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Abstract. A new geometric notion on a nonempty and convex pair of subsets
of a convex metric space X, called semi-normal structure, is introduced and
used to investigate the existence of best proximity pairs for a new class of
mappings, called strongly noncyclic relatively C-nonexpansive. We also study
the structure of minimal sets of strongly noncyclic relatively C-nonexpansive
mappings in the setting of convex metric spaces.

1. Introduction

Let (X, d) be a metric space. A self-mapping T : X → X is called C-contraction
if there exists α ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)],

for all x, y ∈ X. The class of C-contractions was introduced by Chatterjea in [8].
It was proved in [8] that if X is complete metric space, every C-contraction self-

mapping defined on X has a unique fixed point ([8]). Note that the C-contraction
self-mappings may not be continuous.

We say that a self-mapping T : X → X is C-nonexpansive if

d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)] ∀x, y ∈ X.
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Now, let A and B be two nonempty subsets of a metric space (X, d). A mapping
T : A∪B → A∪B is said to be a noncyclic mapping provided that T (A) ⊆ A and
T (B) ⊆ B. For this class of mappings, we consider the following minimization
problem: Find

min
x∈A

d(x, Tx), min
y∈B

d(y, Ty) and min
(x,y)∈A×B

d(x, y).

A point (p, q) ∈ A×B is said to be a best proximity pair of the noncyclic mapping
T provided that (p, q) is a solution of the above minimization problem, that is,

Tp = p, Tq = q and d(p, q) = dist(A, B),

where, dist(A, B) := inf{d(x, y) : (x, y) ∈ A × B}. We mention that in [1], the
authors investigated sufficient conditions to ensure the existence of best proximity
pairs for noncyclic mappings.

Let (A, B) be a nonempty pair of subsets of a metric space (X, d). A mapping
T : A∪B → A∪B is said to be noncyclic relatively nonexpansive if T is noncyclic
and d(Tx, Ty) ≤ d(x, y) for all (x, y) ∈ A×B.

Eldred, Kirk and Veeramani ([5]) established the existence of a best proximity
pair for noncyclic relatively nonexpansive mappings by using a geometric notion
of proximal normal structure in the setting of Banach spaces.

We shall say that a pair (A, B) in a metric space (X, d) satisfies a property if
both A and B satisfy that property. For instance, (A, B) is closed if and only if
both A and B are closed; (A, B) ⊆ (C, D) ⇔ A ⊆ C, and B ⊆ D. We shall also
adopt the following notations.

δx(A) := sup{d(x, y) : y ∈ A} for all x ∈ X,

δ(A, B) := sup{d(x, y) : x ∈ A, y ∈ B},
diam(A) := δ(A, A).

A0 := {x ∈ A : d(x, y) = dist(A, B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = dist(A, B) for some x ∈ A}.

We note that if A and B are nonempty, weakly compact and convex subsets of a
Banach space X, then (A0, B0) must be a nonempty pair in X.

Definition 1.1. A Banach space X is said to be
(i) uniformly convex if there exists a strictly increasing function δ : (0, 2] → [0, 1]
such that the following implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

‖x− y‖ ≥ r

⇒ ‖x + y

2
− p‖ ≤ (1− δ(

r

R
))R;

(ii) strictly convex if the following implication holds for all x, y, p ∈ X and R > 0:
‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

x 6= y

⇒ ‖x + y

2
− p‖ < R.
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In the current paper, we introduce a new class of mappings, called strongly
noncyclic relatively C-nonexpansive and study sufficient conditions which ensure
the existence of best proximity pairs for this class of mappings in the setting of
convex metric spaces. Moreover, we survey the structure of minimal sets for this
class of noncyclic mappings and show that results alike to the celebrated Goebel–
Karlovitz Lemma ([6, 10, 11]) for nonexpansive self-mappings can be obtained
for strongly noncyclic relatively C-nonexpansive mappings.

2. Preliminaries

In [17], Takahashi introduced the notion of convexity in metric spaces as follows.

Definition 2.1. Let (X, d) be a metric space and I := [0, 1]. A mapping W :
X × X × I → X is said to be a convex structure on X provided that for each
(x, y; λ) ∈ X ×X × I and u ∈ X,

d(u,W(x, y; λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex
metric space, which is denoted by (X, d,W). A Banach space and each of its
convex subsets are convex metric spaces. But a Frechet space is not necessary a
convex metric space. The other examples of convex metric spaces which are not
imbedded in any Banach space can be founded in [17].

To describe our results, we need some definitions and preliminary facts from
the reference [17].

Definition 2.2. A subset K of a convex metric space (X, d,W) is said to be a
convex set provided that W(x, y; λ) ∈ K for all x, y ∈ K and λ ∈ I.

