ) = Z C{')dmo
ve M,
with My, ¢/ defined in (6.1) and dy), in (6.2).
Proor. Let U be a (p,),(W,)-invariant subspace of V, affording the ir-

reducible representation o € Irr(W,). Note that N, is generated by T and the

elements n,, with w € W, and since n,, € G, for all w e W, by Remark 5.4 (ii), the
action of p(n,) on V), is the same as that of (p,),(w). It follows that U is also
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invariant under p(N,) and affords the representation of t(u, o) e Irr(N,), by

u
Theorem 5.1 (i). Therefore we have

~ Ddy (o)
Vi = @ U/L, (4, 0)
gelrr(W,)

as an Ny,-module with the numbers d, ., - defined as in the statement.
Then by comparing the construction of the induced representation (2.3)

and
PINVVu= D p@)Vu
geN/N,
we have
@dl.‘[ NG
PNV, ~ @ V,L,r(lﬂ,(é) )
oelrr(W,)
The results follows. O

There are two extremal cases.

ExaMPLE 6.4. (i) Let u be the highest weight of p and p’ =dp the dif-
ferential of p. Let « € ®" be a root such that (u,«) = 0 and a the subalgebra of g
generated by X,, H,, X_,. (see Remark 5.4(i)). By the representation theory of
s1(2,C), we have dim p’(a)v, = (u,2) + 1 =1 for a highest weight vector v, and
hence p'(X,)v, = p'(X_y)v, =0. Since n, = u,()u_,(—1)u,(1), we have
p(ny)v, = v,. It follows from Theorem 5.1 that p(N)V, affords 0, ., 1)

(i) If N, =T, e.g. p is regular, then W, is trivial, and hence we have

_ _ ®dimV,
p(Nﬂ)V/J_V/J_Cy )

where C, is an irreducible 7-module with weight . Thus p(N)V, affords

@ dim V,
H/A w(p1) -

We next consider the case where N is a subgroup of some semidirect product
group N of a complex torus 7 by W such that 7 < T and the assumption of
Theorem 3.3(iii) is satisfied: for any irreducible character x4 of T, there exists an
irreducible character g of T satisfying flp=p and W= W,.
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Having chosen such g for each g, it follows from Theorem 3.3(iii) that a
complete set of representatives of the equivalence classes of irreducible repre-
sentations of N is given by {0z ixo|y|pe A" o€ lrr(W,)}.

Let ue A" and ¢’ € Irr(W,). Then it follows from Theorem 3.3 that there
is a unique ¢ € Irr(W;) (recall our assumption that W; = W,) such that the
representation g > g of Nj restricts to the representation t(u,a’) of N,, so that
Opixoly = O o(u0)- We want to compare this o with ¢’.

Recall that ji <o =% ®d where 7(wi)=(f) (we W;= W,,ieT) and
¢ =00 (7ly,) (Remark 2. 4) and that t(u,0') =1 ® ¢ where 7((nyt) = u(7)
(we Wy, teT)and ¢’ =g’ o (ny ). Since g < a|y = 1(u,0’), namely (7i]y,) @ ¢
=711 ® a’ the difference between ¢ and ¢’ is determmed by the difference between
11|Nﬂ and 7;. We have

ﬂ(nwl)fl(nwl)_l = ﬂ(Wgtt’t)Tl(ntt't)_l = ﬂ(glt'l)ﬂ(l)_l = fi(€w),

which we have defined to be ez(w) ((3.3)). Note that the function ez|y, is a linear
character since, by putting =1 we have

ea(w) = T (my)ti(my) " = F1(m),
and if w,w’ e W, then
nwnwfn;'l,, eker 1y N T = ker u < ker i1 < ker 7;.
Hence we have
Ti(nyt) = ez(w)ti(nyt), we W, teT,
namely
Tily, = ealw, ACKIE
By what we remarked just above, this shows that ¢’ =a ® (ezly,)-

Summarizing the above, we have the following:

THEOREM 6.5. Let G be a connected complex simple Lie group and T, N,
W as in §5. Let N be a semidirect product of a complex torus T by W such that
T contains T and Assumption 3.1 is satisfied. Suppose that the assumption of
Theorem 3.3(iii) is satisfied for N, T, N, T, W and fix the choice of an irreducible
character i of T for every irreducible character u of T with Ay =p and
Wi= Wy If 0;pxoly = Opr(uor) then

7 =0® (eﬂ|Wﬂ)-
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If p is an irreducible representation of G, then the restriction of p to N decomposes
as

p|N_Z Z dﬂr,uo)g,ur,ua

neAS ol (W,)

where A;r is the set of dominant weights of p and

_ E ’d 0
d/‘:ﬂxa‘w# d/‘ (u,0®( eﬂ‘wﬂ CV v,0®( ‘;4|Wﬂ

veM,

with M, ¢! defined in (6.1) and dv‘fg in (6.2).

