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REPRESENTATIONS OF THE NORMALIZERS

OF MAXIMAL TORI OF SIMPLE LIE GROUPS

By

Jun-ichi Matsuzawa* and Makoto Takahashi

Abstract. We study the branching rule for the restriction from a

complex simple Lie group G to the normalizer of a maximal torus of

G. We show that the problem is reduced to the determination of the

Weyl group module structures induced on the zero weight spaces of

representations of semisimple Lie groups. The concrete formulas are

obtained for SLðn;CÞ in terms of generalized q-binomial coe‰cients

and Schur functions.

1. Introduction

The zero weight space of a representation V of a complex semisimple Lie

group G naturally a¤ords a representation of the Weyl group W of G, because

W is by definition the quotient group N=T , where T is a maximal torus of G

and N ¼ NGðTÞ is the normalizer of T in G. We call this representation of W

the zero weight representation for V , which gives interesting relationship

between the representations of G and those of W . In particular, the W -module

structure of the zero weight space has deep-rooted connection to various

problems in the representation theory of Lie groups such as the analysis of

the plethysm and generalized exponents, etc. ([2], [9], [13]). A natural extension

of this problem is to study the restriction of the whole representation of G to

N. This is what we pursue in this paper. We have a similar problem if we

replace G by its compact real form, which is really an equivalent problem (see

§ 9).
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This paper is organized as follows. In §§ 2–5 we discuss the parametrization

of irreducible representations of N. In §§ 6–10 we study the branching rules from

G to N.

In § 2, we recall Cli¤ord’s theory on the representations of an extension group

E of a group H by a finite group F over the field C of complex numbers ([3]),

which is a purely algebraic version of the method of little groups or Mackey

machine ([19], [11]). For an irreducible representation w of H, define Ew to be the

subgroup leaving the equivalence class of w invariant and take an irreducible

representation t of Ew such that tjH is a multiple of w. Then the representation of

E induced from t is irreducible. Every irreducible representation of E is given in

this way. Furthermore it is shown in ([3]) that t is the tensor product of two

irreducible projective representations t1 and t2 of Ew, where t1 has the same

degree as w and satisfies t1ðghÞ ¼ t1ðgÞwðhÞ ðg A G; h A HÞ, and t2 is the pullback

of an irreducible projective representation of Ew=H.

If w can be extended to an ordinary representation (by which we mean a

linear representation) of Ew, then these two projective representations can be

replaced by ordinary representations. If E is a semidirect product of H and F ,

then this condition holds for all w and therefore all irreducible representations of

E can be obtained from irreducible representations of H and subgroups of F . In

§ 3 we study the case where H is an abelian group and give a su‰cient condition

for all irreducible representations w to be extended to ordinary representations of

Ew. Under this condition, the equivalence classes of irreducible representations of

E are parametrized by the conjugacy classes, under the action of E, of the pairs

ðw; fÞ, where w is an irreducible character of H and f is an irreducible character

of the factor group Ew=H. The characters of E are given in § 4.

These results hold for abstract groups and finite-dimensional representations

over algebraically closed fields. Also they are valid for complex simple Lie groups

and their holomorphic finite-dimensional representations, or compact simple Lie

groups and their continuous finite-dimensional representations in complex vector

spaces. In § 5 we study the case where H is a maximal torus T of a connected

complex semisimple Lie group G and E is its normalizer N in G, which is an

extension of T by the Weyl group W . Although N is not a semidirect product of

T and W in general, the equivalence classes of irreducible holomorphic rep-

resentations of N can be parametrized by the conjugacy classes of ðw; fÞ, where
w is a holomorphic character of T and f is an irreducible representation of the

parabolic subgroup Nw=T of W .

We show this in two ways. One method is to choose good representatives

in N of the elements of W and apply the results of § 2. The other is to find
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a semidirect product group containing N and to apply the results of § 3. The

former is canonical, but sometimes the latter is convenient for concrete cal-

culation.

In § 6 we discuss the structure of the N-module V#G
N obtained from a G-

module V by restriction from G to N, by applying the results of the preceding

sections for a complex simple Lie group G and the normalizer N of a maximal

torus T of G. We show that the problem can be reduced to the determination of

the structure of ‘‘zero weight representations’’ for V#G
L 0
P
, where L 0

P varies over the

derived groups of the Levi parts of parabolic subgroups of G. The same results

can also be formulated starting with the compact real forms of G (see § 9).

In the last four sections we study in detail the case where G ¼ SLðn;CÞ by

using Young diagrams and Schur functions. We calculate the multiplicity of an

irreducible representation of N in the restriction of an irreducible representation

of G to N in two ways.

In § 7 and § 8 we apply the results of § 6 and determine the zero weight

representations for V#G
L 0
P
. The multiplicities can be written in terms of Littlewood-

Richardson’s coe‰cient, characters of parabolic subgroups of W and generalized

q-binomial coe‰cients.

In § 9 we adopt the compact group formulation and consider the unitary

group UðnÞ and the normalizer N 0 of a maximal torus of UðnÞ. Since an element

of N 0 is a product of a permutation matrix and a diagonal matrix, the restriction

of an irreducible character of UðnÞ to a connected component of N 0 can be

regarded as a function on T . This enables us to calculate the multiplicities

combinatorially in terms of the Schur functions and Weyl groups. The multi-

plicity formula for SpðnÞ on this line is obtained by the second author ([18]).

In the last section we give a series of examples of irreducible modules V for

GLðn;CÞ and their weights m such that 0
n AWm

Vn is irreducible as an N-module,

where Vn denotes the n-weight space of V and Wm ¼ Nm=T . For the case where

m ¼ 0, every irreducible representation of the symmetric group Sn can be ob-

tained as the zero weight representation of a suitable irreducible representation of

SLðn;CÞ. ([8], [9], see also [2]).

Naruse ([14]) and Nishiyama ([15]) have obtained the results in the case

where G ¼ GLðn;CÞ and N is replaced by the symmetric group of degree n,

which are related to the plethysms and the representations of party algebras.

We would like to thank K. Koike and I. Terada for many conversations and

comments which were helpful in improving the first version of the material. We

are also grateful to H. Naruse and K. Nishiyama for showing their unpublished

papers, and to S. Kato for making us aware of the reference [3]. Finally, we
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would like to express our gratitude to M. Miyamoto for continuous encour-

agement.

2. Representations of Finite Extensions of Groups

Throughout this paper, all representations are finite dimensional defined over

the field C of complex numbers.

We begin with recalling Cli¤ord’s theory on the relationship of represen-

tations of a group and those of its normal subgroup ([3], see also [7] § 11). We

include proofs for completeness as well as to confirm some delicate points (see

Remark 2.5 in particular).

The results in this section holds for abstract groups and finite-dimensional

representations over algebraically closed fields. Also they are valid for complex

(resp. compact) simple Lie groups and their holomorphic (resp. continuous) finite-

dimensional representations in complex vector spaces which we will study in the

subsequent sections (see Remark 2.7). In each of thse cases, all homomorphisms

and mappings are morphisms in the relevant category.

Let E be an extension of a group H by a finite group F , i.e. there is an exact

sequence of groups:

1 ! H ! E ! F ! 1: ð2:1Þ

A section s : F ! E is a morphism in the relevant category not necessarily

preserving group multiplications. Since F is finite, there always exists a section.

The group E acts on the representations of H by

g � wðhÞ ¼ wðg�1hgÞ;

where w is a representation of H, g A E, h A H. The representation g � w is called a

conjugate representation of w and denoted by wg. Let Ew be the subgroup of E

leaving the equivalence class of w invariant:

Ew ¼ fg A E j wg is equivalent to wg:

We denote by IrrðGÞ a complete set of representatives of the equivalence

classes of irreducible representations of a group G and by IrrðG; aÞ a complete set

of representatives of the equivalence classes of irreducible projective represen-

tations of G with factor set a : G � G ! C�.

For w A IrrðHÞ let

IrrðEwÞw ¼ ft A IrrðEwÞ j tjH is a multiple of wg ð2:2Þ
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Theorem 2.1 (Cli¤ord). Let w be an irreducible representation of H and t an

irreducible representation of Ew such that the restriction tjH of t to H is a multiple

of w. Let yw; t be the induced representation of E a¤orded by

Vw; t ¼ 0
g AE=Ew

gUw; t; ð2:3Þ

where Uw; t a¤ords t and the summation is taken over a complete set of coset

representatives of E=Ew. Then yw; t is irreducible and every irreducible representation

of E is given in this way. Two irreducible representations yw; t and yw 0; t 0 are

equivalent if and only if the pair ðw 0; t 0Þ is equivalent to a conjugate of ðw; tÞ: there
exists an element g 0 of E such that w 0 is equivalent to wg 0

and t 0 is equivalent to the

representation t � j�1
g 0 , where jg 0 is the isomorphism of Ew to Ew 0 defined by g 7!

g 0gg 0�1.

An irreducible representation t of Ew decomposes as the tensor product of

two irreducible projective representations of Ew: one has the same degree as w, the

other is the pullback ŝs of an irreducible projective representation s of Ew=H. The

two projective representations are given as follows. Since wg is equivalent to w for

g A Ew, there exists an invertible matrix t1ðgÞ of the same degree as that of w such

that

wgðhÞ ¼ t1ðgÞ�1wðhÞt1ðgÞ ð2:4Þ

for all h A H. Since

tðhÞtðgÞ ¼ tðgÞtðg�1hgÞ

for g A Ew, h A H, if we take the matrix representation such that

tðhÞ ¼
wðhÞ

. .
.

wðhÞ

0BB@
1CCA; and put tðgÞ ¼

T11ðgÞ � � � T1kðgÞ
..
. ..

.

Tk1ðgÞ � � � TkkðgÞ

0BB@
1CCA;

then we have

wðhÞTijðgÞ ¼ TijðgÞwðg�1hgÞ;

and hence, together with (2.4), we have

wðhÞTijðgÞt1ðgÞ�1 ¼ TijðgÞt1ðgÞ�1
wðhÞ:

By Schur’s lemma, for fixed g the matrix TijðgÞt1ðgÞ�1 is a scalar matrix:

TijðgÞ ¼ cijðgÞt1ðgÞ; cijðgÞ A C:

193Representations of the normalizers of maximal tori



Hence we have a matrix t2ðgÞ of degree k whose ði; jÞ-entry is cijðgÞ and obtain

tðgÞ ¼ t1ðgÞn t2ðgÞ: ð2:5Þ

Consider two elements g; g 0 A Ew. Since t1ðgg 0Þ and t1ðgÞt1ðg 0Þ both intertwine w,

they only di¤er by a scalar factor by Schur’s lemma:

t1ðgÞt1ðg 0Þ ¼ aðg; g 0Þt1ðgg 0Þ; aðg; g 0Þ A C�:

Moreover, since

t1ðgg 0Þn t2ðgg 0Þ ¼ tðgg 0Þ ¼ tðgÞtðg 0Þ ¼ t1ðgÞt1ðg 0Þn t2ðgÞt2ðg 0Þ;

we have

t2ðgÞt2ðg 0Þ ¼ aðg; g 0Þ�1t2ðgg 0Þ:

Hence t1 and t2 are both projective representations of Ew, whose factor sets are

inverse to each other, and we have t ¼ t1 n t2.

Since TijðhÞ ¼ 0 for i0 j and TiiðhÞ ¼ wðhÞ, we can assume that t1ðhÞ ¼ wðhÞ
and that t2ðhÞ is the identity for h A H. Furthermore we can take t1 in such a

way that the factor set a depends only on the coset Ew=H.

Let fsf j f A Fg be a complete set of coset representatives of E=H with

pðsf Þ ¼ f and s1 ¼ 1, where p : E ! F is the projection. Let Fw ¼ pðEwÞ. Let

t1ðs1Þ be the identity matrix and fix t1ðsf Þ ð f A Fw; f 0 1Þ in any way. Define

t1ðsf hÞ ¼ t1ðsf ÞwðhÞ; t1ðhÞ ¼ wðhÞ; f A Fw; h A H:

Then we have

t1ðghÞ ¼ t1ðgÞwðhÞ; g A Ew; h A H; ð2:6Þ

and

t1ðghÞt1ðg 0h 0Þ ¼ t1ðgÞwðhÞt1ðg 0Þwðh 0Þ

¼ t1ðgÞt1ðg 0Þwðg 0�1
hg 0Þwðh 0Þ

¼ aðg; g 0Þt1ðgg 0Þwðg 0�1
hg 0h 0Þ

¼ aðg; g 0Þt1ðghg 0h 0Þ;

hence we have

aðgh; g 0h 0Þ ¼ aðg; g 0Þ:

This shows that the factor set a is associated to the factor set of the coset Ew=H.

Therefore, by (2.5), we have t2ðghÞ ¼ t2ðgÞ ðg A Ew; h A HÞ provided that t1
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satisfies (2.6). Hence t2 defines a projective representation of Ew=H, whose factor

set is inverse to the factor set of Ew=H given by a as above.

We next show a is essentially determined by w and the extension (2.1). We

explain this in terms of non-abelian cohomology ([4], [5], [6], [16]), which is

defined as follows.