Proposition 2.3. Let (X, d,W) be a convex metric space and let B(x; r) denote
the closed ball centered at x ∈ X with radius r ≥ 0. Then B(x; r) is a convex
subset of X.

Proposition 2.4. Let {Kα}α∈A be a family of convex subsets of X, then
⋂

α∈A Kα

is also a convex subset of X.

Definition 2.5. A convex metric space (X, d,W) is said to have property (C) if
every bounded decreasing net of nonempty, closed and convex subsets of X has
a nonempty intersection.

For example every weakly compact convex subset of a Banach space has prop-
erty (C). The next example ensures that condition (C) is natural as well in the
metrical setting.

Example 2.6. ([15]) Let H be a Hilbert space and let X be a nonempty closed
subset of {x ∈ H : ‖x‖ = 1} such that if x, y ∈ X and α, β ∈ [0, 1] with α+β = 1,

then αx+βy
‖αx+βy‖ ∈ X and diam(X) ≤

√
2

2
, where diam(X) := sup{d(x, y) : x, y ∈

X}. Let d(x, y) := cos−1(< x, y >) for all x, y ∈ X, where <,> is the inner
product of H. If we define the convex structure W : X × X × I → X with

W(x, y, λ) := λx+(1−λ)y
‖λx+(1−λ)y‖ , then (X, d) is a complete convex metric space which

has the property (C) (for more information see Example 2 of [15]).
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Definition 2.7. ([9]) A convex metric space (X, d,W) is said to have property
(D) provided that for each x1, x2, y1, y2 in X we have

d(W(x1, x2,
1

2
),W(y1, y2,

1

2
)) <

1

2
[d(x1, y1) + d(x2, y2)].

It is clear that every strictly convex Banach space is a convex metric space
which satisfies the property (D).

Let A be a nonempty subset of a convex metric space (X, d,W). The closed
and convex hull of a set A will be denoted by cov(A) and defined as below.

cov(A) :=
⋂
{C : C is a closed and convex subset of X such that C ⊇ A}.

The next lemmas will be used in our results.

Lemma 2.8. ([2]) Let (K1, K2) be a nonempty pair of a convex metric space
(X, d,W). Then δ(K1, K2) = δ(cov(K1), cov(K2)).

Lemma 2.9. ([12]) Let A be a nonempty subset of a convex metric space (X, d,W).
Then

δx(A) = δx(cov(A)), ∀x ∈ X.

Definition 2.10. Let A be a nonempty subset in a metric space (X, d). A point
p in A is said to be a diametral point if δp(A) = diam(A).

The notion of normal structure was introduced by Brodskil and Milman in [7]
and then it was generalized by Takahashi in convex metric spaces as follows.

Definition 2.11. ([17]) A convex metric space (X, d,W) is said to have normal
structure if for each bounded, closed and convex subset K of X which contains
at least two points, there exists an element p ∈ K which is a nondiametral point.

By using this geometric notion the following fixed point theorem was estab-
lished in [17].

Theorem 2.12. Suppose that (X, d,W) is a convex metric space such that X
has the property (C). Let K be a nonempty bounded, closed and convex subset of
X with normal structure. If T : K → K is a nonexpansive mapping, that is,

d(Tx, Ty) ≤ d(x, y), ∀ x, y ∈ K,

then T has a fixed point in K.

We mention that the previous theorem is an extension of Kirk’s fixed point
theorem ([13]) in the setting of convex metric spaces.

Some of interesting results regarding the existence and convergence of fixed
points for various classes of nonexpansive mappings can be found in [3, 4, 14, 16].

Definition 2.13. ([9]) Let (A, B) be a nonempty pair of subsets of a metric space
(X, d). We say that the pair (A, B) is a proximal compactness pair provided
that every net ({xα}, {yα}) of A × B satisfying the condition that d(xα, yα) →
dist(A, B), has a convergent subnet in A×B.

It is clear that if (A, B) is a compact pair in a metric space (X, d) then (A, B)
is proximal compactness.
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3. Best proximity pair results

We begin our main result of this section with the following geometric notion.

Definition 3.1. A convex pair (K1, K2) in a convex metric space (X, d,W) is
said to have semi-normal structure if for any bounded, closed and convex pair
(H1, H2) ⊆ (K1, K2) for which δ(H1, H2) > dist(H1, H2) and dist(H1, H2) =
dist(K1, K2), there exits (x1, x2) ∈ H1 ×H2 such that

d(x1, x2) = dist(K1, K2) & max{δx1(H2), δx2(H1)} < δ(H1, H2).

Note that if in above definition K1 = K2, then (K1, K2) has semi-normal
structure if and only if the set K1 has normal structure in the sense of Brodskil
and Milman ([7]).