EXAMPLE 6.6. Let G = SL(n,C). We consider the situation as in Example
3.5. For we &, let n, € N be a representative as in §5 whose non-zero entries
are +1:

ny = ﬁwiw;
where
fy = diag(er,...,en), €= (—1)FUIs/smi<imwi>w()}
and 7, is the permutation matrix such that

fl;l diag(ty, ..., )0, = diag(twm, ceey [w(n))~

Then we have (see (3.1))
€ = by
Furthermore since
det(n,,) = det(n,) det(z,)

= sgn(w) det(,)
and det(n,) =1, we have
det(z,) = sgn(w).

For a character u of T,

H tm,

we have chosen g by setting

- f) _ (ﬁ i’im,-> det(l’:)k
i=1
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for some integer k. In particular if g is trivial, then G, =G, N, =N, W, =6,
and j = det(7)*. Then we have

ea(w) = (t,) = det(z,)* = sgn(w)*.

Hence the character e; is sgn® (see [2] Lemma 1.2).

7. The Case of SL(n,C)

In this section, we consider a special class of simple Lie groups, SL(n, C). We
regard G = SL(n,C) as a subgroup of G = GL(n,C).

Let T and T be the groups of all diagonal matrices in G and G respectively.
The Weyl groups W of G and G are both isomorphic to the symmetric group S,
of degree n. The normalizer N (resp. N) of T (resp. T) is the group of matrices of
G (resp. G) that have precisely one non-zero entry in each row and column. Then
N is the semidirect product of T by W.

Take the subgroup of all upper triangular matrices as a Borel subgroup of
G and G. The equivalence classes of irreducible representations of G are par-
ametrized by Young diagrams with at most n rows in such a way that every
Young diagram (my,...,m,) corresponds to the representation with highest
weight p given by p(7) =" -/ for 1= diag(f,..., ).

Every irreducible representation of G is obtained by restricting an irreducible
representation of G. Let det be the linear representation of G defined by taking
the determinant of matrices. For an irreducible representation j of G corre-
sponding to a Young diagram p = (p;,...,p,) (we use a same symbol for a
representation and the corresponding Young diagram) and an integer k, the
irreducible representation (det)®k ® p corresponds to the Young diagram plk] =
(p; +k,...,p,+ k). The restrictions of the representations p[k] to G define the
same irreducible representation of G for any k € Z. Thus the irreducible rep-
resentations of G are parametrized by Young diagram with at most n — 1 rows.

ConvenTION 7.1.  In the sequel, unless otherwise stated, we use the notation
p, for a given irreducible representation p of G, to denote the uniquely determined
Young diagram with at most n — 1 rows such that p|; = p.

Let j be an irreducible representation of G corresponding to a Young di-
agram p with at most n — 1 rows. Let

A=aw; + - +a_10;_, + aw,

(al,...,a,.,l>0,a,20,1§i1<i2<~~<i,,,1gnfl),
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be a dominant weight of p such that |g| = |p|, where w; is a weight corresponding
to Young diagram (17) and |/ denotes the sum of the parts Z; of a Young

diagram A = (41,...,4,). The stabilizer W} of /i is a direct product of symmetric
groups:

Wi=G, x---xS,, (7.1)
where ny = ij,ny =i, — i,...,n, =n—1i_;. Let P be the corresponding parabolic

subgroup of G containing the Borel subgroup. The Levi subgroup G}s of Pis a
product of GL(n;, C):

G = GL(n,C) x --- x GL(n,, C). (7.2)
Let

ple, =D v (7.3)
v

be the decomposition of the restriction of p to GP into irreducible representations
v of GP- Every irreducible representation v of @15 is given by a set of Young
diagrams v/, 1 <i <r, with at most n; rows, which correspond to irreducible
representations of GL(n;,C). The summation is taken over v"’s with > 7, |v/| =
|p|. The coefficient ¢/ is given by the Littlewood-Richardson rule:

p_ AN A S
ch = E CoiiCoae2 * Cortyry (7.4)

where ¢/, is the Littlewood-Richardson coefficient. We call this a multiple

LV
Littlewood-Richardson coefficient.