For groups G and A, let k : G ! AutðAÞ=IntðAÞ be a homomorphism of

abstract groups (even if G and A are Lie groups), where AutðAÞ (resp. IntðAÞ) is
the group of automorphisms (resp. inner automorphisms) of A. Let Z2ðG;A; kÞ
denote the set of all pairs ðg; dÞ of mappings

g : G � A ! Aððg; aÞ 7! gðgÞðaÞÞ; d : G � G ! A;

such that

gðgÞ mod IntðAÞ ¼ kðgÞ; g A G; ð2:7Þ

gðg 0ÞðgðgÞðaÞÞ ¼ dðg; g 0Þ�1ðgðgg 0ÞðaÞÞdðg; g 0Þ; ð2:8Þ

dðg; g 0g 00Þdðg 0; g 00Þ ¼ dðgg 0; g 00Þgðg 00Þðdðg; g 0ÞÞ; ð2:9Þ

for a A A, g; g 0; g 00 A G.

An equivalence relation is defined as follows: ðg; dÞ is equivalent to ðg 0; d 0Þ if

there exists a mapping h : G ! A such that

g 0ðgÞðaÞ ¼ hðgÞ�1ðgðgÞðaÞÞhðgÞ; ð2:10Þ

d 0ðg; g 0Þ ¼ hðgg 0Þ�1
dðg; g 0Þðgðg 0ÞðhðgÞÞÞhðg 0Þ; ð2:11Þ

for a A A, g; g 0 A G. The cohomology set H 2ðG;A; kÞ is the set of equivalence

classes in Z2ðG;A; kÞ, which is the set of equivalence classes of extensions of A

by G,

1 ! A ! E ! G ! 1;

such that there exists a section s : G ! E and k is the image in AutðAÞ=IntðAÞ of

the automorphism of A given by a 7! sðgÞ�1
asðgÞ.

In our case, let G ¼ Fw, A ¼ GLðVwÞ and k ¼ 1 (sending Fw to the identity),

where w : H ! GLðVwÞ is the irreducible representation. Let b be the normalized

factor set of the extension (2.1) associated with the representatives fsf j f A Fg:

sf sf 0 ¼ sff 0bð f ; f 0Þ; f ; f 0 A F ; bð f ; f 0Þ A H;

bð1; f 0Þ ¼ bð f ; 1Þ ¼ 1:
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Lemma 2.2. Let g : Fw ! AutðGLðVwÞÞ be the mapping defined by gð f ÞðX Þ ¼
t1ðsf Þ�1

Xt1ðsf Þ. Then

(i) ð1; a�1IVw
Þ; ðg; w � bÞ A Z2ðFw;GLðVwÞ; 1Þ, where IVw

A GLðVwÞ is the iden-

tity transformation and ða�1IVw
Þð f ; f 0Þ ¼ a�1ð f ; f 0ÞIVw

.

(ii) ð1; a�1IVw
Þ is equivalent to ðg; w � bÞ.

Proof. (i) Since a�1 satisfies the cocycle condition, ð1; a�1IVw
Þ satisfies (2.7),

(2.8) and (2.9). Since gð f Þ A IntðGLðVwÞÞ, (2.7) is satisfied for g. For f ; f 0 A Fw

and X A GLðVwÞ, since

t1ðsf Þt1ðsf 0 Þ ¼ að f ; f 0Þt1ðsf sf 0 Þ

¼ að f ; f 0Þt1ðsff 0bð f ; f 0ÞÞ

¼ að f ; f 0Þt1ðsff 0 Þwðbð f ; f 0ÞÞ ðby ð2:6ÞÞ ð2:12Þ

we have

gð f 0Þðgð f ÞðXÞÞ ¼ ðt1ðsf Þt1ðsf 0 ÞÞ�1
Xðt1ðsf Þt1ðsf 0 ÞÞ

¼ wðbð f ; f 0ÞÞ�1ðt1ðsff 0 Þ�1
Xt1ðsff 0 ÞÞwðbð f ; f 0ÞÞ

¼ ððw � bÞð f ; f 0ÞÞ�1ðgð ff 0ÞðX ÞÞðw � bÞð f ; f 0Þ:

Since b satisfies the cocycle condition

bð f ; f 0f 00Þbð f 0; f 00Þ ¼ bð ff 0; f 00Þs�1
f 00 bð f ; f 0Þsf 00 ;

we have

ðw � bÞð f ; f 0f 00Þðw � bÞð f 0; f 00Þ ¼ wðbð f ; f 0f 00ÞÞwðbð f 0; f 00ÞÞ

¼ wðbð f ; f 0f 00Þbð f 0; f 00ÞÞ

¼ wðbð ff 0; f 00Þs�1
f 00 bð f ; f 0Þsf 00 Þ

¼ð2:4Þ wðbð ff 0; f 00ÞÞt1ðsf 00 Þ�1wðbð f ; f 0ÞÞt1ðsf 00 Þ

¼ ðw � bÞð ff 0; f 00Þgð f 00Þðw � bð f ; f 0ÞÞ:

(ii) Let h : Fw ! GLðVwÞ be the mapping defined by hð f Þ ¼ t1ðsf Þ. Then, for
f A Fw, X A GLðVwÞ, we have

gð f ÞðX Þ ¼ t1ðsf Þ�1
Xt1ðsf Þ

¼ hð f Þ�1
Xhð f Þ:
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It follows from (2.12), we have

wðbð f ; f 0ÞÞ ¼ t1ðsff 0 Þ�1að f ; f 0Þ�1t1ðsf Þt1ðsf 0 Þ; f ; f 0 A Fw:

Thus (2.10) and (2.11) are satisfied. r

It follows from Lemma 2.2 that two cocycles ð1; a�1IVw
Þ; ðg; w � bÞ A Z2ðFw;

GLðVwÞ; 1Þ ðg : Fw ! AutðGLðVwÞÞ is defined by gð f ÞðX Þ ¼ t1ðsf Þ�1
Xt1ðsf Þ) de-

fine the same cohomology class in H 2ðFw;GLðVwÞ; 1Þ. If k is given by a

homomorphism G ! AutðAÞ, then H 2ðG;A; kÞ is canonically identified with

H 2ðG;ZðAÞ; kÞ, where ZðAÞ is the center of A ([16] 1.17). If A is abelian,

H 2ðG;A; kÞ coincides with ordinary cohomology H 2ðG;AÞ, where G acts on A

via k. Thus we have

H 2ðFw;GLðVwÞ; 1Þ ¼ H 2ðFw;C
�Þ;

since ZðGLðVwÞÞFC�.

The discussion above shows that the factor set a is determined by the ir-

reducible representation w of H and the factor set of the extension (2.1).

The results are summarized as follows:

Theorem 2.3 (Cli¤ord).

(i) Let w, t be as in the Theorem 2.1. Then

t ¼ t1 n t2

where t1 and t2 are irreducible projective representations of Ew such that

the degree of t1 is same as the degree of w and t1ðghÞ ¼ t1ðgÞwðhÞ,
t2ðghÞ ¼ t2ðgÞ for all g A Ew and h A H, so that t2 can be viewed as a

projective representation of the factor group Fw ¼ Ew=H. The represen-

tations t1 and t2 can be taken to be ordinary representations of Ew if there

exists an ordinary representation t1 such that t1ðhÞ ¼ wðhÞ for all h A H.

(ii) Conversely, for a given w A IrrðHÞ, there exists an irreducible projective

representation t1 of Ew such that t1ðghÞ ¼ t1ðgÞwðhÞ ðg A Ew; h A HÞ and

t1jH ¼ w. The factor set a of t1 is determined by the cohomology class of a

2-cocycle a A Z2ðFw;C
�Þ, which is given by w and the extension (2.1). Let

t2 be the pull back of an irreducible projective representation of Fw ¼ Ew=H

with factor set a�1. Then t ¼ t1 n t2 is an irreducible ordinary represen-

tation of Ew such that tjH is a multiple of w. Furthermore if t1 is fixed, then

there is a one-to-one correspondence between IrrðEwÞw and IrrðFw; a
�1Þ by

the relation that t is equivalent to t1 n t2.
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Remark 2.4. If E is a semidirect product of H by F , then F is regarded as

a subgroup of E. We can write an element of E uniquely in the form fh, f A F ,

h A H. If furthermore H is an abelian group A, then any linear character w can be

extended to a linear character t1 of Ew by putting

t1ð faÞ ¼ wðaÞ; f A Fw; a A A; ð2:13Þ

since ð faÞð f 0a 0Þ ¼ ð ff 0Þða f 0
a 0Þ and wða f 0 Þ ¼ w f 0 ðaÞ ¼ wðaÞ if f 0 A Fw. Hence, by

Theorem 2.3 (i), the irreducible representations t of Ew restricting to multiples

of w on A are given, up to equivalence, by the representations t1 n ŝs, where

ŝs ¼ s � pjEw
, s A IrrðFwÞ. We will denote t1 n ŝs by wz s in the sequel. We

have

IrrðEÞ ¼ fyw;wzs j w A HomðA;C�Þ=F ; s A IrrðFwÞg;

where w A HomðA;C�Þ=F means, by abuse of notation, that w varies over a

complete set of representatives of the F -orbits of linear characters of A.

Remark 2.5. The condition (2.6) is worth special attention. We cannot

replace t1 by another projective representation t 01 of Ew equivalent to t1 if t 01
doesn’t satisfy (2.6).

For example, if w is one-dimensional, e.g. if H is abelian, the projective

representation t1 of Ew is also one-dimensional, and hence equivalent to any one-

dimensional linear representation t 01, e.g., the trivial representation. However, this

does not mean that w can be extended to a linear representation of Ew, unless

t 01jH ¼ w honestly holds. Accordingly, the condition that H is abelian does not

assure that t2 can be taken to be linear representations.

In fact, let E ¼ Q8 ¼ ha; b j a4 ¼ 1; a2 ¼ b2; b�1ab ¼ a�1i be the quaternion

group and H its center Z ¼ ha2i, which is the cyclic group Z2 of order 2. If w

is the trivial representation 1 of Z, then Ew ¼ Q8 and we can take t1 to be

the trivial representation of Q8. Since the factor group Q8=Z is isomorphic to

Z2 lZ2, IrrðQ8=ZÞ consists of 4 one-dimensional representations, which, together

with t1, define 4 one-dimensional representations of Q8 by Theorem 2.3 (ii). If w

is non-trivial representation �1 of Z, then Ew ¼ Q8. Since IrrðQ8Þ consists of 4

one-dimensional representations obtained as above and a two-dimensional faithful

representation, there is no one-dimensional representation of Ew ¼ Q8 such that

its restriction to Z is �1.

In § 5, we will study the case where H is a maximal torus T of a complex

simple Lie group G and E is its normalizer N in G. Any character w of T can be

extended to Nw (Theorem 5.1). This follows not only from the commutativeness
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of T but also from special conditions for the representatives in N of the elements

of the Weyl groups.

Remark 2.6. Theorem 2.1 and 2.3 show that the irreducible representations

of E can be parametrized by the equivalence classes of pairs ðw; t2Þ with

w A IrrðHÞ and t2 A IrrðFw; a
�1Þ, where a A H 2ðFw;C

�Þ is determined from the

non-abelian cohomology class b A H 2ðFw;H; kÞ attached to the extension (2.1) by

the condition

ðlVw
Þ�ðaÞ

�1 ¼ w�ðbÞ:

Here w : H ! GLðVwÞ and lVw
: C� ! GLðVwÞ is the isomorphism from C� to the

center of GLðVwÞ.

Remark 2.7. If E and H are complex (resp. compact) Lie groups, then this

parametrization nicely ‘‘restricts’’ to that of the irreducible holomorphic (resp.

continuous) representations of E by those pairs ðw; t2Þ in which w is holomorphic

(resp. continuous). This can be verified by checking that each operation used in

the proof of Theorem 2.1 and 2.3 ‘‘preserves’’ the kind of the representations

considered. We observe this in the paragraphs below for complex Lie groups and

holomorphic representations. The other case is utterly parallel.

Under our assumption, the groups EIEw IH form a chain of open sub-

groups. A representation of such a group is holomorphic if and only if its

restriction to an open subgroup is holomorphic. Also, subrepresentations, direct

sums and conjugates of holomorphic representations are holomorphic. (By a

conjugate we mean a conjugate of a representation of H or Ew by an element g of

E, which is a representation of H or Eg�w respectively.)

Now if w and t are holomorphic in Theorem 2.1, then the induced rep-

resentation yw; t is also holomorphic since yw; tjH is a direct sum of conjugates of w.

In the other direction, if y A IrrðEÞ, then w and t such that y@ yw; t are obtained

as subrepresentations of yjH and yjEw
. Hence if y is holomorphic, then w and t are

holomorphic. Note also that the equivalence of ðw; tÞ as defined in Theorem 2.1

preserved holomorphicity.

Moreover if w is holomorphic, then any t A IrrðEwÞw is holomorphic since its

restriction to H is a multiple of w by definition. Hence, in this case, Theorem 2.3

readily gives a parametrization of the irreducible holomorphic representations of

Ew restricting to multiples of w on H by the irreducible projective representations

of Ew=H with cocycle a�1. Note that, in this case, any projective representation

t1 of Ew which extends w and satisfies (2.6) is a holomorphic map from Ew to
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GLðVwÞ since it is so on each of the cosets of H, which form a (disjoint) open

covering of Ew; and that the pullback t2 of a projective representation of Ew=H is

also a holomorphic map since it is constant on each coset of H.

3. Relation to Semidirect Products

We will study the representations of normalizer N of a maximal torus of

SLðn;CÞ in the last four sections of this paper. The representations are closely

related to those of the normalizer ~NN of a maximal torus of GLðn;CÞ. The group
~NN is the semidirect product of the subgroup consisting of the diagonal matrices

by the symmetric group of degree n and contains N. With this example in mind,

we consider, more generally, the case where H is an abelian group and study the

relationship between the representations of a semidirect product group and its

subgroups.

Let us keep the notation of § 2.