Definition 3.2. Let (A, B) be a nonempty pair of subsets of a convex metric
space (X, d,W). A mapping T : A ∪B → A ∪B is said to be strongly noncyclic
relatively C-nonexpansive provided that T is noncyclic and

d(Tx, Ty) = d(x, y), ∀(x, y) ∈ A×B with d(x, y) = dist(A, B),

and

d(Tx, Ty) ≤ min{d(x, Ty), d(y, Tx)},∀(x, y) ∈ A×B with d(x, y) > dist(A, B).

Definition 3.3. Let (A, B) be a nonempty pair of subsets of a convex metric
space (X, d,W). A mapping T : A∪B → A∪B is said to be noncyclic relatively
C-nonexpansive provided that T is noncyclic and

d(Tx, Ty) = d(x, y), ∀(x, y) ∈ A×B with d(x, y) = dist(A, B),

and

d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)],∀(x, y) ∈ A×B with d(x, y) > dist(A, B).

It is clear that the class of noncyclic relatively C-nonexpansive mappings con-
tains the class of strongly noncyclic relatively C-nonexpansive mappings as a
subclass.

The next theorem guarantees the existence of best proximity pairs for strongly
noncyclic relatively C-nonexpansive mappings in convex metric spaces.

Theorem 3.4. Let (A, B) be a nonempty, bounded, closed and convex pair in a
convex metric space (X, d,W) such that X has the properties (C) and (D), A0 is
nonempty and (A, B) is a proximal compactness pair. Suppose that T : A∪B →
A ∪ B is a strongly noncyclic relatively C-nonexpansive mapping. If (A, B) has
semi-normal structure, then T has a best proximity pair.

Proof. Suppose that F denote the collection of all nonempty, closed and convex
pairs (E, F ) which are subsets of (A, B) and such that T is noncyclic on E∪F and
d(x, y) = dist(A, B) for some (x, y) ∈ E × F . Since A0 is nonempty, (A, B) ∈ F.
Also, F is partially ordered by revers inclusion, that is, (E1, F1) � (E2, F2) ⇔
(E2, F2) ⊆ (E1, F1). Let {(Eα, Fα)}α be a descending chain in F. Put E :=

⋂
Eα

and F :=
⋂

Fα. By the fact that X has the property (C), we deduce that (E, F )
is a nonempty pair and we know that (E, F ) is closed. It is easy to see that T
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is noncyclic on E ∪ F . Moreover, by Proposition 2.4, (E, F ) is a convex pair.
Now, let (xα, yα) ∈ Eα × Fα be such that d(xα, yα) = dist(A, B). Since (A, B) is
proximal compactness, (xα, yα) has a convergent subsequence say (xαi

, yαi
) such

that xαi
→ x ∈ A and yαi

→ y ∈ B. Hence,

d(x, y) = lim
i

d(xαi
, yαi

) = dist(A, B).

Therefore, there exists an element (x, y) ∈ E ×F such that d(x, y) = dist(A, B).
So, every increasing chain in F is bounded above with respect to revers inclusion
relation. Then by using Zorn’s Lemma we obtain a minimal element for F, say
(K1, K2). Suppose that

δ(K1, K2) = dist(K1, K2)(= dist(A, B)).

Then for each (x, y) ∈ (K1, K2) we have d(x, y) = dist(K1, K2). We now claim
that both K1 and K2 are singleton. Assume that x1, x2 ∈ K1 such that x1 6= x2.
Then for all y1, y2 ∈ K2 we have

d(x1, y1) = d(x2, y2) = dist(A, B).

Since (K1, K2) is a convex pair, W(x1, x2,
1
2
) ∈ K1 and W(y1, y2,

1
2
) ∈ K2. By the

fact that X has the property (D) we conclude that

dist(A, B) ≤ d(W(x1, x2,
1

2
),W(y1, y2,

1

2
))

<
1

2
[d(x1, y1) + d(x2, y2)] = dist(A, B),

which is a contradiction. Hence, K1 is singleton. Similarly, we can see that K2 is
a singleton set. This implies that the noncyclic mapping T has a best proximity
pair in this case and we are finished. Now, suppose that

δ(K1, K2) > dist(K1, K2)(= dist(A, B)).

Let (p, q) ∈ K1 ×K2 be such that d(p, q) = dist(A, B). Consider the nonempty,
closed and convex pair (cov(T (K1)), cov(T (K2))) ⊆ (K1, K2). We have (Tp, Tq) ∈
(cov(T (K1)), cov(T (K2))), and so,

dist(A, B) ≤ dist(cov(T (K1)), cov(T (K2))) ≤ d(Tp, Tq) = d(p, q) = dist(A, B).