By (7.1), T acts on the weight space of A=aiw, + - +a_10; , +aw, as
the multiplication by

(f1- ) (Bppyr -+ 1), diag(dy,....5,) €T, (7.5)
where f; =a;+---+a,, 1 <i<r. That is, the multiplicities of f; is equal to n; in
the Young diagram j.

Thus, by the definition of p; (see (6.1)), we have

v=(vl,...,v")
v |=fin;

Let p = p|; and u be the dominant weight of p with j|; = u. Note that the
correspondence of the weights ji of p to the weights u of p is one-to-one, since the
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difference between the highest weight of p (resp. p) and a weight g of p (resp. a
weight u of p) is a linear combination of roots and || = |5|. Then Gp = G;N G
and

Gp = SL(n;,C) x --- x SL(n,,C).

Now we have the main result in this section.

THEOREM 7.2. Let p be an irreducible representation of SL(n,C) and p as in
Convention 1.1. For a weight u of p, let i be the weight of p such that || = |p| and
fly = p. Then the restriction of p to N decomposes as

=Y Y dut
ﬂgA/f telrr(N,)

where

d

oy,

_ _ 5 10
= dy, (o1 = E : cydy o,
Vi |=fin;

o' =0 ® (sgn® x ... x sgn®)
with (fi,...,fr) defined in (1.5) for f.

Proor. By (7.5) and Example 6.6, we have

fi Jr

eq(w) = sgn(wi)”" ---sgn(w,)”,

for an element w=w;---w, e W; (w; € S,,). Thus we have

The result follows from Theorem 6.5. |

8. Explicit Formula for the Branching from SL(n,C) to N (I)

We give a multiplicity formula of an irreducible representation of N in a
given irreducible representation of G for the case G = SL(n,C). The notation is
as in section 7.

Let v=(v',...,v"), [v/| = fin;, be an irreducible representation of Gp. Let
{viy, be the character of the representation of S, induced on the zero weight
space of v'|g;(, ¢)- The character value of (i is calculated as follows. Let w; be
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an element of &,, with cyclic factorization w; = w;; - - - wy,. Let [; be the order of
wy, then for every i, the set {/;} form a uniquely determined partition 7; of n;.
Let

H,‘ = GL(],],C) X X GL(l[ki, C)

and
V= > (8.1)
A=(21,..., 2k
where A = (/11, . .,Ak’) is a sequence of Young diagrams A’/ with at most ljj rows,

which corresponds to an irreducible representation of GL(/;,C). Then we have

(2] §4)

Longw) = Y e sen(wn)™ i n (wa) 10 (W), (8.2)
h=(4",..., 25)
|27 |=yfi
where 7, ", is the character of Fhe representation of &, induced on the zero
weight space of representation 2/[g; (. ¢)-

Let x; be the permutation matrix of GL(/;,C) corresponding to the cycle
wy. Since wy is an [-cycle, wy is a Coxeter element of the Weyl group &, of
SL(l;,C). Hence the trace of i/(xj;) is equal to sgn(vvij')ﬁn<i/>0(va). In [9], it is
shown that the trace of 1/(x;) =0 or +l.

The trace of A/ (x;) is also calculated by the generalized g-binomial coef-
ficients as follows. For an integer m and a Young diagram y = (y,,...,7,), the
generalized g-binomial coefficients in the indeterminate ¢ is defined to be

m 1 — g™
where y’ = (y],...,y,) is the transpose of y, ¢(x)=j—i is the content and
h(x) = y;+y; —i—j+ 1 is the hook length for each x = (i, j) € y (here we regard
y as a matrix. See e.g. [10] Chap. I §1, Ex. 3, §3, Ex. 1). It is shown that the
generalized g-binomial coefficient is a polynomial in ¢ and

. m
5,(1,4,4%, ... ,q ')zq"(”{y,],

where s, is the Schur function of m variables corresponding to y and n(y) =

i (=17
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On the other hand, s, is the restriction to T of the irreducible character of
GL(m,C) corresponding to y and the permutation matrix corresponding to a
cycle of order m is conjugate to the diagonal matrix diag(l,w,?, ..., @™ "),
w = e*/=1/m Thus we have

(8.3)

. NN
Sgn(lV{‘l‘)ﬁTI(;L/)o(l/Vl“/) = qn(ﬂ. ) |\;l/,‘|

q:exp(Zn\/—_l/l,-,-)

THEOREM 8.1.  For an irreducible representation p of G and an irreducible
representation 0, . of N, the multiplicity [p|y : 0, ] is