Assumption 3.1. Let ~EE be the semidirect product of an abelian group ~AA by

a finite group F :

1 ! ~AA ! ~EE !~pp F ! 1

and E a subgroup of ~EE satisfying ~ppðEÞ ¼ F . Putting p ¼ ~ppjE and A ¼ ker p, we

have an extension

1 ! A ! E !p F ! 1;

which is not split in general.

For a A A, f A F , the element s�1
f asf is independent of the choice of a

representative sf with pðsf Þ ¼ f , because A is abelian. Thus we denote it by a f .

Since E is a subgroup of ~EE, an element of E is written in two ways: sf a in E

and fa 0 in ~EE with a; a 0 A A, f A F . These are related as follows. For each f A F ,

there exists a unique element ~��f A ~AA which satisfies

sf ¼ f ~��f ; ð3:1Þ

thus we have

a 0 ¼ ~��f a:

Lemma 3.2. The factor set b is given by

bð f ; f 0Þ ¼
~�� f

0

f
~��f 0

~��ff 0
:
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Proof. By (3.1), we have

sf sf 0 ¼ sff 0bð f ; f 0Þ

¼ ff 0~��ff 0bð f ; f 0Þ:

We also have

sf sf 0 ¼ f ~��f f
0~��f 0

¼ ff 0~�� f
0

f
~��f 0 :

Thus we have

bð f ; f 0Þ ¼
~�� f

0

f
~��f 0

~��ff 0
: r

The action of E on the character group X of A induces an action of F on X .

For a character w of A, let Fw be the stabilizer subgroup of w in F .

By Remark 2.4, the irreducible representations of ~EE are given, up to equiv-

alence, by the representations y~ww; ~wwzs where ~ww A Homð~ww;C�Þ=F and s A IrrðFwÞ.

Theorem 3.3. Let w be a linear character of A, and suppose that there exists

a linear character ~ww of ~AA such that ~wwjA ¼ w and F~ww ¼ Fw.

(i) Every irreducible representation y~ww; ~wwzs of ~EE remains irreducible upon

restriction to E.

(ii) For an irreducible representation yw; t of E, the projective representations

t1 and t2 of Theorem 2.3 can be taken to be ordinary representations in

the following way. Let ~tt1 be a linear character of ~EEw defined as in (2.13)

and t1 ¼ ~tt1jEw
. Then t1 is a linear character of Ew with t1ðaÞ ¼ wðaÞ for all

a A A. Hence t2 is an ordinary representation, which defines the irreducible

representation s of Fw ¼ F~ww. Put ~tt2 ¼ ŝs and ~tt ¼ ~tt1 n ~tt2, where ŝs ¼
s � ~ppj ~EE~ww

. Then

y~ww; ~wwzsjE ¼ yw; t: ð3:2Þ

(iii) Suppose that such ~ww exists for every linear character w of A. Fix the choice

of such a linear character ~ww for every w. Then the representations yw; t ¼
y~ww; ~wwzsjE , parametrized by the pairs ðw; sÞ in the following way, form a

complete set of representatives of the equivalence classes of irreducible

representations of E: w varies over a complete set of representatives of
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the F-orbits of linear characters of A, and ~tt ¼ ~tt1 n ŝs, where ~tt1 is deter-

mined from ~ww as in (2.13) and s varies over IrrðFwÞ, a complete set of

representatives of the equivalence classes of irreducible representations of

F~ww ¼ Fw.

Proof. (i) Since

~ttð f ~aaÞ ¼ ~wwða~���1
f Þ~ttðsf Þ; f ~aa A ~EEw;

a ~ttðEwÞ-invariant subspace is also ~ttð ~EEwÞ-invariant. Hence t ¼ ~ttjEw
is irreducible

and y~ww;~ttjE ¼ yw; t.

(ii) We have t1jA ¼ w, since ~tt1j ~AA ¼ ~ww, A ¼ Ew V ~AA and w ¼ ~wwjA. Since t1 is a

linear character of Ew, t2 is also an ordinary representation by (2.5). By con-

struction, we have ~tt1jEw
¼ t1 and ~tt2jEw

¼ t2, so that ~ttjEw
¼ t. Hence

y~ww; ~ttjE ¼ yw; t:

(iii) Now suppose that the assumption at the beginning of this Theorem

holds for every linear character w of A. Let RðA;EÞ be a complete set of repre-

sentatives of conjugacy classes of linear characters of A under the action of

E.

It follows from Theorem 2.1 that every irreducible representation of E is

equivalent to some yw; t, where w A RðA;EÞ and t A IrrðEwÞw. By (ii), we have t ¼
t1 n ðs � pjEw

Þ. Here t1 is given by ~ww as in (ii) and s is an irreducible repre-

sentation of Fw. Let s 0 be an element of IrrðFwÞ which is equivalent to s. Then

yw; t is equivalent to yw; t1nðs 0�pjEw Þ, since t is equivalent to t1 n ðs 0 � pjEw
Þ. By

Theorem 2.1 again, yw; t1nðs�pjEw Þ and yw 0; t 0
1
nðs 0�pjE

w 0
Þ ðw; w 0 A RðA;EÞ; s A IrrðFwÞ;

s 0 A IrrðFw 0 ÞÞ are equivalent if and only if w ¼ w 0 and s ¼ s 0.

Conversely, let w be an element of RðA;EÞ and s A IrrðFwÞ. Then we obtain

an irreducible representation y~ww; ~tt with ~tt ¼ ~wwz s as in Remark 2.4. By restricting

y~ww; ~tt to E, we have an irreducible representation yw; t. r

For ~ww we define a function e~ww on F by

e~wwð f Þ ¼ ~wwð~��f Þ: ð3:3Þ

Corollary 3.4. For sf a A Ew,

~ttðsf aÞ ¼ e~wwð f ÞwðaÞsð f Þ; ð3:4Þ

where s A IrrðFwÞ is defined as in Theorem 3.3 (ii).
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Proof. For f ~aa A ~EE~ww we have

~ttð f ~aaÞ ¼ ~tt1ð f ~aaÞn ~tt2ð f ~aaÞ

¼ ~wwð~aaÞsð f Þ:

It follows that

~ttðsf aÞ ¼ ~ttð fa~��f Þ

¼ ~ttð faÞ~ttð~��f Þ

¼ ~wwðaÞsð f Þ~wwð~��f Þ

¼ e~wwð f ÞwðaÞsð f Þ;

since ~wwðaÞ ¼ wðaÞ for a A A. r

Example 3.5. (1) Let ~TT (resp. T) be the group of all diagonal matrices in
~GG ¼ GLðn;CÞ (resp. G ¼ SLðn;CÞ) and ~NN (resp. N) its normalizer in ~GG (resp. G).

The extensions

1 ! T ! N ! W ! 1

and

1 ! ~TT ! ~NN ! W ! 1

satisfy the conditions in Assumption 3.1, where W is the Weyl group of ~GG with

respect to ~TT (resp. of G with respect to T) isomorphic to Sn.

Any character w of T is the restriction of a character ~ww of ~TT . For a sequence

of integers m ¼ ðm1; . . . ;mnÞ, let ~wwm : diagð~tt1; . . . ; ~ttnÞ 7! ~tt m1

1 � � � ~ttmn
n be a character

of ~TT . Then two characters ~ww ¼ ~wwm and ~ww 0 ¼ ~wwm 0 of ~TT restrict to the same

character of T if and only if m 0 ¼ mþ ðk; . . . ; kÞ or equivalently ~ww 0 ¼ ~wwn ðdetÞk.
Therefore if ~wwjT ¼ w, then W~ww ¼ Ww and the assumption of Theorem 3.3 is

satisfied.

For n ¼ 2,

~TT ¼ t1 0

0 t2

� �����ti A C�
� �

; ~NN ¼ ~TT U
0 t1

t2 0

� �����ti A C�
� �

T ¼ t1 0

0 t�1
1

� �����t1 A C�
� �

; N ¼ T U
0 t1

�t�1
1 0

� �����t1 A C�
� �

:
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Let

~tt ¼ t1 0

0 t2

� �
; et 0t 0 ¼ 0 t1

t2 0

� �
; t ¼ t1 0

0 t�1
1

� �
; t 0 ¼

0 t1

�t�1
1 0

� �
;

t 0 ¼ tg; g ¼ 0 1

�1 0

� �
:

For an integer m let wðtÞ ¼ tm1 and ~wwð~tt Þ ¼ tm1

1 tm2

2 with m ¼ m1 �m2, mi A Z. Then

~wwjT ¼ w.

(i) If m0 0, then Nw ¼ T and Ww is trivial. Let t ¼ w. Then

Vw; t ¼ Uw; t l gUw; t:

Take a non-zero vector e1 A Uw; t, and put e2 ¼ ge1 A gUw; t. The matrix

representation of yw; t with respect to the basis fe1; e2g has the form

yw; tðtÞ ¼
tm1 0

0 t�m
1

� �
; yw; tðt 0Þ ¼

0 ð�t1Þm

t�m
1 0

� �
:

(ii) If m ¼ 0, then Nw ¼ N and Ww ¼ W FS2. Let ~wwð~tt Þ ¼ ðt1t2Þk and

~tt1ð~tt Þ ¼ ~tt1ðet 0t 0Þ ¼ ðt1t2Þk. Define t1 ¼ ~tt1jN , then t1ðtÞ ¼ 1 and

t1ðt 0Þ ¼ ~tt1
0 1

1 0

� �
�t�1

1 0

0 t1

� �� �
¼ ~ww

�t�1
1 0

0 t1

� �� �
¼ ð�1Þk:

(a) For the trivial representation of Ww FS2, we have t2 ¼ 1 and

yw; t ¼ t ¼ t1 n t2 ¼ t1 n 1:

Hence we have

yw; tðtÞ ¼ 1; yw; tðt 0Þ ¼ ð�1Þk:

(b) For the sign representation of Ww FS2, we have t2ðtÞ ¼ 1,

t2ðt 0Þ ¼ �1. In this case we have

yw; tðtÞ ¼ 1; yw; tðt 0Þ ¼ t1ðt 0Þt2ðt 0Þ ¼ ð�1Þkþ1:

We next consider the representations of ~NN.

(iii) If m1 0m2, then ~NN~ww ¼ ~TT . Let ~tt ¼ ~ww. Then

V~ww; ~tt ¼ U~ww; ~tt l gU~ww; ~tt:
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Take a non-zero element ~ee1 A U~ww; ~tt, and put ~ee2 ¼ g~ee1. Then we have the

matrix representation with respect to the basis fe1; e2g

y~ww; ~ttð~tt Þ ¼
tm1

1 tm2

2 0

0 tm2

1 tm1

2

� �
; y~ww; ~ttðet 0t 0Þ ¼ 0 ð�t1Þm1 tm2

2

tm2

1 ð�t2Þm1 0

� �
:

The restriction y~ww; ~ttjN is the representation in (i).

(iv) If m1 ¼ m2 ¼ k, then ~NN~ww ¼ ~NN and W~ww ¼ W FS2. Then ~tt1ð~tt Þ ¼ ~wwð~tt Þ ¼
ðt1t2Þk and

~tt1ðet 0t 0Þ ¼ ~tt1
0 1

1 0

� �
t2 0

0 t1

� �� �
¼ ~ww

t2 0

0 t1

� �
¼ ðt1t2Þk:

(a) For the trivial representation of W~ww FS2, we have ~tt2 ¼ 1 and y~ww; ~tt ¼
~tt1 n ~tt2. Hence

y~ww; ~ttð~tt Þ ¼ y~ww; ~ttðet 0t 0Þ ¼ ðt1t2Þk:

The restriction y~ww; ~ttjN is the representation in (ii)(a).

(b) For the sign representation of W~ww FS2, we have y~ww; ~ttð~tt Þ ¼ ðt1t2Þk

and

y~ww; ~ttðet 0t 0Þ ¼ y~ww; ~tt
0 1

1 0

� �
t2 0

0 t1

� �� �

¼ ~tt1
0 1

1 0

� �
t2 0

0 t1

� �� �
n ~tt2

0 1

1 0

� �
t2 0

0 t1

� �� �
¼ �ðt1t2Þk

Hence y~ww; ~ttjN is the representation in (ii)(b).

(2) We may realize the symplectic group Spð2n;CÞ as the set of matrices X

of GLð2n;CÞ satisfying tXJX ¼ J, where J is the matrix

J ¼ 0 In

�In 0

� �
:

Let T be the group of all diagonal matrices in Spð2n;CÞ and N the normalizer of

T in Spð2n;CÞ. The Weyl group W ¼ N=T , faithfully represented as a group of

automorphisms of T acting by conjugation, is generated by the permutations

of the indices f1; 2; . . . ; ng of the elements t ¼ diagðt1; . . . ; tn; t�1
1 ; . . . ; t�1

n Þ (which

permute t1; . . . ; tn and t�1
1 ; . . . ; t�1

n in a parallel manner) and the transposition that

exchange tn and t�1
n . This naturally gives an embedding i : W ,! S2n as the

permutations that commute with ð1 2nÞð2 2n� 1Þ � � � ðn nþ 1Þ.
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Let ~TT be the group of all diagonal matrices in GLð2n;CÞ. The group W can

be realized as a subgroup of GLð2n;CÞ consisting of the permutation matrices

representing the elements of iðWÞHS2n. Let ~NN be the subgroup of GLð2n;CÞ
generated by ~TT and W , which is isomorphic to the semidirect product of ~TT by

W . Then N is a subgroup of ~NN, and ðW ;T ;N; ~TT ; ~NNÞ satisfies Assumption 3.1.