Also,
T (cov(T (K1))) ⊆ T (K1) ⊆ cov(T (K1)),

and similarly, T (cov(T (K2))) ⊆ cov(T (K2)). Therefore, the mapping

T : cov(T (K1)) ∪ cov(T (K2)) → cov(T (K1)) ∪ cov(T (K2))

is noncyclic. So, (cov(T (K1)), cov(T (K2))) ∈ F. It now follows from the fact that
(K1, K2) is the minimal element of F,

K1 = cov(T (K1)) & K2 = cov(T (K2)).

Put
r1 := δp(K2), r2 := δq(K1) and r := max{r1, r2}.

Since (A, B) has the semi-normal structure, we have

r < δ(K1, K2).



220 M. GABELEH

Suppose that

Cr(K2) := K1

⋂
(∩x∈K2B(x; r)) & Cr(K1) := K2

⋂
(∩x∈K1B(x; r)).

Propositions 2.3 and 2.4 conclude that (Cr(K2), Cr(K1)) ⊆ (K1, K2) is a nonempty,
closed and convex pair. Besides, it is easy to see that for (x, y) ∈ K1 ×K2,

(x, y) ∈ Cr(K2)× Cr(K1) ⇔ K2 ⊆ B(x; r), K1 ⊆ B(y; r).

Also, (p, q) ∈ Cr(K2)× Cr(K1) which deduces that

dist(Cr(K2), Cr(K1)) ≤ d(p, q) = dist(K1, K2) ≤ dist(Cr(K2), Cr(K1)).

We now assert that T is noncyclic on Cr(K2) ∪ Cr(K1). Let u ∈ Cr(K2). Since
T is strongly noncyclic relatively C-nonexpansive, for each v ∈ K2 we have

d(Tu, Tv) ≤ min{d(u, Tv), d(v, Tu)} ≤ r,

which concludes that Tv ∈ B(Tu; r). Therefore, T (K2) ⊆ B(Tu; r) and so,

K2 = cov(T (K2)) ⊆ B(Tu; r),

that is, Tu ∈ Cr(K2). Thus, T (Cr(K2)) ⊆ Cr(K2). Similarly, we can see that
T (Cr(K1)) ⊆ Cr(K1). Hence, T is noncyclic on Cr(K2)∪Cr(K1). The minimality
of (K1, K2) implies that

Cr(K2) = K1 & Cr(K1) = K2.

So, K1 ⊆
⋂

v∈K2
B(v; r). Then for each u ∈ K1 we have δu(K2) ≤ r. Thus,

δ(K1, K2) = sup
u∈K1

δu(K2) ≤ r,

which is a contradiction since r < δ(K1, K2).
�

The next corollary obtains from Theorem 3.4, immediately.

Corollary 3.5. Let (A, B) be a nonempty, weakly compact and convex pair in a
strictly convex Banach space X such that (A, B) has semi-normal structure. If
T : A ∪ B → A ∪ B is a strongly noncyclic relatively C-nonexpansive mapping,
then T has a best proximity pair.

The next theorem guarantees the existence of best proximity pairs in uniformly
convex Banach spaces.

Theorem 3.6. Let (A, B) be a nonempty, bounded, closed and convex pair in a
uniformly convex Banach space X. Suppose that T : A∪B → A∪B is a strongly
noncyclic relatively C-nonexpansive mapping. Then T has a best proximity pair.

Proof. Suppose that T has not a best proximity pair. We get a contradiction by
showing that (A, B) has semi-normal structure. Let (K1, K2) be a closed and
convex subset of (A, B) such that δ(K1, K2) > dist(K1, K2) and dist(K1, K2) =
dist(A, B). Let (p, q) ∈ K1 × K2 be such that ‖p − q‖ = dist(K1, K2)(=
dist(A, B)). Since T is strongly noncyclic relatively C-nonexpansive, we have

‖Tp− Tq‖ = ‖p− q‖ = dist(A, B).
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Now, we must have p 6= Tp or q 6= Tq by the fact that T has not best proximity
pair. It now follows from the strictly convexity of X that

‖p + Tp

2
− q + Tq

2
‖ = dist(A, B).

Put R := δ(K1, K2) and r := min{‖p− Tp‖, ‖q− Tq‖}. Also, set p? := p+Tp
2

and

q? := Tq+q
2

. Now, for all y ∈ K2 we have
‖p− y‖ ≤ R,

‖Tp− y‖ ≤ R,

‖p− Tp‖ ≥ r.

Since X is a uniformly convex Banach space, we conclude that

‖p? − y‖ ≤ (1− δ(
r

R
))R, ∀y ∈ K2,

Hence, δp?(K2) < R. Similarly, we can see that δq?(K1) < R. Therefore,

‖p? − q?‖ = dist(A, B) & max{δp?(K2), δq?(K1)} < δ(K1, K2).