1 r X k,'
p v 7.
LA E c? E ¢J,(W)H E o |16, 1) |,
Myl vy w=wi-w e W, =1 =0t 2k) j=1
vi|=fim; wi€ Sy A |=1yfi

where p is determined from p as in Convention 7.1, W, =C, x---S, is the
stabilizer of w in W, ¢/ and ¢} are multiple Littlewood-Richardson coefficients
((7.4), (8.1)), ¢, is the character of irreducible representation

o' = (sgn® x .. xsgn®) ®q
of W, the integer f; is given in (1.5), o is defined from t as in Theorem 5.1, I is

the order of cycle of wy, and b(/lj,l,-j) is the integer given by (8.3).

Proor. Let {,), be the character of W,-module vo. By Theorem 7.2 we have

[Pl Ou] = Z )y 0l

=01, ")
[vi|=fin;
- Z C"[?(Z:(v)(], ¢r7’)
V=)
v o
pN 1
- 2 ] 2 Con(da(w)
v=(v!,....v") Mwew,
[vi|=fin;
| r
— Z Cf |W | ¢01(M/) Hg(‘l)o(u}’)
v=(v!..v") B =y, € Wy, i1
[vi|=fin; wie Sy,

By (8.2) and (8.3), we have the result. O
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9. Explicit Formula for the Branching from SL(n,C) to N (II)

Let G, be a compact real form of a complex semisimple Lie group G, T,
a maximal torus of G. and N, its normalizer in G.. Let T be the maximal torus
of G containing T, and N its normalizer in G. Then T, = TN G. and the Weyl
group W = N/T is isomorphic to N./T.. Every finite dimensional irreducible
continuous representation of G. (resp. T.) is obtained from a finite dimensional
irreducible holomorphic representation of G (resp. T) by restriction. This gives a
one-to-one correspondence between these representations of G, and G (resp. T,
and T). Note that our representatives n, of the Weyl group in N actually lie in
G. (see Remark 5.4 (i)). By the construction of irreducible representations of N
and N., we have a one-to-one correspondence between the equivalence classes of
irreducible representations of N and those of N, by restriction.

In this section we give an explicit formula for the branching from SL(n,C) to
N in a way different from that of the previous section.

Let G, N, T be as in §7. Let N.=NNU(n) and T,=TNU(n). N, is a
semidirect product of T. by S,. Then we have

Irt(N,) = {0z w0 | i€ AT 0 € Trr(W))},

where A" is the set of all characters of T, which are dominant with respect to
I1. Every irreducible representation of U(n) is afforded by an irreducible module
of GL(n,C) and every irreducible representation of N, is also afforded by an
irreducible module of N by taking the restriction. Hence the multiplicities
[ply : 0z7] are equal to those for U(n) and N,.

Since we work entirely within U(n) in this section, we replace T, N, i, by
T, N, i, T to avoid complicated notation.

Let dn be the Haar measure on N normalized by [, dn=1. Let ¥, . be the
character of 0, . and S, the character of irreducible representation p of U(n),
whose restriction to T is Schur function s,. Then we have

1 I
Py O =157 32 | VeS0T 1)

where n,,t € N and dt is the normalized Haar measure on 7.
By Proposition 4.1, we have

Vo slnt) = — s S e, 9.2)

14
‘ '“| wo € W,NK,, xe®; ' (o)

W
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where 7 = u X ¢. Since S,(n,t) is the trace of p(n, ), there appear only the terms
corresponding to the weights fixed by w:

Splmet) = > et (9.3)
V:(i],.‘..,i,,>
w(v)=v
where ¢, is the trace of p(n,) on the weight space V, of weight v.
Since

JT(lill lu")(ll "'l,?") di — {1 ai=2b; (1 Slﬁn) (94)

0 otherwise,

we have
J W(5)S, (D) dt = v, (9.5)
T

For x e ®_'(wy), w stabilizes the weight x -z, since x~!

wx = wy € W, and
hence (wx)-pu = (xwp) - u=x-u If x,x' € ®,'(wp), then x' = zx for some ele-
ment z of the centralizer of w. Since the action of z transforms V., to V.., and
this transformation commutes with the action of w, the trace of p(w) on Vi, is

equal to that on V,.,. Hence we have
Cop = Cxrpe
We denote this by m(p, u; w,wp). Then by (9.1), (9.2), (9.5) and (4.3) we have

I 1
Pl Ol =y 30 32 el Ze, () wo)

we S, woe W,NK,

= Z |Z°” W) Z by (wo)m(p, t; w, wo) (9.6)