For a character w of T given by wðtÞ ¼ tm1

1 � � � tmn
n , define a character ~ww of ~TT by

~wwð~tt Þ ¼ ~tt m1

1 � � � ~ttmn
n . Then we have ~wwjT ¼ w and W~ww ¼ Ww.

(3) The orthogonal group SOðm;CÞ is realized as the set of matrices X of

SLðm;CÞ satisfying tXJX ¼ J, where J is the matrix

J ¼
0 In 0

In 0 0

0 0 1

0B@
1CA for m ¼ 2nþ 1; J ¼ 0 In

In 0

� �
for m ¼ 2n:

Let T be the group of all diagonal matrices in SOðm;CÞ and N the normalizer of

T in SOðm;CÞ. If m ¼ 2nþ 1, the Weyl group W ¼ N=T , as in (2), is generated

by the permutations of the indices f1; 2; . . . ; ng of the elements t ¼ diagðt1; . . . ; tn;
t�1
1 ; . . . t�1

n ; 1Þ of T (which permute t1; . . . ; tn and t�1
1 ; . . . ; t�1

n in a parallel manner)

and the transposition that exchange tn and t�1
n . If m ¼ 2n, the Weyl group is

generated by the permutations of the indices f1; 2; . . . ; ng of the elements t ¼
diagðt1; . . . ; tn; t�1

1 ; . . . t�1
n Þ of T (which permute t1; . . . ; tn and t�1

1 ; . . . ; t�1
n in a

parallel manner) and products of even numbers of transpositions that exchange ti

and t�1
i . This naturally gives an embedding i : W ! S2n as the permutations that

commute with ð1 2nÞð2 2n� 1Þ � � � ðn nþ 1Þ.
Let ~TT be the group of all diagonal matrices in GLðm;CÞ. The group W can

be realized as a subgroup of GLðm;CÞ consisting of the permutation matrices

representing the elements of iðWÞHS2n. Let ~NN be the subgroup of GLðm;CÞ
generated by ~TT and W , which is isomorphic to the semidirect product of ~TT by

W . Then N is a subgroup of ~NN, and ðW ;T ;N; ~TT ; ~NNÞ satisfies Assumption 3.1.

For a character w of T given by wðtÞ ¼ tm1

1 � � � tmn
n , define a character ~ww of ~TT by

~wwð~tt Þ ¼ ~tt m1

1 � � � ~ttmn
n . Then we have ~wwjT ¼ w and W~ww ¼ Ww.

4. Formula for Irreducible Characters of Finite Extensions

of Abelian Groups

In this section, we calculate the character cw; t of yw; t for the case where E is

an extension of an abelian group A by a finite group F :

1 ! A ! E !p F ! 1:
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The notation is as in the preceding sections. Let t be an irreducible representation

of Ew whose restriction to A is a multiple of w. Let jw; t be the character of t. By

(2.3), we have

cw; tðgÞ ¼
X

g 0 AE=Ew

g 0�1gg 0 AEw

jw; tðg 0�1gg 0Þ;

where the summation is taken over a complete set of coset representatives of

E=Ew. Since E=Ew ¼ F=Fw,

cw; tðgÞ ¼
X

f AF=Fw

f �1pðgÞ f AFw

jw; tð ~ff �1g~ff Þ;

where the summation is taken over a complete set of coset representatives of

F=Fw and ~ff is an element of p�1ð f Þ.
For g A E, put

IðgÞ ¼ f f A F j f �1pðgÞ f A Fwg:

Then IðgÞFw ¼ IðgÞ and

cw; tðgÞ ¼
1

jFwj
X

f A IðgÞ
jw; tð ~ff �1g ~ff Þ; ð4:1Þ

where ~ff is an element of p�1ð f Þ.
Let Kf be the conjugacy class of f A F in F . If k0 A F and k�1

0 pðgÞk0 ¼
f0 A KpðgÞ VFw, then, for k A F , k�1pðgÞk ¼ f0 if and only if kk�1

0 is an element of

the centralizer ZF ðpðgÞÞ of pðgÞ in F .

Let Ff : F ! F be the mapping given by k 7! k�1fk. Note that Im FpðgÞ ¼
KpðgÞ. We have

IðgÞ ¼ F�1
pðgÞðFwÞ ¼

G
f0 AKpðgÞVFw

F�1
pðgÞð f0Þ ðdisjoint unionÞ ð4:2Þ

and, for each f0 A KpðgÞ VFw, we have

F�1
pðgÞð f0Þ ¼ ZF ðpðgÞÞk0 if we pick any k0 A F�1

pðgÞð f0Þ: ð4:3Þ

Now we have the following.
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Proposition 4.1. Let g A E.

(i) For each f0 A Fw VKpðgÞ, fix an element k0 A F with f0 ¼ k�1
0 pðgÞk0, then

cw; tðgÞ ¼
1

jFwj
X

f0 AFwVKpðgÞ

X
x AZF ðpðgÞÞk0

jw; tð~xx�1g~xxÞ;

where jw; t is the character of t and ~xx is an element of p�1ðxÞ.
(ii) Suppose E is a semidirect product of A by F and t is given by wz s (see

Remark 2.4). Let g ¼ fa A E with f A F and a A A. Then we have

cw; tð faÞ ¼
1

jFwj
X

f0 AFwVKf

fsð f0Þ
X

x AF�1
f ð f0Þ

wðx�1axÞ

0@ 1A;

where fs is the character of s.

Proof. (i) This follows from (4.1), (4.2) and (4.3).

(ii) By (4.1), (4.2), we have

cw; tð faÞ ¼
1

jFwj
X

f0 AFwVKf

X
x AF�1

f ð f0Þ
jw; tðx�1ð faÞxÞ:

Since x�1ð faÞx ¼ ðx�1fxÞðx�1axÞ ¼ f xax, we have

jw; tðx�1ð faÞxÞ ¼ wðaxÞfsð f xÞ

and hence

cw; tð faÞ ¼
1

jFwj
X

f0 AFwVKf

X
x AF�1

f ð f0Þ
wðaxÞfsð f xÞ

¼ 1

jFwj
X

f0 AFwVKf

X
x AF�1

f ð f0Þ
wðaxÞfsð f0Þ

¼ 1

jFwj
X

f0 AFwVKf

fsð f0Þ
X

x AF�1
f ð f0Þ

wðaxÞ

0@ 1A r

Example 4.2. Let T be the group of all diagonal matrices in GLðn;CÞ and

N the normalizer of T in GLðn;CÞ. Then W ¼ N=T is isomorphic to the

symmetric group Sn of degree n and N is a semidirect product of T by Sn:

1 ! T ! N ! W ¼ Sn ! 1
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(i) For t ¼ diagðt1; . . . ; tnÞ A T , let wðtÞ ¼ tm1

1 � � � tmn
n , where m1; . . . ;mn are

distinct integers. Then Ww is trivial and the trivial representation is the

only irreducible representation of Ww. Hence t ¼ wz 1 (see Remark

2.4). Since Ww VKw ¼ q for any non-trivial element w of W . Hence

cw; tðwtÞ ¼ 0 for w A W , w0 1, t A T . For w ¼ 1, we have Ww VK1 ¼ f1g
and

F�1
1 ð1Þ ¼ W ¼ Sn:

Hence we have

cw; tðwtÞ ¼
X
w ASn

wðtwÞ

¼
X
w ASn

tm1

wð1Þ � � � t
mn

wðnÞ:

(ii) Let wðtÞ ¼ ðt1 � � � tnÞm: Then Ww ¼ Sn and Ww VKw ¼ Kw for all w A Sn.

Hence we have

cw; tðwtÞ ¼
1

n!

X
u AKw

fsðuÞ
X

v AF�1
w ðuÞ

wðtvÞ:

5. Case of the Normalizers of Maximal Tori

Let G be a connected complex simple Lie group. We apply the results of

preceding sections to the case where A is a maximal torus T of G, E the

normalizer N of T in G and F the Weyl group W of G:

1 ! T ! N !p W ! 1:

In the following sections we write m for a weight of a representation of G

with respect to T and regard m as a linear character of T . Thus, for the sake

of brevity, we use the letter m, instead of w which is used for an irreducible

representation of H or A in the previous sections, for a linear character of T

when H or A is a maximal torus T of G.

When G is the classical group SLðn;CÞ, Spð2n;CÞ or SOðm;CÞ, if we take ~TT

and ~NN as in Example 3.5, then ðW ;T ;N; ~TT ; ~NNÞ satisfies Assumption 3.1 and the

assumption of Theorem 3.3 (iii). Thus we can apply the results of § 3. In general

we can extend a linear character m to a linear character t1 of Nm by choosing

good representatives in N of the elements of W and apply the results of § 2.

We first recall some results about the representatives in N of the elements of

W ([17] 9.3).
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Let F be the root system of G with respect to T and ð ; Þ the inner product

induced on the character group of T or the weight lattice by the Killing form. Let

B be a Borel subgroup containing T , P ¼ fa1; . . . ; alg the corresponding basis of

F and Fþ the set of positive roots. For each a A F, let ua be an isomorphism of

C into G such that

tuaðxÞt�1 ¼ uaðaðtÞxÞ; t A T ; x A C: ð5:1Þ

We can choose ua and u�a for each a A Fþ in such a way that

na ¼ uað1Þu�að�1Þuað1Þ

is an element of N and represents the reflection sa A W associated to a. Then n2a
lies in T . We denote it by ta, which is given by a4ð�1Þ, where a4 is the coroot

with ha; a4i ¼ 2.

The normalizer N is generated by T U fna1 ; . . . ; nalg and determined by the

relations:

tt 0 ¼ t 0t; t; t 0 A T ð5:2Þ

n2a ¼ a4ð�1Þ; a A P ð5:3Þ

natn
�1
a ¼ saðtÞ; t A T ; a A P ð5:4Þ

nai naj nai � � �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mij

¼ naj nai naj � � �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mij

ð5:5Þ

where mij is the order of sai saj .

For w A W , let w ¼ sg1 � � � sgk be a reduced expression of w with gi A P. Then

the element ng1 � � � ngk of N is independent of the choice of the reduced expression

of w. Denote this by nw. Hence we have a set of representatives fnw jw A Wg in

N of the elements of W provided that we fix fua j a A Fg and a basis P of F.

Theorem 5.1. (i) Let m be a linear character of T and Nm the stabilizer of m

in N. Let t1 be the mapping of Nm to C defined by t1ðnwtÞ ¼ mðtÞ, w A Wm, t A T.

Then t1 is a linear character of Nm satisfying t1jT ¼ m.

Let Lþ denote the set of the linear characters of T which are dominant with

respect to P. If m A Lþ and s A IrrðWmÞ, then we write tðm; sÞ for the represen-

tation t1 n t2 of Nm, where t1 is defined from m as in (i) and t2 ¼ ŝs ¼ s � ðpjNm
Þ,

i.e.

tðm; sÞðnwtÞ ¼ mðtÞsðwÞ:
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(ii) The representations tðm; sÞ of Nm just defined above, where s varies over

IrrðWmÞ, form a complete set of representatives of the equivalence classes of ir-

reducible representations of Nm whose restrictions to T are multiples of m. More-

over, the representations ym; tðm;sÞ of N with m A Lþ and s A IrrðWmÞ form a com-

plete set of representatives of the equivalence classes of irreducible representations

of N.

If t A IrrðNmÞm (see § 2), then there exists a unique element s A IrrðWmÞ such

that t ¼ tðm; sÞ in the parametrization currently discussed (using the representatives

fnw jw A Wg).

Proof. (i) Since m is dominant, Wm is a standard parabolic subgroup. Thus

Nm is determined by the relations (5.2)@(5.5) for Pm ¼ fa A P j ða; mÞ ¼ 0g: Thus
we have to check

t1ðnaÞ2 ¼ t1ða4ð�1ÞÞ; a A Pm

t1ðnaÞt1ðtÞt1ðnaÞ�1 ¼ t1ðsaðtÞÞ; t A T ; a A Pm

t1ðnaiÞt1ðnaj Þt1ðnaiÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mij

¼ t1ðnaj Þt1ðnaiÞt1ðnaj Þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mij

; ai; aj A Pm:

The last equation is obvious since t1ðnaÞ ¼ 1 for a A Pm. Since ha4; mi ¼ 0,

we have

t1ða4ð�1ÞÞ ¼ mða4ð�1ÞÞ ¼ ð�1Þha
4;mi ¼ 1;

which is equal to t1ðnaÞ2. Since t1ðnaÞ ¼ 1, we have

t1ðnaÞt1ðtÞt1ðnaÞ�1 ¼ t1ðtÞ ¼ mðtÞ:

On the other hand, we have

t1ðsaðtÞÞ ¼ mðsaðtÞÞ ¼ mðtÞ;

since sa A Ww.

(ii) By (i) every character m of T can be extended to a character t1 of Nm.

Since every W -orbit of linear characters of T contains a unique element of Lþ,

the statement follows from Theorem 2.1 and 2.3. r

The proof of Theorem 5.1 (i) is based on the special properties of the

representatives fnw jw A Wg. The next proposition gives a necessary and su‰cient

condition for the existence of t1 for a finite extension of a complex algebraic

torus:
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Proposition 5.2. Let E be an extension of a complex algebraic torus A by a

finite group F :

1 ! A ! E !p F ! 1:

For a linear character w of A, there exists a linear character t1 of Ew such that

t1jA ¼ w if and only if there is a complete set fef gf AFw
of coset representatives of

Ew=A such that ef ef 0e�1
ff 0 A ker w for any f ; f 0 A Fw.