That is, (A, B) has semi-normal structure.
�

Here, we prove a new fixed point theorem by using the geometric notion of
normal structure in convex metric spaces.

Theorem 3.7. Suppose that (X, d,W) is a convex metric space such that X has
the property (C). Let A be a nonempty, bounded, closed and convex subset of X
with normal structure. If T : A → A is a strongly C-nonexpansive, that is,

d(Tx, Ty) ≤ min{d(x, Ty), d(y, Tx)} ∀x, y ∈ A,

then T has a fixed point in A.

Proof. Invoking property (C) and Zorn’s Lemma, we obtain a subset K of A which
is minimal with respect to being nonempty, closed, convex and T -invariant. So, we
must have cov(T (K)) = K. Suppose that diam(K) > 0. By the fact that X has
normal structure there exist p ∈ K and r > 0 such that δp(K) < r < diam(K).
Put

C := {x ∈ K : K ⊆ B(x; r)}.
Note that p ∈ C and then C is nonempty. Moreover, it is easy to see that

C = K
⋂

(∩x∈KB(x; r)),

that is, C is a closed and convex subset of a convex metric space X. Now, let
x ∈ C. Then for each y ∈ K we have

d(Tx, Ty) ≤ min{d(x, Ty), d(Tx, y)} ≤ r.

This implies that Ty ∈ B(Tx; r) for each y ∈ K and so,

K = cov(T (K)) ⊆ B(Tx; r).
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Hence, Tx ∈ C, that is, T : C → C. Minimality of K deduces that C = K.
Thus, diam(K) ≤ r which is a contradiction. Then diam(K) = 0 and hence, K
consists of a single point which must be a fixed point of T .

�

Remark 3.8. We note that a convex metric space (X, d,W) need not to have the
condition (D), in Theorem 3.7.

Let us illustrate Theorem 3.7 with the following example.

Example 3.9. Let X := [−1, 1] and define a metric d on X by

d(x, y) =

{
0, if x = y,

max{|x|, |y|}, if x 6= y.

Define W : X ×X × I → X with

W(x, y, λ) = λ min{|x|, |y|},
for each x, y ∈ X and λ ∈ I. We show that W is a convex structure on X. Let
x, y ∈ X and λ ∈ I. We may assume that |x| ≤ |y|. Then for each u ∈ X we
have

d(u,W(x, y, λ)) = max{|u|, λ min{|x|, |y|}}
= max{|u|, λ|x|} ≤ max{|u|, |x|}

= λ max{|u|, |x|}+ (1− λ) max{|u|, |x|}
≤ λ max{|u|, |x|}+ (1− λ) max{|u|, |y|}

= λd(u, x) + (1− λ)d(u, y).

This implies that (X, d,W) is a convex metric space. Now, let E be a nonempty
convex subset of X. Then W(x, y, λ) ∈ E for each x, y ∈ E and λ ∈ I. If λ = 0,
then we conclude that 0 ∈ E. Therefore, the convex metric space (X, d,W) must
be have the property (C). Suppose that A := [0, 1]. Thus, A is a bounded closed
and convex subset of X. Note that every convergent sequence in this metric space
converges to 0 ∈ A. Let T : A → A be a mapping defined as

Tx =

{
0, if x = 1,

x, if x 6= 1.

We claim that T is strongly C-nonexpansive. For this purpose it is sufficient to
consider x = 1 and y 6= 1. Then d(Tx, Ty) = y, d(x, Ty) = 1 and d(y, Tx) = y.
We now have

d(Tx, Ty) ≤ min{d(x, Ty), d(y, Tx)}.
It now follows from Theorem 3.7 that T has a fixed point. It is interesting to
note that the existence of fixed point for the mapping T cannot be obtained from
Theorem 2.12 due to Takahashi because of the mapping T is not continuous.

We now raise the next problem.

Question 3.1. It is interesting to ask whether Theorem 3.4 holds whenever T is
noncyclic relatively C-nonexpansive.
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4. Additional results

In this section, we study the structure of minimal sets of strongly noncyclic
relatively C-nonexpansive in the setting of convex metric spaces. We begin our
main results of this section with the following existence theorem.

Theorem 4.1. Let (A, B) be a nonempty, bounded, closed and convex pair in
a convex metric space (X, d,W) such that X has the properties (C) and (D).
Assume that T : A ∪B → A ∪B is a noncyclic mapping such that

d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)] + (1− 2α)dist(A, B),

for some α ∈ (0, 1
2
) and for all (x, y) ∈ A×B. Then T has a best proximity pair.