"Ww
n ‘ wo e W,NK,,

weGg,

The problem is now reduced to determination of m(p,u;w,wy). Since an
element n,t e N is diagonalizable, m(p, 1; w,wy) is equal to the Schur function
evaluated at the eigenvalues ¢, , = (&1,...,¢&,) of n,t. To calculate this we use the
Jacobi-Trudy identity:

sp =det(hy—i+j)1<i j<n

h/)l h/)1+1 T h/;lflJrn
h/’z*1 h/)z e h/’z*ZJF”

hpn—n+1 hpn—n+2 T hﬂ

n
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where p = (py,...,p,) and Ah; is the ith complete symmetric function: the sum of
all distinct monomials of degree i.
We have

m(p, w; w, wo) nw 1) dt

J < sgn(y)hp, —145(1) (1) "'hp,,nﬂ(n)(ngf)) dt
yeS,

Z sgn(y) JT/‘(tx)hplflﬂ(l)(aw,r) o 'hp,,fner(n) (Ewﬁt) dt (98)

Since #; is the restriction to T of the character of representation of GL(n,C)
on the ith symmetric tensor of C", we next study the action of n,,¢ on the weight
space of x - u in the tensor product S/~ @ ... ® §/~(" where S* is kth
symmetric tensor of C”". Let

{ei e |l<iy<---<ip<n}

be a basis of S¥, where e, ...,e, are the standard basis of C" and ei, -+ - e, is the

k

symmetric tensor product of e;,...,e;.

LeMMA 9.1.  The trace of p(nyt) on the space of weight x - u is equal to that
of p(ny,t) on the space of weight .

Proor. This follow from x 'wx = wy. O

By this lemma, we may consider the action of wy on the space of weight u in
the tensor product S7 ® --- & S.
Recall u(t) = (4 ~~~t,,1)f‘ N (A -~~tn)f" (see (7.5)) and W, =G, X --- X

Sy,. Write wo =wy---w, with w; € S,,. Let w; = w;;---wy, be a cyclic facto-
rization and /; the order of wy.
Let (171,...,n;") be the cycle type of w; (1 <i<r). Then n; =3 1", jp;.
The set

n
9= %

=1
(81“11 . e;l “In) ® ®( ol “”2 . e:”") / (99)

n
=D %
i=1
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gives a basis of the space of weight x in S7 ® --- ® S%, where u(r) =t} - 15"
The action of wy on the weight space induces a permutation of the columns of the
n x n matrix (o;). Hence the condition that wy fixes an element of the basis is
equivalent to the condition

Oy = Oy =+, 1 <s<n (9.10)

for any cycle (i, ja,...) of w;, 1 <i<r. Thus we put these integers determined
for cycles of w; in the form of n x p; matrix

Ai = (a.ét)lﬁsﬁih 1<i<r,
I<t<p;

where p; = Z}ll pij is the number of cycles of w;.
Let

bi=ayly+---+ally, 1<i<r,1<s<n

Then the integers a!, and b! satisfy the conditions

fi=>a, 1<i<r1<t<p (9.11)
k=1
r

g =Y b, 1<s<n (9.12)
k=1

EXaMPLE 92. Let n =25, (q1,¢2) = (5,3) and u(t) = (1t213)(tats) : r = 2,
(ﬁaf2) == (27 1) Put

wo = (1)(23)(45), wi = (1)(23), wy = (45).

The matrices (o;) corresponding to the vector of weight u in S°® S* are

1 1111 1 22 00

1 110 0/7\1 001 1) 777
where we omit the last 3 rows. Among them, wy fixes only the above two
matrices. Hence for the former we have

a=(1 1) a=(y) Gleh=63. e =eo.

and for the latter

a=(15) A= (1) @leh=cn. @i -0o
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LEMMA 9.3.

m(S‘]l ® --® SCIn“u; W7WO)

Ai = (asit)lsssn, 1<i<r
1<t<p;
n .
=#¢ (41,...,4,) f":;akn l<i<rl<t<p 9.13)

Proor. The action of W,, the stabilizer of the weight x, on S ® ---® S
induces permutation of the elements u of the set given by (9.9), which also
induces a permutation of columns of the matrix (o;). Hence the number of
elements u of weight u that are fixed by wy is equal to the number of the set of
the matrices (4;,...,4,) satisfying (9.11) and (9.12), which is also equal to
m(ST" @ - ® S, u;w,wp) by Lemma 9.1. O

REMARK 9.4. If wy,wje W,NK, are conjugate in W, then

mS" @ - ® S, w;w,wo) =m(S" -+ @S, p; w, w).
We come to give a multiplicity formula.