Proof. The result is obvious if w is trivial. Suppose w is not trivial and

hence Im w ¼ C�. Denote by GðFwÞw the set of complete sets fef gf AFw
of coset

representatives of Ew=A satisfying the condition ef ef 0e�1
ff 0 A ker w, f ; f 0 A Fw and

by HomðEw;C
�Þw the set of linear characters t1 of Ew with t1jA ¼ w. For

fef gf AFw
A GðFwÞw, let t1 be the mapping of Ew to C� defined by t1ðef aÞ ¼ wðaÞ,

a A A. Since

t1ðef aÞt1ðef 0a 0Þt1ðeff 0aa 0Þ�1 ¼ wðaÞwða 0Þwðaa 0Þ�1 ¼ 1;

we have t1 A HomðEw;C
�Þw. This induces a mapping F : GðFwÞw !

HomðEw;C
�Þw.

Conversely given t1 A HomðEw;C
�Þw, we have p�1ð f ÞV ker t1 0q, since

t1ðp�1ð f ÞÞ ¼ C� for every f A Fw. Taking an element ef A p�1ð f ÞV ker t1 for

every f A Fw, we have fef gf AFw
A GðFwÞw, since ef ef 0e�1

ff 0 A A and wðef ef 0e�1
ff 0 Þ ¼

t1ðef ef 0e�1
ff 0 Þ ¼ 1. Hence F is surjective. r

Remark 5.3. The set of representatives fnw jw A Wg satisfies the condition

in Proposition 5.2.

Remark 5.4. (i) We may choose fua j a A Fg in such a way that every

element na ða A FÞ lies in a compact real form of G. Let g be the Lie algebra of G

and h the Cartan subalgebra corresponding to T . For the root space decom-

position g ¼ hþ
P

a AF ga, let fHa;Xa jHa A h;Xa A ga; a A Fg be a Chevalley

basis. Then

gc ¼
X
a AP

Rð
ffiffiffiffiffiffiffi
�1

p
HaÞ þ

X
a AFþ

RðXa � X�aÞ þ
X
a AFþ

R
ffiffiffiffiffiffiffi
�1

p
ðXa þ X�aÞ

is a compact real form. Let Gc be the compact real form of G corresponding to

gc, Tc ¼ T VGc and Nc its normalizer in Gc. Then W ¼ N=T ¼ Nc=Tc.
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Let us take

uaðxÞ ¼ expðxXaÞ:

Then (5.1)@(5.5) are satisfied ([17] 8.1, 9.3).

Let

X 0 ¼ 0 1

0 0

� �
; H 0 ¼ 1 0

0 �1

� �
; Y 0 ¼ 0 0

1 0

� �
be a Chevally basis of slð2;CÞ and u 0

G : C ! SLð2;CÞ the mapping defined by

u 0
þðxÞ ¼ expðxX 0Þ ¼ 1 x

0 1

� �
; u 0

�ðxÞ ¼ expðxY 0Þ ¼ 1 0

x 1

� �
:

Then we have

n 0 ¼ u 0
þð1Þu 0

�ð�1Þu 0
þð1Þ ¼

0 1

�1 0

� �
;

which is an element of the compact real form SUð2Þ of SLð2;CÞ.
For a A Fþ, there exists an isomorphism, sending H 0, X 0, Y 0 to Ha, Xa, X�a

respectively, of slð2;CÞ to the subalgebra of g generated by Ha, Xa, X�a. This

induces a homomorphism j of SLð2;CÞ to G such that jðSUð2ÞÞHGc. Since

jðn 0Þ ¼ jðexpðX 0Þ expð�Y 0Þ expðX 0ÞÞ

¼ expðXaÞ expð�X�aÞ expðXaÞ

¼ na;

we have na A Gc. Hence the same statement of Theorem 5.1 is hold for a compact

real form of G.

(ii) By (5.1) we have

tuaðxÞt�1uaðxÞ�1 ¼ uaððaðtÞ � 1ÞxÞ:

Hence the image of ua is in the commutator subgroup of G ([17] 7.3).

6. Branching from G to N: Reduction to Zero Weight Representations

The notations are as in § 5. In this section we consider the restriction of a

holomorphic representation of G to N.
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Let r be an irreducible representation of G a¤orded by V . Let Vm be the

weight space of T on V corresponding to a dominant weight m. Let Nm and Wm

be the stabilizer subgroups of m in N and W respectively.

Put Fm ¼ fa A F j ða; mÞ ¼ 0g. Let P be the parabolic subgroup of G cor-

responding to Pm ¼ PVFm and GP its Levi subgroup, which is reductive. The

commutator subgroup G 0
P of GP is a semisimple Lie subgroup whose root system

can be identified with Fm.

Let

rjGP
¼

X
n A IrrðGPÞ

crn n

be the decomposition of the restriction of r to GP into irreducible representations

of GP.

Lemma 6.1. If the weight m is a weight of an irreducible representation n in

rjGP
, then m is the only weight of n that Wm fixes.

Proof. Suppose Wm fixes a weight m 0 of n. Let n be a¤orded by V n. By the

irreducibility of n, V n is spanned by a weight vector of weight m under the action

of the Lie algebra g 0
P of G 0

P. Then m 0 must be in the form

mþ
X
a APm

maa:

Thus Wm fixes
P

a APm
maaðA ZFmÞ, which must be 0. Thus we have m ¼ m 0.

r

Put

rm ¼
X
n AMm

crn n; ð6:1Þ

where Mm is the set of irreducible representations of GP appearing in rjGP
of

which m is a weight.

Proposition 6.2. The weight space Vm of weight m in r is the zero weight

space of rm as a G 0
P-module.

Proof. Since the zero weights of G 0
P-module are those that are fixed by the

action of the Weyl group Wm of G 0
P, Vm is the zero weight space of rm by Lemma

6.1. r
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Since the Weyl group acts on the zero weight space, Vm can be regarded as a

Wm-module. Let

n0 ¼
X

s A IrrðWmÞ
d 0
n;ss ð6:2Þ

be the decomposition of the zero weight space of njG 0
P
into the irreducible repre-

sentations of Wm. Then ðrmÞ0 is decomposed as a Wm-module:

ðrmÞ0 ¼
X
n AMm

crn n0

¼
X
n AMm

s A IrrðWmÞ

crn d
0
n;ss: ð6:3Þ

If we take the complete set of representatives

fym; tðm;sÞ j m A Lþ; s A IrrðWmÞg

of the equivalence classes of irreducible representations of N, as given in Theorem

5.1 using fnw jw A Wg, then we have the decomposition of the restriction of r

to N.

Theorem 6.3. Let G be a connected complex simple Lie group and T , N, W

as in § 5. If r is an irreducible representation of G, then the restriction of r to N

decomposes as

rjN ¼
X
m ALþ

r

X
s A IrrðWmÞ

dm; tðm;sÞym; tðm;sÞ;

where Lþ
r is the set of dominant weights of r and

dm; tðm;sÞ ¼
X
n AMm

crn d
0
n;s

with Mm, crn defined in (6.1) and d 0
n;s in (6.2).

Proof. Let U be a ðrmÞ0ðWmÞ-invariant subspace of Vm a¤ording the ir-

reducible representation s A IrrðWmÞ. Note that Nm is generated by T and the

elements nw with w A Wm and since nw A G 0
P for all w A Wm by Remark 5.4 (ii), the

action of rðnwÞ on Vm is the same as that of ðrmÞ0ðwÞ. It follows that U is also
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invariant under rðNmÞ and a¤ords the representation of tðm; sÞ A IrrðNmÞm by

Theorem 5.1 (i). Therefore we have

Vm F 0
s A IrrðWmÞ

U
ldm; tðm; sÞ
m; tðm;sÞ

as an Nm-module with the numbers dm; tðm;sÞ defined as in the statement.

Then by comparing the construction of the induced representation (2.3)

and

rðNÞVm ¼ 0
g AN=Nm

rðgÞVm;

we have

rðNÞVm F 0
s A IrrðWmÞ

V
ldm; tðm; sÞ
m; tðm;sÞ :

The results follows. r

There are two extremal cases.

Example 6.4. (i) Let m be the highest weight of r and r 0 ¼ dr the dif-

ferential of r. Let a A Fþ be a root such that ðm; aÞ ¼ 0 and a the subalgebra of g

generated by Xa, Ha, X�a. (see Remark 5.4(i)). By the representation theory of

slð2;CÞ, we have dim r 0ðaÞvm ¼ ðm; aÞ þ 1 ¼ 1 for a highest weight vector vm and

hence r 0ðXaÞvm ¼ r 0ðX�aÞvm ¼ 0. Since na ¼ uað1Þu�að�1Þuað1Þ, we have

rðnaÞvm ¼ vm. It follows from Theorem 5.1 that rðNÞVm a¤ords ym; tðm;1Þ.

(ii) If Nm ¼ T , e.g. m is regular, then Wm is trivial, and hence we have

rðNmÞVm ¼ Vm ¼ Cl dimVm
m ;

where Cm is an irreducible T-module with weight m. Thus rðNÞVm a¤ords

y
l dimVm

m; tðm;1Þ :

We next consider the case where N is a subgroup of some semidirect product

group ~NN of a complex torus ~TT by W such that T H ~TT and the assumption of

Theorem 3.3(iii) is satisfied: for any irreducible character m of T , there exists an

irreducible character ~mm of ~TT satisfying ~mmjT ¼ m and W~mm ¼ Wm.
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Having chosen such ~mm for each m, it follows from Theorem 3.3(iii) that a

complete set of representatives of the equivalence classes of irreducible repre-

sentations of N is given by fy~mm; ~mmzsjN j m A Lþ; s A IrrðWmÞg.
Let m A Lþ and s 0 A IrrðWmÞ. Then it follows from Theorem 3.3 that there

is a unique s A IrrðW~mmÞ (recall our assumption that W~mm ¼ Wm) such that the

representation ~mmz s of ~NN~mm restricts to the representation tðm; s 0Þ of Nm, so that

y~mm; ~mmzsjN ¼ ym; tðm;s 0Þ. We want to compare this s with s 0.

Recall that ~mmz s ¼ ~tt1 n ŝs where ~tt1ðw~tt Þ ¼ ~mmð~tt Þ ðw A W~mm ¼ Wm; ~tt A ~TTÞ and

ŝs ¼ s � ð~ppj ~NN~mm
Þ (Remark 2.4), and that tðm; s 0Þ ¼ t1 n bs 0s 0 where t1ðnwtÞ ¼ mðtÞ

ðw A Wm; t A TÞ and bs 0s 0 ¼ s 0 � ðpjNm
Þ. Since ~mmz sjNm

¼ tðm; s 0Þ, namely ðet1t1jNm
Þn ŝs

¼ t1 n bs 0s 0, the di¤erence between s and s 0 is determined by the di¤erence betweenet1t1jNm
and t1. We have

et1t1ðnwtÞt1ðnwtÞ�1 ¼ et1t1ðw~��wtÞt1ðnwtÞ�1 ¼ ~mmð~��wtÞmðtÞ�1 ¼ ~mmð~��wÞ;

which we have defined to be e~mmðwÞ ((3.3)). Note that the function e~mmjWm
is a linear

character since, by putting t ¼ 1 we have

e~mmðwÞ ¼ ~tt1ðnwÞt1ðnwÞ�1 ¼ ~tt1ðnwÞ;

and if w;w 0 A Wm then

nwnw 0n�1
ww 0 A ker t1 VT ¼ ker mH ker ~mmH ker ~tt1:

Hence we have

~tt1ðnwtÞ ¼ e~mmðwÞt1ðnwtÞ; w A Wm; t A T ;

namely

~tt1jNm
¼ de~mmjWm

e~mmjWm
n t1:

By what we remarked just above, this shows that s 0 ¼ sn ðe~mmjWm
Þ.

Summarizing the above, we have the following:

Theorem 6.5. Let G be a connected complex simple Lie group and T , N,

W as in § 5. Let ~NN be a semidirect product of a complex torus ~TT by W such that
~TT contains T and Assumption 3.1 is satisfied. Suppose that the assumption of

Theorem 3.3(iii) is satisfied for ~NN, ~TT , N, T , W and fix the choice of an irreducible

character ~mm of ~TT for every irreducible character m of T with ~mmjT ¼ m and

W~mm ¼ Wm. If y~mm; ~mmzsjN ¼ ym; tðm;s 0Þ, then

s 0 ¼ sn ðe~mmjWm
Þ:
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If r is an irreducible representation of G, then the restriction of r to N decomposes

as

rjN ¼
X
m ALþ

r

X
s A IrrðWmÞ

dm; tðm;sÞym; tðm;sÞ;

where Lþ
r is the set of dominant weights of r and

dm; ~mmzsjNm
¼ dm; tðm;snðe~mmjWm

ÞÞ ¼
X
n AMm

crn d
0
n;snðe~mmjWm

Þ

with Mm, crn defined in (6.1) and d 0
n;s in (6.2).