Proof. By using Zorn’s Lemma and by the fact that X has the property (C),
we obtain a nonempty, closed and convex pair (K1, K2) in X which is minimal
with respect to being invariant under noncyclic mapping T . So, we must have
K1 = cov(T (K1)) and K2 = cov(T (K2)). Take a ∈ K1. Then K2 ⊆ B(a; δa(K2)).
Now, if y ∈ K2 then

d(Ta, Ty) ≤ α[d(a, Ty) + d(Ty, a)] + (1− 2α)dist(A, B)

≤ 2αδ(K1, K2) + (1− 2α)dist(A, B).

Put ρ := 2αδ(K1, K2) + (1− 2α)dist(A, B). Then Ty ∈ B(Ta; ρ) for each y ∈ K2

and so,

K2 = cov(T (K2)) ⊆ B(Ta; ρ),

which deduces that

δTa(K2) ≤ ρ, ∀a ∈ K1.

Similar argument concludes that for each b ∈ K2 we have δTb(K1) ≤ ρ. Set

E1 := {x ∈ K1 : δx(K2) ≤ ρ}, E2 := {y ∈ K2 : δy(K1) ≤ ρ}.

Note that T (K1) ⊆ E1 and T (K2) ⊆ E2. On the other hand, it is easy to verify
that

E1 = [
⋂

y∈K2

B(y; ρ)] ∩K1, E2 = [
⋂

x∈K1

B(x; ρ)] ∩K2,

that is, (E1, E2) is a closed and convex pair in X. Let x ∈ E1. Since δTx(K2) ≤ ρ,
we have Tx ∈ E1, i.e., T (E1) ⊆ E1. Similarly, we have T (E2) ⊆ E2. Hence, T is
noncyclic on E1∪E2. Now, by the minimality of (K1, K2) we must have E1 = K1

and E2 = K2. Thus,

δx(K2) ≤ ρ = 2αδ(K1, K2) + (1− 2α)dist(A, B), ∀x ∈ K1.

Therefore,

δ(K1, K2) = dist(A, B).

By the fact that the convex metric space X has the property (D) we conclude
that both K1 and K2 are singleton. The conclusion then trivially follows.

�
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Remark 4.2. Theorem 4.1 holds once the minimal sets K1 and K2 have been fixed
and the noncyclic mapping T : A ∪B → A ∪B satisfies the following condition.

d(Tx, Ty) ≤ rδ(K1, K2) + (1− r)dist(A, B),

for some r ∈ (0, 1) and for all (x, y) ∈ K1 ×K2.

The next lemma guarantees the existence of diametral pairs for strongly non-
cyclic relatively C-nonexpansive mappings.

Lemma 4.3. Let (A, B) be a nonempty, bounded, closed and convex pair of a
convex metric space (X, d,W) such that X has the properties (C) and (D). Let
T : A∪B → A∪B be a strongly noncyclic relatively C-nonexpansive mapping and
let (K1, K2) ⊆ (A, B) be a minimal closed and convex pair which is T -invariant
and such that dist(K1, K2) = dist(A, B). Then each (x?, y?) ∈ K1 × K2 with
d(x?, y?) = dist(A, B) is a diametral pair (with respect to (K1, K2)), that is,

δx?(K2) = δy?(K1) = δ(K1, K2).

Proof. We have K1 = cov(T (K1)) and K2 = cov(T (K2)). Assume that there
exists a pair (x?, y?) ∈ K1×K2 with d(x?, y?) = dist(A, B) which is not diametral
pair. Then

min{δx?(K2), δy?(K1)} < δ(K1, K2).

Suppose that r1 := δx?(K2) < δ(K1, K2) and r2 = δy?(K1). Set

Cr1(K2) := K1

⋂
(∩x∈K2B(Tx; r1)) & Cr2(K1) := K2

⋂
(∩x∈K1B(Tx; r2)).

It is easy to see that (x, y) ∈ Cr1(K2)× Cr2(K1) if and only if

K2 = cov(T (K2)) ⊆ B(x; r1), K1 = cov(T (K1)) ⊆ B(y; r2).

Also, (x?, y?) ∈ Cr1(K2)× Cr2(K1) and so,

dist(Cr1(K2), Cr2(K1)) = dist(A, B).

Moreover, T is noncyclic on Cr1(K2) ∪ Cr2(K1). Indeed, if p ∈ Cr1(K2) then
p ∈ K1 and for each y ∈ K2 we have d(p, Ty) ≤ r1. Since T is strongly noncyclic
relatively C-nonexpansive,

d(Tp, Ty) ≤ min{d(p, Ty), d(y, Tp)} ≤ r1, ∀y ∈ K2.

Thus,
K2 = cov(T (K2)) ⊆ B(Tp; r1),

which implies that Tp ∈ Cr1(K2). Then T (Cr1(K2)) ⊆ Cr1(K2). Similarly,
T (Cr2(K1)) ⊆ Cr2(K1). That is, T is noncyclic on Cr1(K2) ∪ Cr2(K1). It now
follows from the minimality of (K1, K2) that K1 = Cr1(K2) and K2 = Cr2(K1).
Thereby, K2 ⊆

⋂
x∈K1

B(Tx; r1). Hence,

δy(T (K1)) ≤ r1, ∀y ∈ K2.