THEOREM 9.5. Let p be an irreducible representation of U(n) and 0, . an
irreducible representation of N, then

Pl 0 = S 2200 S gom)

wes, ‘| wo € W,NK,

x > sgn(p)m(SHN @ @ ST s, wy),

7€S,
where ©=u> o elrr(N,) (see Remark 2.4). The number m(S"'" ®...®
SP=mr) v wo) is given by (9.13).
Proor. The result follows from (9.6), (9.8), Lemma 9.1 and 9.3. O

10. On the Irreducibility of the N-Span of a Weight Space for GL(n,C)

Every irreducible module of &, is afforded by the zero weight space of
certain irreducible module of SL(n,C) ([8], [9], [2]). We consider the similar
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problem for N and give a series of examples of irreducible modules V' of
GL(n,C) and their weights g such that the N-modules

D Vi
weW/W,
are irreducible, where the summation is taken over a complete set of coset
representatives of W /W,. We denote this N-module by Viy,.

Let G = GL(n,C), T the group of all diagonal matrices in G, and N the
normalizer of 7' in G, which is isomorphic to the semidirect product of T by
the Weyl group W ~ S,. Let p be an irreducible rational representation of G
afforded by V' and V, the weight space with dominant weight u of T given by

ﬂ(t) = (Zl T l”l)fl (t”ll+1 T tn1+nz)f2 T (Z”_”r+1 T ln)ﬁv

where t = (t,...,t,) €T and f; > ---> £, >0, n +---+n, =n. We regard u as
the Young diagram

(fise- s J1s fosee s oyenns frseos Jo)e
— —— S——

ny ny ny

The stabilizer subgroup W, of u in W is isomorphic to &, x --- x S, . Let

= (o},...,0!) be a young diagram with |o’| = n;, which corresponds to an

) n;

O.l
irreducible representation of &,. Then ¢ = (¢',...,¢") corresponds to an irre-
ducible representation of W,. We will give a Young diagram corresponding to an
irreducible representation of G whose restriction to N contains the irreducible
representation 0, 4., of N.

We add rectangular diagram of length n; to o' or (¢')":

o'+ (fi-.., f)  fiisodd,

V= (ai)’+(ﬁ,‘...,ﬁ) f; is even, (10.1)
T
where (o')’ is the transpose of o’. Put its transpose
O =01,
and define a new Young diagram I'(u, o)’ by adding up jth columns of y' ... y"

for each j:
L(w,0) = (51,%,...), §= ZV;/'
i=1

Denote its transpose by I'(x, o).
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ExampLe  10.1. For n=7, u=(2,2,2,2,1,1,1), (n,m)=(4,3),
(fi,£) = (2,1). Let ¢' = (3,1) and ¢ = (2,1):

o [T 2 [T

Then y!' = (4,3,3,2) and > = (3,2,1):

and I'(u,0) = (4,3,3,3,2,2,1):

[(u,0)

ProrosITION 10.2 (see [2] Proposition 5.1, 5.3).  For positive integers m and d,
let A be a Young diagram with |A| =m. Let u=(d,...,d) (m times) and U, be the
weight space with weight u of the irreducible representation of GL(m,C) corre-
sponding to the Young diagram .+ (d —1,...,d — 1) (m times). The representation
of S, induced on U, is equivalent to (sgn)®<d71) ® A, where A represents the
irreducible representation of S,, corresponding to the Young diagram J.

LemmA 10.3. Let p be an irreducible representation (det)™ @ ['(u,0) of G
and V, the weight space with weight p. Then 0, %, is a subrepresentation of
V.

Proor. Put
l(]) = (lla ceey [nl)v t(2) = (Zn1+17 cvey tn1+nz)a ceey t(r> = ([n,nr+17 cvey tn)7
then the Schur function Sy, (f1,...,t,) is the sum of the products of skew

Schur functions ([10] L.5):

SF(/AJ)(I) = Z Sv“)/v(”)(ta))Sv(z)/v“)(t(z)) T Sv<">/v(f*')(t(r>)v (10.2)



Representations of the normalizers of maximal tori 231

where the summation is taken over all sequences (v(¥),... v() of Young dia-

grams such that v = & ) =T'(g4,6) and v <) ... =), The skew
Schur function is a sum of the Schur functions:

Suopin =3 el Sz, (10.3)
A

(i) . . . .
where ¢, is the Littlewood-Richardson coefficient. Hence we have

(tl t Zn)_lSF(;t,ﬂ)(t)

= {0 t”l)71S"(1)/1’(0)(l‘<1))} o Altanr tn)ilsv(")/vo'*” (l(r>)}~ (10.4)

y=(vO.., y(r))

This gives the decomposition of the restriction det™' ® I'(x, 0)|g,- Here G is the
Levi subgroup of the standard parabolic subgroup corresponding to W,:

G, = GL(n;,C) x --- x GL(n,,C).