Example 6.6. Let G ¼ SLðn;CÞ. We consider the situation as in Example

3.5. For w A Sn, let nw A N be a representative as in § 5 whose non-zero entries

are G1:

nw ¼ ~nnw~ttw;

where

~ttw ¼ diagð�1; . . . ; �nÞ; �i ¼ ð�1Þaf jj1ajan; i<j;wðiÞ>wð jÞg

and ~nnw is the permutation matrix such that

~nn�1
w diagðt1; . . . ; tnÞ~nnw ¼ diagðtwð1Þ; . . . ; twðnÞÞ:

Then we have (see (3.1))

~��w ¼ ~ttw:

Furthermore since

detðnwÞ ¼ detð~nnwÞ detð~ttwÞ

¼ sgnðwÞ detð~ttwÞ

and detðnwÞ ¼ 1, we have

detð~ttwÞ ¼ sgnðwÞ:

For a character m of T ,

mðtÞ ¼
Yn
i¼1

tmi

i ;

we have chosen ~mm by setting

~mmð~tt Þ ¼
Yn
i¼1

~tt mi

i

 !
detð~tt Þk
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for some integer k. In particular if m is trivial, then G 0
P ¼ G, Nm ¼ N, Wm ¼ Sn

and ~mm ¼ detð~tt Þk. Then we have

e~mmðwÞ ¼ ~mmð~ttwÞ ¼ detð~ttwÞk ¼ sgnðwÞk:

Hence the character e~mm is sgnnk (see [2] Lemma 1.2).

7. The Case of SLðn;CÞ

In this section, we consider a special class of simple Lie groups, SLðn;CÞ. We

regard G ¼ SLðn;CÞ as a subgroup of ~GG ¼ GLðn;CÞ.
Let ~TT and T be the groups of all diagonal matrices in ~GG and G respectively.

The Weyl groups W of ~GG and G are both isomorphic to the symmetric group Sn

of degree n. The normalizer ~NN (resp. N) of ~TT (resp. T) is the group of matrices of
~GG (resp. G) that have precisely one non-zero entry in each row and column. Then
~NN is the semidirect product of ~TT by W .

Take the subgroup of all upper triangular matrices as a Borel subgroup of
~GG and G. The equivalence classes of irreducible representations of ~GG are par-

ametrized by Young diagrams with at most n rows in such a way that every

Young diagram ðm1; . . . ;mnÞ corresponds to the representation with highest

weight ~rr given by ~rrð~tt Þ ¼ ~tt m1

1 � � � ~ttmn
n for ~tt ¼ diagð~tt1; . . . ; ~ttnÞ.

Every irreducible representation of G is obtained by restricting an irreducible

representation of ~GG. Let det be the linear representation of ~GG defined by taking

the determinant of matrices. For an irreducible representation ~rr of ~GG corre-

sponding to a Young diagram ~rr ¼ ð~rr1; . . . ; ~rrnÞ (we use a same symbol for a

representation and the corresponding Young diagram) and an integer k, the

irreducible representation ðdetÞnk n ~rr corresponds to the Young diagram ~rr½k� ¼
ð~rr1 þ k; . . . ; ~rrn þ kÞ. The restrictions of the representations ~rr½k� to G define the

same irreducible representation of G for any k A Z. Thus the irreducible rep-

resentations of G are parametrized by Young diagram with at most n� 1 rows.

Convention 7.1. In the sequel, unless otherwise stated, we use the notation

~rr, for a given irreducible representation r of G, to denote the uniquely determined

Young diagram with at most n� 1 rows such that ~rrjG ¼ r.

Let ~rr be an irreducible representation of ~GG corresponding to a Young di-

agram ~rr with at most n� 1 rows. Let

~mm ¼ a1oi1 þ � � � þ ar�1oir�1
þ aron

ða1; . . . ; ar�1 > 0; ar b 0; 1a i1 < i2 < � � � < ir�1 a n� 1Þ;
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be a dominant weight of ~rr such that j~mmj ¼ j~rrj, where oi is a weight corresponding

to Young diagram ð1 iÞ and jlj denotes the sum of the parts li of a Young

diagram l ¼ ðl1; . . . ; lnÞ. The stabilizer W~mm of ~mm is a direct product of symmetric

groups:

W~mm ¼ Sn1 � � � � �Snr ; ð7:1Þ

where n1 ¼ i1; n2 ¼ i2 � i1; . . . ; nr ¼ n� ir�1. Let ~PP be the corresponding parabolic

subgroup of ~GG containing the Borel subgroup. The Levi subgroup ~GG ~PP of ~PP is a

product of GLðni;CÞ:

~GG ~PP ¼ GLðn1;CÞ � � � � � GLðnr;CÞ: ð7:2Þ

Let

~rrj ~GG ~PP
¼
X
n

c ~rr
n n ð7:3Þ

be the decomposition of the restriction of ~rr to ~GG ~PP into irreducible representations

n of ~GG ~PP. Every irreducible representation n of ~GG ~PP is given by a set of Young

diagrams n i, 1a ia r, with at most ni rows, which correspond to irreducible

representations of GLðni;CÞ. The summation is taken over n i’s with
Pr

i¼1 jn ij ¼
j~rrj. The coe‰cient c ~rr

n is given by the Littlewood-Richardson rule:

c ~rr
n ¼

X
ðk1;...;k r�2Þ

c
~rr
n1k1c

k1

n2k2 � � � ck
r�2

n r�1n r ; ð7:4Þ

where crm; n is the Littlewood-Richardson coe‰cient. We call this a multiple

Littlewood-Richardson coe‰cient.

By (7.1), ~TT acts on the weight space of ~mm ¼ a1oi1 þ � � � þ ar�1oir�1
þ aron as

the multiplication by

ð~tt1 � � � ~ttn1Þ
f1 � � � ð~ttn�nrþ1 � � � ~ttnÞ fr ; diagð~tt1; . . . ; etntnÞ A ~TT ; ð7:5Þ

where fi ¼ ai þ � � � þ ar, 1a ia r. That is, the multiplicities of fi is equal to ni in

the Young diagram ~mm.

Thus, by the definition of ~rr~mm (see (6.1)), we have

~rr~mm ¼
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n n:

Let r ¼ ~rrjG and m be the dominant weight of r with ~mmjT ¼ m. Note that the

correspondence of the weights ~mm of ~rr to the weights m of r is one-to-one, since the
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di¤erence between the highest weight of ~rr (resp. r) and a weight ~mm of ~rr (resp. a

weight m of r) is a linear combination of roots and j~mmj ¼ j~rrj. Then GP ¼ ~GG ~PP VG

and

G 0
P ¼ SLðn1;CÞ � � � � � SLðnr;CÞ:

Now we have the main result in this section.

Theorem 7.2. Let r be an irreducible representation of SLðn;CÞ and ~rr as in

Convention 7.1. For a weight m of r, let ~mm be the weight of ~rr such that j~mmj ¼ j~rrj and
~mmjT ¼ m. Then the restriction of r to N decomposes as

rjN ¼
X
m ALþ

r

X
t A IrrðNmÞ

dm; tym; t;

where

dm; ~mmzsjNm
¼ dm; tðm;s 0Þ ¼

X
n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n d

0
n;s 0 ;

s 0 ¼ sn ðsgnnf1 � � � � � sgnnfrÞ

with ð f1; . . . ; frÞ defined in (7.5) for ~mm.

Proof. By (7.5) and Example 6.6, we have

e~mmðwÞ ¼ sgnðw1Þ f1 � � � sgnðwrÞ fr ;

for an element w ¼ w1 � � �wr A W~mm ðwi A SniÞ. Thus we have

sn ðe~mmjWm
Þ ¼ sn ðsgnnf1 � � � � � sgnnfrÞ:

The result follows from Theorem 6.5. r

8. Explicit Formula for the Branching from SLðn;CÞ to N (I)

We give a multiplicity formula of an irreducible representation of N in a

given irreducible representation of G for the case G ¼ SLðn;CÞ. The notation is

as in section 7.

Let n ¼ ðn1; . . . ; n rÞ, jn ij ¼ fini, be an irreducible representation of ~GG ~PP. Let

zðn iÞ0 be the character of the representation of Sni induced on the zero weight

space of n ijSLðni ;CÞ. The character value of zðn iÞ0 is calculated as follows. Let wi be
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an element of Sni with cyclic factorization wi ¼ wi1 � � �wiki . Let lij be the order of

wij, then for every i, the set flijg form a uniquely determined partition pi of ni.

Let

Hi ¼ GLðli1;CÞ � � � � � GLðliki ;CÞ

and

n ijHi
¼

X
l¼ðl1;...;lki Þ

cn
i

l l; ð8:1Þ

where l ¼ ðl1; . . . ; lkiÞ is a sequence of Young diagrams l j with at most lij rows,

which corresponds to an irreducible representation of GLðlij ;CÞ. Then we have

([2] § 4)

zðn iÞ0ðwiÞ ¼
X

l¼ðl1;...;lki Þ
jl j j¼lij fi

cn
i

l sgnðwiÞ fikihðl1Þ0ðwi1Þ � � � hðlki Þ0
ðwikiÞ; ð8:2Þ

where hðl jÞ0 is the character of the representation of Slij induced on the zero

weight space of representation l j jSLðlij ;CÞ.
Let xij be the permutation matrix of GLðlij ;CÞ corresponding to the cycle

wij. Since wij is an lij-cycle, wij is a Coxeter element of the Weyl group Slij of

SLðlij;CÞ. Hence the trace of l jðxijÞ is equal to sgnðwijÞ fihðl jÞ0ðwijÞ. In [9], it is

shown that the trace of l jðxijÞ ¼ 0 or G1.

The trace of l jðxijÞ is also calculated by the generalized q-binomial coef-

ficients as follows. For an integer m and a Young diagram g ¼ ðg1; . . . ; gsÞ, the
generalized q-binomial coe‰cients in the indeterminate q is defined to be

m

g 0

� 	
¼
Y
x A g

1� qm�cðxÞ

1� qhðxÞ ;

where g 0 ¼ ðg 01; . . . ; g 0tÞ is the transpose of g, cðxÞ ¼ j � i is the content and

hðxÞ ¼ gi þ g 0j � i � j þ 1 is the hook length for each x ¼ ði; jÞ A g (here we regard

g as a matrix. See e.g. [10] Chap. I § 1, Ex. 3, § 3, Ex. 1). It is shown that the

generalized q-binomial coe‰cient is a polynomial in q and

sgð1; q; q2; . . . ; qm�1Þ ¼ qnðgÞ m

g 0

� 	
;

where sg is the Schur function of m variables corresponding to g and nðgÞ ¼Ps
i¼1ði � 1Þgi.
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On the other hand, sg is the restriction to T of the irreducible character of

GLðm;CÞ corresponding to g and the permutation matrix corresponding to a

cycle of order m is conjugate to the diagonal matrix diagð1;o;o2; . . . ;om�1Þ,
o ¼ e2p

ffiffiffiffiffi
�1

p
=m. Thus we have

sgnðwijÞ fihðl jÞ0ðwijÞ ¼ qnðl jÞ lij

l j 0

" #�����
q¼expð2p

ffiffiffiffiffi
�1

p
=lijÞ

: ð8:3Þ

Theorem 8.1. For an irreducible representation r of G and an irreducible

representation ym; t of N, the multiplicity ½rjN : ym; t� is

1

jWmj
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n

X
w¼w1���wr AWm

wi ASni

fs 0 ðwÞ
Yr
i¼1

X
l¼ðl1;...;lki Þ

jl j j¼lij fi

cn
i

l

Yki
j¼1

bðl j; lijÞ

0BBB@
1CCCA;

where ~rr is determined from r as in Convention 7.1, Wm ¼ Sn1 � � � �Snr is the

stabilizer of m in W , c ~rr
n and cn

i

l are multiple Littlewood-Richardson coe‰cients

((7.4), (8.1)), fs 0 is the character of irreducible representation

s 0 ¼ ðsgnnf1 � � � � � sgnnfrÞn s

of Wm, the integer fi is given in (7.5), s is defined from t as in Theorem 5.1, lij is

the order of cycle of wij , and bðl j; lijÞ is the integer given by (8.3).

Proof. Let zðnÞ0 be the character of Wm-module n0. By Theorem 7.2 we have

½rjN : ym; t� ¼
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n ½ðnÞ0 : s 0�

¼
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n ðzðnÞ0 ; fs 0 Þ

¼
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n

1

jWmj
X
w AWm

zðnÞ0ðwÞfs 0 ðwÞ

¼
X

n¼ðn1;...; n rÞ
jn i j¼fini

c ~rr
n

1

jWmj
X

w¼w1���wr AWm

wi ASni

fs 0 ðwÞ
Yr
i¼1

zðn iÞ0ðwiÞ:

By (8.2) and (8.3), we have the result. r
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9. Explicit Formula for the Branching from SLðn;CÞ to N (II)

Let Gc be a compact real form of a complex semisimple Lie group G, Tc

a maximal torus of Gc and Nc its normalizer in Gc. Let T be the maximal torus

of G containing Tc and N its normalizer in G. Then Tc ¼ T VGc and the Weyl

group W ¼ N=T is isomorphic to Nc=Tc. Every finite dimensional irreducible

continuous representation of Gc (resp. Tc) is obtained from a finite dimensional

irreducible holomorphic representation of G (resp. T) by restriction. This gives a

one-to-one correspondence between these representations of Gc and G (resp. Tc

and T). Note that our representatives nw of the Weyl group in N actually lie in

Gc (see Remark 5.4 (i)). By the construction of irreducible representations of N

and Nc, we have a one-to-one correspondence between the equivalence classes of

irreducible representations of N and those of Nc by restriction.

In this section we give an explicit formula for the branching from SLðn;CÞ to
N in a way di¤erent from that of the previous section.