So, δ(T (K1), K2) ≤ r1. By using Lemma 2.8 we obtain

δ(K1, K2) = δ(cov(T (K1)), K2) = δ(T (K1), K2) ≤ r1,

which is a contradiction.
�
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Definition 4.4. ([6]) Let (A, B) be a nonempty pair in a metric space (X, d)
and T : A ∪ B → A ∪ B a noncyclic mapping. Then a sequence ({xn}, {yn}) in
A×B is said to be an approximate best proximity pair sequence of the noncyclic
mapping T provided that

lim
n→∞

d(xn, Txn) = 0, lim
n→∞

d(yn, T yn) = 0 and lim
n→∞

d(xn, yn) = dist(A, B).

Lemma 4.5. Let (A, B) be a nonempty, bounded, closed and convex pair of
a convex metric space (X, d,W) such that X has the properties (C) and (D).
Suppose that A0 is nonempty and (A, B) is a proximal compactness pair. Let
T : A ∪ B → A ∪ B be a strongly noncyclic relatively C-nonexpansive mapping.
Then T has an approximate best proximity pair sequence in A×B.

Proof. As in the proof of Theorem 3.4, there exists a pair (K1, K2) ⊆ (A, B)
which is minimal with respect to being nonempty, closed, convex and T invariant
and dist(K1, K2) = dist(A, B). Also, there exists (p, q) ∈ K1 × K2 such that
d(p, q) = dist(K1, K2). For each t ∈ (0, 1

2
) define Tt : K1 ∪ K2 → K1 ∪ K2 as

follows:

Tt(x) =

{
W(Tx, p, 2t); x ∈ K1,

W(Tx, q, 2t); x ∈ K2.

Note that T is noncyclic on K1 ∪ K2. Let r := 4t − 4t2. Since t ∈ (0, 1
2
), we

conclude r < 1. Now for each (x, y) ∈ K1 ×K2 we have

d(Ttx, Tty) = d(W(Tx, p, 2t),W(Ty, q, 2t))

≤ 2td(Tx,W(Ty, q, 2t) + (1− 2t)d(p,W(Ty, q, 2t))

≤ 2t[2td(Tx, Ty) + (1− 2t)d(Tx, q)] + (1− 2t)[2td(p, Ty) + (1− 2t)d(p, q)]

≤ 2t[2t min{d(x, Ty), d(y, Tx)}+ (1− 2t)d(Tx, q)]

+(1− 2t)[2td(p, Ty) + (1− 2t)dist(A, B)]

≤ 2t[2tδ(K1, K2) + (1− 2t)δ(K1, K2)] + (1− 2t)[2tδ(K1, K2) + (1− 2t)dist(A, B)]

= (4t− 4t2)δ(K1, K2) + (1− (4t− 4t2))dist(A, B)

= rδ(K1, K2) + (1− r)dist(A, B).

It now follows from Remark 4.2 that Tt has a best proximity pair for each t ∈
(0, 1

2
), that is, there exists (xt, yt) ∈ K1 ×K2 such that

xt = Tt(xt), yt = Tt(yt) and d(xt, yt) = dist(A, B), ∀t ∈ (0,
1

2
).

We now have

d(xt, Txt) = d(Tt(xt), Txt)

= d(W(Txt, p, 2t), Txt) ≤ (1− 2t)d(p, Txt) ≤ (1− 2t)diam(A).

This implies that d(xt, Txt) → 0 if t → 1
2

−
. By a similar way, we can see that

d(yt, T yt) → 0 whenever t → 1
2

−
and this completes the proof.

�

Here, we state the main result of this section.



226 M. GABELEH

Theorem 4.6. Let (A, B) be a nonempty, bounded, closed and convex pair of a
convex metric space (X, d,W) such that X has the properties (C) and (D), A0 is
nonempty and (A, B) is a proximal compactness pair. Let T : A∪B → A∪B be a
strongly noncyclic relatively C-nonexpansive mapping. Suppose that (K1, K2) ⊆
(A, B) is a minimal, closed and convex pair which is T invariant and such that
dist(K1, K2) = dist(A, B) and let ({xn}, {yn}) be an approximate best proximity
pair sequence in A×B. Then for each (p, q) ∈ K1×K2 with d(p, q) = dist(A, B)
we have

lim sup
n→∞

d(Txn, q) = lim sup
n→∞

d(p, Tyn) = δ(K1, K2).