As in §6, let (det™' ® T'(u, o)) ., be the sum of all irreducible subrepresentations of
det' @ T'(u, o)|G“ having x as its weight. Then the character of (det™' ® I'(x, o)),
is given by

S i) S () (1) S () (105)
v=(vO . v()

O Y =St D

Put

and define T® (x4, 0)" by
o) =".8",..0. T =@

Denote by F(k>(,u,a) its transpose. Then we have a sequence of Young dia-
grams:

2 =T(u0) =TV (1,0) = - = T (,0) = T(u,0),

which appears in the summation (10.5), since

ITO (1, 0) /T (,0)| = (fi + D
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Note that this is equal to |y/|. We next show

ro N
Cr<f—(1>ﬂ(ﬂ7)g) 70 (10.6)

I(u,0)

The number le((f* . 1s given by the Littlewood-Richardson rule (see [10]):

0 i
the number of colum(lfi;%ryict skew tableaux T of shape T (u, o) — TV (4, o)
and of weight y’ such that the word w(T) is a lattice permutation. Here the
word w(T) is obtained by reading the entries of 7 from right to left in each
row, starting with the top row and proceeding downward. The word w(T) =
(ai,...,a;) is called a lattice permutation if for 1 < j <k, in the first j elements
of w(T'), the number of occurrence of i is not less than the number of occurrence
of i+ 1 for each i.

By the definition of y’ and l"“‘)(,u7 o), if we fill each of the columns of the
skew diagram T (u, o) — T0=V (4, o) with the numbers

by=m+m+---+n_1+1,....bp,=m+---+n

L=, 0)

b.l

bi|bi|bs

by | by

b1 |b
jli fl 51 b,

l bn.| bn,

fi

Figure 1: skew tableau I'V(yx, o) — TV"D(u,0)

from the top to the bottom in that order, then we have a column-strict skew
tableau 7' of shape I'”(u,0) — T~V (u, o) and of weight y. Since the number
b; (i > 1) lies just below the number b;_; in T, the number of the occurrence of
b;—y is not less than that of b; in w(T), the word w(T) is a lattice permutation
(see Figure 1). Thus we have (10.6).

It follows from (10.3), (10.5) and (10.6) that the irreducible representation
(det ' ®7") x --- x (det™" ® y") of G, is a subrepresentation of (det™' ® I(u,0)),
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By Proposition 10.2 the representation of &, induced on the weight space with
weight (fi,..., f;) (n; times) of det™' ® ' is equivalent to

{sgn®ff+1 ®ad’  fiis odd,
sgn®i 1 @ (¢7)'  f; is even

which is equivalent to the irreducible representation of &, corresponding to ¢’ in
both cases. Hence the representation of W, induced on the weight space with
weight u of the representation (det™' ® ') x --- x (det ' ® y") of G, affords the
irreducible representation ¢ as a subrepresentation and the lemma is proved.

O

ProposITION 10.4.  Let V, be the weight space with weight u of the repre-
sentation det™' ® T'(u,0) of GL(n,C). If yh = yit for 1 <i<r—1, then Vi, is
the irreducible module of N affording 0, ;xs.

Proor. It follows from Lemma 10.3 that 0, %, is a subrepresentation of
V.. We have only to show dim V), = dego.

The dimension of V), is equal to the number of the column-strict tableaux of
shape I'(u,0) and of weight x#+ (1,...,1) (n times). Put

L={12..m},L={m+1,....my+m},....L={n—n+1,...,n}
Since the length y,ﬂf of the last row of y’ is greater than or equal to the length y{“
of the first row of y*!, the diagram I'(x, o) is obtained simply by putting y’ on
y™*1 (Figure 2).

The integer i in the column-strict tableau should be in the first i rows of
I'(u,0). Thus the elements of I; should be placed in the first n; rows, whose
shape is just y!. Since |y| = (f; + 1)n; and every element of I; appears exactly
fi+ 1 times in 7, the first n; rows are filled only with the numbers of /; and any
element of I; doesn’t occur in the ith rows for i > n;. The elements of I, should
be placed in the next n, rows, whose shape is 9>, and so on.