Let ~GG, ~NN, ~TT be as in § 7. Let ~NNc ¼ ~NN VUðnÞ and ~TTc ¼ ~TT VUðnÞ. ~NNc is a

semidirect product of ~TTc by Sn. Then we have

Irrð ~NNcÞ ¼ fy~mm; ~mmzs j ~mm A ~LLþ; s A IrrðW~mmÞg;

where ~LLþ is the set of all characters of ~TTc which are dominant with respect to

P. Every irreducible representation of UðnÞ is a¤orded by an irreducible module

of GLðn;CÞ and every irreducible representation of ~NNc is also a¤orded by an

irreducible module of ~NN by taking the restriction. Hence the multiplicities

½ ~rrj ~NN : y~mm; ~tt� are equal to those for UðnÞ and ~NNc.

Since we work entirely within UðnÞ in this section, we replace ~TTc, ~NNc, ~mm, ~tt by

T , N, m, t to avoid complicated notation.

Let dn be the Haar measure on N normalized by
Ð
N
dn ¼ 1. Let cm; t be the

character of ym; t and Sr the character of irreducible representation r of UðnÞ,
whose restriction to T is Schur function sr. Then we have

½rjN : ym; t� ¼
1

jSnj
X
w ASn

ð
T

cm; tðnwtÞSrðnwtÞ dt; ð9:1Þ

where nwt A N and dt is the normalized Haar measure on T .

By Proposition 4.1, we have

cm; tðnwtÞ ¼
1

jWmj
X

w0 AWmVKw

fsðw0Þ
X

x AF�1
w ðw0Þ

mðtxÞ

0@ 1A; ð9:2Þ

224 Jun-ichi Matsuzawa and Makoto Takahashi



where t ¼ mz s. Since SrðnwtÞ is the trace of rðnwtÞ, there appear only the terms

corresponding to the weights fixed by w:

SrðnwtÞ ¼
X

n¼ði1;...; inÞ
wðnÞ¼n

cnt
i1
1 � � � tinn ; ð9:3Þ

where cn is the trace of rðnwÞ on the weight space Vn of weight n.

Since ð
T

ðta11 � � � tann Þðtb11 � � � tbnn Þ dt ¼ 1 ai ¼ bi ð1a ia nÞ
0 otherwise;

�
ð9:4Þ

we have ð
T

mðtxÞSrðnwtÞ dt ¼ cx�m: ð9:5Þ

For x A F�1
w ðw0Þ, w stabilizes the weight x � m, since x�1wx ¼ w0 A Wm and

hence ðwxÞ � m ¼ ðxw0Þ � m ¼ x � m. If x; x 0 A F�1
w ðw0Þ, then x 0 ¼ zx for some ele-

ment z of the centralizer of w. Since the action of z transforms Vx�m to Vx 0�m and

this transformation commutes with the action of w, the trace of rðwÞ on Vx�m is

equal to that on Vx 0�m. Hence we have

cx�m ¼ cx 0 �m:

We denote this by mðr; m;w;w0Þ. Then by (9.1), (9.2), (9.5) and (4.3) we have

½rjN : ym; t� ¼
1

n!

1

jWmj
X
w ASn

X
w0 AWmVKw

fsðw0ÞjZSn
ðwÞjmðr; m;w;w0Þ

¼
X
w ASn

jZSn
ðwÞj

n!jWmj
X

w0 AWmVKw

fsðw0Þmðr; m;w;w0Þ ð9:6Þ

The problem is now reduced to determination of mðr; m;w;w0Þ. Since an

element nwt A N is diagonalizable, mðr; m;w;w0Þ is equal to the Schur function

evaluated at the eigenvalues ew; t ¼ ðe1; . . . ; enÞ of nwt. To calculate this we use the

Jacobi-Trudy identity:

sr ¼ detðhri�iþ jÞ1ai; ja n

¼

hr1 hr1þ1 � � � hr1�1þn

hr2�1 hr2 � � � hr2�2þn

..

. . .
. ..

.

hrn�nþ1 hrn�nþ2 � � � hrn

����������

����������
; ð9:7Þ
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where r ¼ ðr1; . . . ; rnÞ and hi is the ith complete symmetric function: the sum of

all distinct monomials of degree i.

We have

mðr; m;w;w0Þ ¼
ð
T

mðtxÞSrðnwtÞ dt

¼
ð
T

mðtxÞ
X
g ASn

sgnðgÞhr1�1þgð1Þðew; tÞ � � � hrn�nþgðnÞðew; tÞ
 !

dt

¼
X
g ASn

sgnðgÞ
ð
T

mðtxÞhr1�1þgð1Þðew; tÞ � � � hrn�nþgðnÞðew; tÞ dt ð9:8Þ

Since hi is the restriction to T of the character of representation of GLðn;CÞ
on the ith symmetric tensor of Cn, we next study the action of nwt on the weight

space of x � m in the tensor product S r1�1þgð1Þ n � � �nS rn�nþgðnÞ, where Sk is kth

symmetric tensor of Cn. Let

fei1 � � � eik j 1a i1 a � � �a ik a ng

be a basis of Sk, where e1; . . . ; en are the standard basis of Cn and ei1 � � � eik is the

symmetric tensor product of ei1 ; . . . ; eik .

Lemma 9.1. The trace of rðnwtÞ on the space of weight x � m is equal to that

of rðnw0
tÞ on the space of weight m.

Proof. This follow from x�1wx ¼ w0. r

By this lemma, we may consider the action of w0 on the space of weight m in

the tensor product Sq1 n � � �nSqn .

Recall mðtÞ ¼ ðt1 � � � tn1Þ
f1 � � � ðtn�nrþ1 � � � tnÞ fr (see (7.5)) and Wm ¼ Sn1 � � � � �

Snr . Write w0 ¼ w1 � � �wr with wi A Sni . Let wi ¼ wi1 � � �wiki be a cyclic facto-

rization and lij the order of wij .

Let ð1pi1 ; . . . ; ni
pini Þ be the cycle type of wi ð1a ia rÞ. Then ni ¼

Pni
j¼1 jpij.

The set

ðea111 � ea122 � � � ea1nn Þn � � �n ðean11 � ean22 � � � eannn Þ

qi ¼
Xn
j¼1

aij

mj ¼
Xn
i¼1

aij

�����������

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð9:9Þ
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gives a basis of the space of weight m in Sq1 n � � �nSqn , where mðtÞ ¼ t
m1
1 � � � tmnn .

The action of w0 on the weight space induces a permutation of the columns of the

n� n matrix ðaijÞ. Hence the condition that w0 fixes an element of the basis is

equivalent to the condition

asj1 ¼ asj2 ¼ � � � ; 1a sa n ð9:10Þ

for any cycle ð j1; j2; . . .Þ of wi, 1a ia r. Thus we put these integers determined

for cycles of wi in the form of n� pi matrix

Ai ¼ ðai
stÞ1asan

1atapi

; 1a ia r;

where pi ¼
Pni

j¼1 pij is the number of cycles of wi.

Let

bi
s ¼ ai

s1li1 þ � � � þ ai
spi
liki ; 1a ia r; 1a sa n:

Then the integers ai
st and bi

s satisfy the conditions

fi ¼
Xn
k¼1

ai
kt; 1a ia r; 1a ta pi ð9:11Þ

qs ¼
Xr
k¼1

bk
s ; 1a sa n: ð9:12Þ

Example 9.2. Let n ¼ 5, ðq1; q2Þ ¼ ð5; 3Þ and mðtÞ ¼ ðt1t2t3Þ2ðt4t5Þ : r ¼ 2,

ð f1; f2Þ ¼ ð2; 1Þ. Put

w0 ¼ ð1Þð23Þð45Þ; w1 ¼ ð1Þð23Þ; w2 ¼ ð45Þ:

The matrices ðaijÞ corresponding to the vector of weight m in S5 nS3 are

1 1 1 1 1

1 1 1 0 0

� �
;

1 2 2 0 0

1 0 0 1 1

� �
; . . . ;

where we omit the last 3 rows. Among them, w0 fixes only the above two

matrices. Hence for the former we have

A1 ¼
1 1

1 1

� �
; A2 ¼

1

0

� �
; ðb11 ; b12Þ ¼ ð3; 3Þ; ðb21 ; b22Þ ¼ ð2; 0Þ;

and for the latter

A1 ¼
1 2

1 0

� �
; A2 ¼

0

1

� �
; ðb11 ; b12Þ ¼ ð5; 1Þ; ðb21 ; b22Þ ¼ ð0; 2Þ:
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Lemma 9.3.

mðSq1 n � � �nSqn ; m;w;w0Þ

¼a ðA1; . . . ;ArÞ

Ai ¼ ðai
stÞ1asan

1atapi

; 1a ia r

fi ¼
Xn
k¼1

ai
kt; 1a ia r; 1a ta pi

qs ¼
Xr
k¼1

bk
s ; 1a sa n

���������������

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð9:13Þ

Proof. The action of Wm, the stabilizer of the weight m, on Sq1 n � � �nSqn

induces permutation of the elements u of the set given by (9.9), which also

induces a permutation of columns of the matrix ðaijÞ. Hence the number of

elements u of weight m that are fixed by w0 is equal to the number of the set of

the matrices ðA1; . . . ;ArÞ satisfying (9.11) and (9.12), which is also equal to

mðSq1 n � � �nSqn ; m;w;w0Þ by Lemma 9.1. r

Remark 9.4. If w0;w
0
0 A Wm VKw are conjugate in Wm, then

mðSq1 n � � �nSqn ; m;w;w0Þ ¼ mðSq1 n � � �nSqn ; m;w;w 0
0Þ:

We come to give a multiplicity formula.

Theorem 9.5. Let r be an irreducible representation of UðnÞ and ym; t an

irreducible representation of N, then

½rjN : ym; t� ¼
X
w ASn

jZSn
ðwÞj

n!jWmj
X

w0 AWmVKw

fsðw0Þ

�
X
g ASn

sgnðgÞmðS r1�1þgð1Þ n � � �nS rn�nþgðnÞ; m;w;w0Þ;

where t ¼ mz s A IrrðNmÞ (see Remark 2.4). The number mðS r1�1þgð1Þ n � � �n
S rn�nþgðnÞ; m;w;w0Þ is given by (9.13).

Proof. The result follows from (9.6), (9.8), Lemma 9.1 and 9.3. r

10. On the Irreducibility of the N-Span of a Weight Space for GLðn;CÞ

Every irreducible module of Sn is a¤orded by the zero weight space of

certain irreducible module of SLðn;CÞ ([8], [9], [2]). We consider the similar
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problem for N and give a series of examples of irreducible modules V of

GLðn;CÞ and their weights m such that the N-modules

0
w AW=Wm

VwðmÞ

are irreducible, where the summation is taken over a complete set of coset

representatives of W=Wm. We denote this N-module by VWm.

Let G ¼ GLðn;CÞ, T the group of all diagonal matrices in G, and N the

normalizer of T in G, which is isomorphic to the semidirect product of T by

the Weyl group W FSn. Let r be an irreducible rational representation of G

a¤orded by V and Vm the weight space with dominant weight m of T given by

mðtÞ ¼ ðt1 � � � tn1Þ
f1ðtn1þ1 � � � tn1þn2Þ

f2 � � � ðtn�nrþ1 � � � tnÞ fr ;

where t ¼ ðt1; . . . ; tnÞ A T and f1 > � � � > fr b 0, n1 þ � � � þ nr ¼ n. We regard m as

the Young diagram

ð f1; . . . ; f1|fflfflfflfflffl{zfflfflfflfflffl}
n1

; f2; . . . ; f2|fflfflfflfflffl{zfflfflfflfflffl}
n2

; . . . ; fr; . . . ; fr|fflfflfflfflffl{zfflfflfflfflffl}
nr

Þ:

The stabilizer subgroup Wm of m in W is isomorphic to Sn1 � � � � �Snr . Let

s i ¼ ðs i
1; . . . ; s

i
ni
Þ be a young diagram with js ij ¼ ni, which corresponds to an

irreducible representation of Sni . Then s ¼ ðs1; . . . ; srÞ corresponds to an irre-

ducible representation of Wm. We will give a Young diagram corresponding to an

irreducible representation of G whose restriction to N contains the irreducible

representation ym;mzs of N.

We add rectangular diagram of length ni to s i or ðs iÞ0:

g i ¼

s i þ ð fi; . . . ; fi|fflfflfflfflffl{zfflfflfflfflffl}
ni

Þ fi is odd;

ðs iÞ0 þ ð fi; . . . ; fi|fflfflfflfflffl{zfflfflfflfflffl}
ni

Þ fi is even;

8>>><>>>: ð10:1Þ

where ðs iÞ0 is the transpose of s i. Put its transpose

ðg iÞ0 ¼ ðg i01 ; g i02 ; . . .Þ

and define a new Young diagram Gðm; sÞ0 by adding up jth columns of g1; . . . ; gr

for each j:

Gðm; sÞ0 ¼ ðŝs1; ŝs2; . . .Þ; ŝsj ¼
Xr
i¼1

g i0j :

Denote its transpose by Gðm; sÞ.
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Example 10.1. For n ¼ 7, m ¼ ð2; 2; 2; 2; 1; 1; 1Þ, ðn1; n2Þ ¼ ð4; 3Þ,
ð f1; f2Þ ¼ ð2; 1Þ. Let s1 ¼ ð3; 1Þ and s2 ¼ ð2; 1Þ:

s1: s2:

Then g1 ¼ ð4; 3; 3; 2Þ and g2 ¼ ð3; 2; 1Þ:

g1: g2:

and Gðm; sÞ ¼ ð4; 3; 3; 3; 2; 2; 1Þ:

Gðm; sÞ

Proposition 10.2 (see [2] Proposition 5.1, 5.3). For positive integers m and d,

let l be a Young diagram with jlj ¼ m. Let m ¼ ðd; . . . ; dÞ (m times) and Um be the

weight space with weight m of the irreducible representation of GLðm;CÞ corre-

sponding to the Young diagram lþ ðd � 1; . . . ; d � 1Þ (m times). The representation

of Sm induced on Um is equivalent to ðsgnÞnðd�1Þ n l, where l represents the

irreducible representation of Sm corresponding to the Young diagram l.