Proof. Lemma 4.5 guarantees that the noncyclic mapping T has an approximate
best proximity pair sequence in A×B. By the fact that (A, B) is proximal com-
pactness, there exists a subsequence ({xnk

}, {ynk
}) of the sequence ({xn}, {yn})

such that xnk
→ x? and ynk

→ y? for some (x?, y?) ∈ K1 ×K2. So,

d(x?, y?) = lim
k→∞

d(xnk
, ynk

) = dist(A, B).

It follows from Lemma 4.3 that (x?, y?) is a diametral pair. Let (p, q) ∈ K1 ×K2

be such that d(p, q) = dist(A, B). Put,

r1 := lim sup
n→∞

d(Txn, q), r2 := lim sup
n→∞

d(p, Tyn).

We assert that
r1 = r2 = δ(K1, K2).

Suppose that r2 < δ(K1, K2) and set

L1 := {x ∈ K1 : lim sup
n→∞

d(x, Tyn) ≤ r1},

L2 := {y ∈ K2 : lim sup
n→∞

d(Txn, y) ≤ r2}.

Then (p, q) ∈ L1 × L2 and it is easy to see that (L1, L2) is a closed pair in X.
Moreover, if x1, x2 ∈ L1 and α ∈ (0, 1), then

lim sup
n→∞

d(W(x1, x2, α), T yn) ≤ lim sup
n→∞

[αd(x1, T yn) + (1− α)d(x2, T yn)] ≤ r1.

Thus, W(x1, x2, α) ∈ L1, that is, L1 is convex. Similarly, we can see that L2 is a
convex set. Besides, if x ∈ L1, then

lim sup
n→∞

d(Tx, Tyn) ≤ lim sup
n→∞

min{d(x, Tyn), d(yn, Tx)}

≤ lim sup
n→∞

d(x, Tyn) ≤ r1,

which concludes that Tx ∈ L1, that is, T (L1) ⊆ L1. Similarly, we can see that
T (L2) ⊆ L2. Hence, T is noncyclic on L1 ∪ L2. Minimality of (K1, K2) deduces
that (K1, K2) = (L1, L2). Then for each y ∈ K2 we have

d(x?, T y) = lim
k→∞

d(xnk
, T y)

≤ lim sup
n→∞

d(xn, T y) ≤ lim sup
n→∞

[d(xn, Txn) + d(Txn, T y)]

= lim sup
n→∞

d(Txn, T y) ≤ lim sup
n→∞

min{d(xn, T y), d(y, Txn)}
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≤ lim sup
n→∞

d(y, Txn) ≤ r2.

Hence, δx?(T (K2)) ≤ r2. Now, by using Lemma 2.9 we conclude that

δx?(K2) = δx?(cov(T (K2))) = δx?(T (K2)) ≤ r2 < δ(K1, K2),

which is a contradiction by the fact that (x?, y?) is a diametral pair. By the
similar way, we can see that if r1 < δ(K1, K2), then we get a contradiction.

�

The following corollary is immediate from the proof of Theorem 4.6.

Corollary 4.7. Under the conditions of Theorem 4.6 if, in addition, the sequence
{xn} is converges to x? ∈ A, then T has a best proximity pair.

Proof. By Theorem 4.6 we have

δ(K1, K2) = lim
n→∞

d(Txn, y
?) ≤ lim

n→∞
[d(Txn, xn) + d(xn, y

?)]

= d(x?, y?) = dist(K1, K2).

Now, by the fact that the convex metric space X has the property (D), we con-
clude that K1 and K2 are singleton and the result follows.

�

Corollary 4.8. Let (A, B) be a nonempty, weakly compact and convex pair of a
strictly convex Banach space X. Let T : A ∪ B → A ∪ B be a strongly noncyclic
relatively C-nonexpansive mapping. Suppose that (K1, K2) ⊆ (A, B) is a mini-
mal, closed and convex pair which is T invariant and such that dist(K1, K2) =
dist(A, B) and let ({xn}, {yn}) be an approximate best proximity pair sequence in
A×B. Then for each (p, q) ∈ K1 ×K2 with d(p, q) = dist(A, B) we have

lim sup
n→∞

d(Txn, q) = lim sup
n→∞

d(p, Tyn) = δ(K1, K2).

The next corollary is similar to the classical Goebel–Karlovitz Lemma which is
a key lemma in fixed point theory.

Corollary 4.9. Let A be a nonempty, bounded, closed and convex subset of a
convex metric space (X, d,W) and let T : A → A be a strongly C-nonexpansive
mapping. Assume that K is a subset of A which is minimal with respect to being
nonempty, closed, convex and T -invariant, and suppose {xn} is a sequence in K
such that

lim
n→∞

d(xn, Txn) = 0.

Then, for each x ∈ K, limn→∞ d(x, Txn) = diam(K).
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