The diagram of j’ is obtained by adjoining that of ¢’ or (¢')’ to the right
of a rectangular diagram (f;, ..., f;) (n; times). The first f; columns of y’ are in
the rectangular part and filled with all member of I;. Since every element of I;
appears exactly f; times in the rectangular part of y’, the number of column-strict
tableaux of shape y’ and of weight (f;+1,...,f;+1) (n; times) is equal to the
number of those of shape ¢’ (or (¢/)’) and of weight (1,...,1) (n; times), which is
nothing but the degree of irreducible representation of &,, corresponding to the
Young diagram ¢’ (or (¢')"). Hence we have
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N
fi 1

f2 ((72 /

Figure 2: T'(u,0)

dim V, = Hdeg o' =dego,
i1

which finishes the proof. O

We show another examples of irreducible representations of G and their
weights u such that Vi, affords 0, ;.

For a Young diagram A= (1,...,4,) with |4 =m and an integer d with
d > 2y, define a Young diagram 1*(d) by

A5d) = (d = dppyd — It ... d — J1).

ReEmArRk 10.5. The contragradient representation of the representation of
GL(m,C) corresponding to Z is (det™)®! @ A*(d).

ProposiTION 10.6 ([2], Proposition 5.1). Let u=(d—1,...,d — 1) (m times)
and U, be the weight space with weight u of the irreducible representation of
GL(m,C) corresponding to the Young diagram A*(d). The representation of S,
induced on U, is equivalent to (sgn)®d®i, where 1 represents the irreducible
representation of S, corresponding to the Young diagram A.
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For a weight g and Young diagrams ¢’ = (ai,03,...) (1 <i<r), let a be the
smallest numbet of the set

{fi+1—al|fiis odd, 1 <i<r}U{fi+1—(a")]|fi is even, 1 <i<r}},

where (¢7)’ is the transpose of ¢’. Put e = —a (if a < 0) and e = 0 (if a > 0) so
that fi+1+e—al >0 (if f; is odd) and f;+14+e— (a'); =0 (if f; is even).
Then we can define a Young diagram j’ by

i {(0) (fi+14e)  fiisodd,
T (e (fi+1+e) f;iseven.

For the diagrams ' (1 <i <r), we define a Young diagram I'(x, o) as I'(u,0).

ExampLe 10.7. Let n=7, (n,nm) = (4,3), p=(2,2,2,2,1,1,1), (fi, o) =
(2,1) and ¢' = (2,1,1), 6> = (2,1). Then e = 0.
|

O'll 0'22 |

Then §' = (3,3,2), 72 = (2,1).

Thus we have I'(u,0) = (3,3,2,2,1):

I'(u,o0):

ProposITION 10.8.  Let V), be the weight space with weight u of the irreducible
representation det™ ® T'(u,0) of G.

(i) 0, el is a subrepresentation of V.
(i) If 5, =7 gitl for 1 <i<r—1, then Vy, is the irreducible module of N
affording Bﬂ_ e

Proor. (i) By the same argument of the proof of Lemma 10.3, the irre-
ducible representation (det ™ ® 7!) x -+ x (det * ® 7") of G, is a subrepresenta-
tion of ((det™) ® T'(u,0)),-
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It follows from Proposition 10.6 that the representation of &, induced on the
weight space with weight (f;,..., f;) (n; times) of § is equivalent to

(sgn)® ! @ o f; is odd,

. 10.7
(sgn)® ' @ (67)  f; is even. {10.7

In both cases the representations are equivalent to the irreducible representation
of &,, corresponding to ¢'. Then the representation of W, induced on the weight
space with weight x of the representation (det “ ® ') x -+ x (det™* ® 7") of G,
affords the irreducible representation ¢ as a subrepresentation. Hence Vy, affords
0., uxc as its subrepresentation.

(ii) Since 0, 4, is a subrepresentation of Vy, by (i), we have only to show
dim V), = deg o. By the assumption and the same argument of the proof in
Proposition 10.4, we have to show that the number of the column-strict tableau
of shape 7’ and of weight (f;+e,..., f;+e) (n; times) is equal to the degree of
the irreducible representation o’ of S,. However this follows from Proposition
10.6. ]

REMARK 10.9. The representation I'(x, o) in the Example 10.7 satisfies the
condition of the Proposition 10.8 (ii), but not that of Proposition 10.4.
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