Lemma 10.3. Let r be an irreducible representation ðdetÞ�1 nGðm; sÞ of G

and Vm the weight space with weight m. Then ym;mzs is a subrepresentation of

VWm.

Proof. Put

tð1Þ ¼ ðt1; . . . ; tn1Þ; tð2Þ ¼ ðtn1þ1; . . . ; tn1þn2Þ; . . . ; tðrÞ ¼ ðtn�nrþ1; . . . ; tnÞ;

then the Schur function SGðm;sÞðt1; . . . ; tnÞ is the sum of the products of skew

Schur functions ([10] I.5):

SGðm;sÞðtÞ ¼
X

n¼ðnð0Þ;...; nðrÞÞ
Snð1Þ=nð0Þ ðtð1ÞÞSnð2Þ=nð1Þ ðtð2ÞÞ � � �SnðrÞ=nðr�1Þ ðtðrÞÞ; ð10:2Þ
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where the summation is taken over all sequences ðnð0Þ; . . . ; nðrÞÞ of Young dia-

grams such that nð0Þ ¼ q, nðrÞ ¼ Gðm; sÞ and nð0Þ H nð1Þ H � � �H nðrÞ. The skew

Schur function is a sum of the Schur functions:

SnðiÞ=nði�1Þ ¼
X
l

cn
ðiÞ

nði�1ÞlSl; ð10:3Þ

where cn
ðiÞ

nði�1Þl
is the Littlewood-Richardson coe‰cient. Hence we have

ðt1 � � � tnÞ�1
SGðm;sÞðtÞ

¼
X

n¼ðnð0Þ;...; nðrÞÞ
fðt1 � � � tn1Þ

�1
Snð1Þ=nð0Þ ðtð1ÞÞg � � � fðtn�nrþ1 � � � tnÞ�1

SnðrÞ=nðr�1Þ ðtðrÞÞg: ð10:4Þ

This gives the decomposition of the restriction det�1 nGðm; sÞjGm
. Here Gm is the

Levi subgroup of the standard parabolic subgroup corresponding to Wm:

Gm ¼ GLðn1;CÞ � � � � � GLðnr;CÞ:

As in § 6, let ðdet�1 nGðm; sÞÞm be the sum of all irreducible subrepresentations of

det�1 nGðm; sÞjGm
having m as its weight. Then the character of ðdet�1 nGðm; sÞÞm

is given byX
n¼ðnð0Þ;...; nðrÞÞ

jnðiÞ=nði�1Þj¼ð fiþ1Þni

fðt1 � � � tn1Þ
�1
Snð1Þ=nð0Þ ðtð1ÞÞg � � � fðtn�nrþ1 � � � tnÞ�1

SnðrÞ=nðr�1Þ ðtðrÞÞg: ð10:5Þ

Put

ŝs
ðkÞ
j ¼

Xk
i¼1

g i0j

and define GðkÞðm; sÞ0 by

GðkÞðm; sÞ0 ¼ ðŝsðkÞ1 ; ŝs
ðkÞ
2 ; . . .Þ; Gð0Þðm; sÞ0 ¼ q:

Denote by GðkÞðm; sÞ its transpose. Then we have a sequence of Young dia-

grams:

q ¼ Gð0Þðm; sÞHGð1Þðm; sÞH � � �HGðrÞðm; sÞ ¼ Gðm; sÞ;

which appears in the summation (10.5), since

jGðiÞðm; sÞ=Gði�1Þðm; sÞj ¼ ð fi þ 1Þni:
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Note that this is equal to jg ij. We next show

c
GðiÞðm;sÞ
Gði�1Þðm;sÞ g i 0 0: ð10:6Þ

The number c
GðiÞðm;sÞ
Gði�1Þðm;sÞ g i is given by the Littlewood-Richardson rule (see [10]):

the number of column-strict skew tableaux T of shape GðiÞðm; sÞ � Gði�1Þðm; sÞ
and of weight g i such that the word wðTÞ is a lattice permutation. Here the

word wðTÞ is obtained by reading the entries of T from right to left in each

row, starting with the top row and proceeding downward. The word wðTÞ ¼
ða1; . . . ; akÞ is called a lattice permutation if for 1a ja k, in the first j elements

of wðTÞ, the number of occurrence of i is not less than the number of occurrence

of i þ 1 for each i.

By the definition of g i and GðiÞðm; sÞ, if we fill each of the columns of the

skew diagram GðiÞðm; sÞ � Gði�1Þðm; sÞ with the numbers

b1 ¼ n1 þ n2 þ � � � þ ni�1 þ 1; . . . ; bni ¼ n1 þ � � � þ ni

from the top to the bottom in that order, then we have a column-strict skew

tableau T of shape GðiÞðm; sÞ � Gði�1Þðm; sÞ and of weight g i. Since the number

bi ði > 1Þ lies just below the number bi�1 in T , the number of the occurrence of

bi�1 is not less than that of bi in wðTÞ, the word wðTÞ is a lattice permutation

(see Figure 1). Thus we have (10.6).

It follows from (10.3), (10.5) and (10.6) that the irreducible representation

ðdet�1 n g1Þ � � � � � ðdet�1 n grÞ of Gm is a subrepresentation of ðdet�1 nGðm; sÞÞm.

Figure 1: skew tableau GðiÞðm; sÞ � Gði�1Þðm; sÞ

232 Jun-ichi Matsuzawa and Makoto Takahashi



By Proposition 10.2 the representation of Sni induced on the weight space with

weight ð fi; . . . ; fiÞ (ni times) of det�1 n g i is equivalent to

sgnnfiþ1 n s i fi is odd;

sgnnfiþ1 n ðs iÞ0 fi is even

�
which is equivalent to the irreducible representation of Sni corresponding to s i in

both cases. Hence the representation of Wm induced on the weight space with

weight m of the representation ðdet�1 n g1Þ � � � � � ðdet�1 n grÞ of Gm a¤ords the

irreducible representation s as a subrepresentation and the lemma is proved.

r

Proposition 10.4. Let Vm be the weight space with weight m of the repre-

sentation det�1 nGðm; sÞ of GLðn;CÞ. If g ini b g iþ1
1 for 1a ia r� 1, then VWm is

the irreducible module of N a¤ording ym;mzs.

Proof. It follows from Lemma 10.3 that ym;mzs is a subrepresentation of

VWm. We have only to show dim Vm ¼ deg s.

The dimension of Vm is equal to the number of the column-strict tableaux of

shape Gðm; sÞ and of weight mþ ð1; . . . ; 1Þ (n times). Put

I1 ¼ f1; 2; . . . n1g; I2 ¼ fn1 þ 1; . . . ; n1 þ n2g; . . . ; Ir ¼ fn� nr þ 1; . . . ; ng:

Since the length g ini of the last row of g i is greater than or equal to the length g iþ1
1

of the first row of g iþ1, the diagram Gðm; sÞ is obtained simply by putting g i on

g iþ1 (Figure 2).

The integer i in the column-strict tableau should be in the first i rows of

Gðm; sÞ. Thus the elements of I1 should be placed in the first n1 rows, whose

shape is just g1. Since jg ij ¼ ð fi þ 1Þni and every element of I1 appears exactly

fi þ 1 times in T , the first n1 rows are filled only with the numbers of I1 and any

element of I1 doesn’t occur in the ith rows for i > n1. The elements of I2 should

be placed in the next n2 rows, whose shape is g2, and so on.

The diagram of g i is obtained by adjoining that of s i or ðs iÞ0 to the right

of a rectangular diagram ð fi; . . . ; fiÞ (ni times). The first fi columns of g i are in

the rectangular part and filled with all member of Ii. Since every element of Ii

appears exactly fi times in the rectangular part of g i, the number of column-strict

tableaux of shape g i and of weight ð fi þ 1; . . . ; fi þ 1Þ (ni times) is equal to the

number of those of shape s i (or ðs iÞ0) and of weight ð1; . . . ; 1Þ (ni times), which is

nothing but the degree of irreducible representation of Sni corresponding to the

Young diagram s i (or (s iÞ0). Hence we have
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dim Vm ¼
Yr
i¼1

deg s i ¼ deg s;

which finishes the proof. r

We show another examples of irreducible representations of G and their

weights m such that VWm
a¤ords ym;mzs.

For a Young diagram l ¼ ðl1; . . . ; lmÞ with jlj ¼ m and an integer d with

db l1, define a Young diagram l�ðdÞ by

l�ðdÞ ¼ ðd � lm; d � lm�1; . . . ; d � l1Þ:

Remark 10.5. The contragradient representation of the representation of

GLðm;CÞ corresponding to l is ðdet�1Þnd n l�ðdÞ.

Proposition 10.6 ([2], Proposition 5.1). Let m ¼ ðd � 1; . . . ; d � 1Þ (m times)

and Um be the weight space with weight m of the irreducible representation of

GLðm;CÞ corresponding to the Young diagram l�ðdÞ. The representation of Sm

induced on Um is equivalent to ðsgnÞnd n l, where l represents the irreducible

representation of Sm corresponding to the Young diagram l.

Figure 2: Gðm; sÞ
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For a weight m and Young diagrams s i ¼ ðs i
1; s

i
2; . . .Þ ð1a ia rÞ, let a be the

smallest numbet of the set

ff fi þ 1� s i
1 j fi is odd; 1a ia rgU f fi þ 1� ðs iÞ01 j fi is even; 1a ia rgg;

where ðs iÞ0 is the transpose of s i. Put e ¼ �a (if a < 0) and e ¼ 0 (if ab 0) so

that fi þ 1þ e� s i
1 b 0 (if fi is odd) and fi þ 1þ e� ðs iÞ01 b 0 (if fi is even).

Then we can define a Young diagram ~gg i by

~gg i ¼ ðs iÞ�ð fi þ 1þ eÞ fi is odd;

ððs iÞ0Þ�ð fi þ 1þ eÞ fi is even:

�
For the diagrams ~gg i ð1a ia rÞ, we define a Young diagram ~GGðm; sÞ as Gðm; sÞ.

Example 10.7. Let n ¼ 7, ðn1; n2Þ ¼ ð4; 3Þ, m ¼ ð2; 2; 2; 2; 1; 1; 1Þ, ð f1; f2Þ ¼
ð2; 1Þ and s1 ¼ ð2; 1; 1Þ, s2 ¼ ð2; 1Þ. Then e ¼ 0.

s1: s2:

Then ~gg1 ¼ ð3; 3; 2Þ, ~gg2 ¼ ð2; 1Þ.

~gg1: ~gg2:

Thus we have ~GGðm; sÞ ¼ ð3; 3; 2; 2; 1Þ:

~GGðm; sÞ:

Proposition 10.8. Let Vm be the weight space with weight m of the irreducible

representation det�e n ~GGðm; sÞ of G.

(i) ym;mzs is a subrepresentation of VWm.

(ii) If ~gg ini b ~gg iþ1
1 for 1a ia r� 1, then VWm is the irreducible module of N

a¤ording ym;mzs.

Proof. (i) By the same argument of the proof of Lemma 10.3, the irre-

ducible representation ðdet�e n ~gg1Þ � � � � � ðdet�e n ~ggrÞ of Gm is a subrepresenta-

tion of ððdet�eÞn ~GGðm; sÞÞm.
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It follows from Proposition 10.6 that the representation of Sni induced on the

weight space with weight ð fi; . . . ; fiÞ (ni times) of ~gg i is equivalent to

ðsgnÞnfiþ1 n s i fi is odd;

ðsgnÞnfiþ1 n ðs iÞ0 fi is even:

(
ð10:7Þ

In both cases the representations are equivalent to the irreducible representation

of Sni corresponding to s i. Then the representation of Wm induced on the weight

space with weight m of the representation ðdet�e n ~gg1Þ � � � � � ðdet�e n ~gg rÞ of Gm

a¤ords the irreducible representation s as a subrepresentation. Hence VWm a¤ords

ym;mzs as its subrepresentation.

(ii) Since ym;mzs is a subrepresentation of VWm by (i), we have only to show

dim Vm ¼ deg s. By the assumption and the same argument of the proof in

Proposition 10.4, we have to show that the number of the column-strict tableau

of shape ~gg i and of weight ð fi þ e; . . . ; fi þ eÞ (ni times) is equal to the degree of

the irreducible representation s i of Sni . However this follows from Proposition

10.6. r

Remark 10.9. The representation ~GGðm; sÞ in the Example 10.7 satisfies the

condition of the Proposition 10.8 (ii), but not that of Proposition 10.4.

References

[ 1 ] Adams, J. F., Lectures on Exceptional Lie Groups, Chicago Lectures in Math. Ser., The Univ.

Chicago Press, 1996.

[ 2 ] Ariki, S., Terada, I. and Matsuzawa, J., Representations of Weyl Groups on Zero Weight

Spaces of G-modules, Algebraic and Topological Theories, Kinokuniya, (1985), 546–568.

[ 3 ] Cli¤ord, A. H., Representations induced in an invariant subgroup, Annals of Mathematics, 38,

No. 3, (1937), 533–550.

[ 4 ] Dedecker, P., Le foncteur Hom non abelian. Applications de la notion de poulpe, C. R. Acad.

Sci. Paris 258 (1964), 1117–1120, Les foncteurs Extp, H
2
p et H 2
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