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Abstract. We will find the pα−dual for XT , where X is one of the spaces c,
c0, `∞ and T is a triangle matrix. This will be achieved in two ways: firstly,
under some conditions for the inverse matrix S of T and secondly, for arbitrary
triangles T .

1. Notation, motivation and known results

Before we explain the motivation for the paper, we give the notations which
will be used in the paper.

As usual, let ω, `∞, c and c0 denote the sets of all complex, bounded, convergent
and null sequences. We also write `p = {x ∈ ω |

∑∞
k=0 |xk|p < ∞}.

Let X and Y be subsets of ω and z ∈ ω. Then we use the notation z−1 ∗ Y =
{x ∈ ω | xz = (xkzk)

∞
k=0 ∈ Y } and write M(X, Y ) = ∩x∈Xx−1 ∗ Y for multiplier

space of X and Y .
The definition of the pα-dual for 1 ≤ p < ∞ of a sequence space X was given

in [2] as

Xpα = M(X, `p) =
{
a = (ak) |

∑
k

|akxk|p < ∞, for each x in X
}
.

It can be shown (see [2]), that cpα
0 = cpα = `pα

∞ = `p for 1 ≤ p < ∞.
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As mentioned, the idea for this paper arises from the results obtained in [3].
In [3, 2], the authors deal with difference sequence spaces and find their pα-
duals. Also, in [1], the authors consider some classical sequence spaces and their
generalized Köthe–Toeplitz duals. All these results inspired us to generalize the
existing results and determine the pα-duals for the matrix domains of triangles
T in the classical sequence spaces c0, c and `∞. This will be achieved under
some conditions on the matrix T , but we will also establish some results without
restrictions on T . This generalizes the results in [3, 2, 1].

Let us recall that if we denote by A = (ank)
∞
n,k=0 an infinite matrix with complex

entries and by An its n-th row, we write Anx =
∑∞

k=0 ankxk and Ax = (Anx)∞n=0

(provided all the series converge); the set XA = {a ∈ ω | A(x) ∈ X} is called the
matrix domain of A in X. Furthermore, a matrix T = (tnk)

∞
n,k=0 is said to be a

triangle if tnk = 0 for all k > n and tnn 6= 0 (n = 0, 1 . . .). Throughout, we will
write T for a triangle and S for its inverse.

Hence, our task is to find M(XT , `p) for 1 ≤ p < ∞, that is, the pα-dual for
XT where T is an arbitrary triangle and X ∈ {c, c0, `∞}. This generalizes the
results in [3, 2, 1].

2. Main results

We start this section with a theorem whose results are based on the assumption,
that the terms of each of the rows of the inverse S of the triangle T have the
same sign. This is the case for the matrix of the m–th difference. Furthermore,
we will establish a more general result without that restriction on T .

Theorem 2.1. Let 1 ≤ p < ∞, T be triangle such that its inverse S has the
property that the entries in each row of S have constant sign, and St denote the
transpose of S. Then we have

((c0)T )pα = (cT )pα = ((`∞)T )pα = B = (`p)St ,

that is,

B =
{

a ∈ ω :
∞∑

k=0

∣∣∣∣∣ak

k∑
j=0

skj

∣∣∣∣∣
p

< ∞
}

. (2.1)

Proof. Let eiαk (k = 0, 1, . . . ) be the constant sign of all non-zero term in the
kth row of S, that is, skj = eiαk |skj| (0 ≤ j ≤ k; k = 0, 1, . . . ). We know by [5,
Theorem 4.3.12, 4.3.14] that c0 ⊂ c ⊂ `∞ implies

(c0)T ⊂ cT ⊂ (`∞)T ,

and also by [1, Lemma 1(ii)] that

((`∞)T )pα ⊂ (cT )pα ⊂ ((c0)T )pα . (2.2)

First we show

B ⊂ ((`∞)T )pα . (2.3)
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Let a ∈ B and x ∈ (`∞)T , hence y = Tx ∈ `∞ and so x = Sy. We obtain

∞∑
k=0

|akxk|p =
∞∑

k=0

|ak · Sky|p =
∞∑

k=0

∣∣∣∣∣ak

k∑
j=0

skjyj

∣∣∣∣∣
p

≤
∞∑

k=0

(
|ak| ·

∣∣∣∣∣eiαk

k∑
j=0

|skj|yj

∣∣∣∣∣
)p

≤
∞∑

k=0

(
|ak| sup

j
|yj|

k∑
j=0

|skj|

)p

< ∞,

that is, a ∈ ((`∞)T )pα. Thus we have shown (2.3).
Now we show

((c0)T )pα ⊆ B. (2.4)

We assume a /∈ B. Then there is a sequence (k(r))∞r=0 of integers with 0 = k(0) <
k(1) < k(2) < · · · such that

k(r+1)−1∑
k=k(r)

|ak|p ·

(
k∑

j=0

|skj|

)p

> (r + 1)p (r = 0, 1, . . . ).

We define sequence x = (xk)
∞
k=0 and y = (yn)∞n=0 by

xk =
r−1∑
`=0

1

` + 1

k(`+1)−1∑
j=k(`)

skj+
1

r + 1
·

k∑
j=k(r)

skj for (k(r) ≤ k ≤ k(r+1)−1; r = 0, 1, · · · )

and

yn =
1

r + 1
for k(r) ≤ k ≤ k(r + 1)− 1; r = 0, 1, . . . .

Then we have y = Tx. To see this let k ∈ IN0 be given. Then there exists a
unique r ∈ IN0 such that k(r) ≤ k ≤ k(r + 1)− 1 and then

Sky =
k∑

j=0

skjyj =
r−1∑
`=0

k(`+1)−1∑
j=k(`)

skjyj +
k∑

j=k(r)

skjyj

=
r−1∑
`=0

1

` + 1

k(`+1)−1∑
j=k(`)

skj +
1

r + 1

k∑
j=k(r)

skj = xk,

that is, x = Sy, and so y = Tx.
Since obviously y ∈ c0, it follows that x ∈ (c0)T . Furthermore,

k(r+1)−1∑
k=k(r)

|akxk|p =

k(r+1)−1∑
k=k(r)

(
|ak| ·

∣∣∣∣∣
k∑

j=0

skj ·
1

r + 1

∣∣∣∣∣
)p

=

(
1

r + 1

)p k(r+1)−1∑
k=k(r)

|ak| ·

(
|eiαk | ·

k∑
j=0

|sjk|

)p

=

(
1

r + 1

)p k(r+1)−1∑
k=k(r)

|ak|

(
k∑

j=0

|sjk|

)p

> 1 for r = 0, 1, . . .
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implies
∞∑

k=0

|akxk|p =
∞∑

r=0

k(r+1)−1∑
k=k(r)

|akxk|p >
∞∑

r=0

1 = ∞.

Thus we have shown (2.4).
Now the statement of the theorem follows from (2.2), (2.3) and (2.4). �

Now, using the theory of matrix transformations between classical sequence
spaces [4, 5], we give a general result without conditions on T and S. We use
standard arguments for the triangle T .

Theorem 2.2. Let 1 ≤ p < ∞, X ∈ {c, c0, `∞}, T be an arbitrary triangle and
S be its inverse. Then we have

a = (ak) ∈ Xpα
T if and only if sup

K ⊂ IN0

K finite

∞∑
n=0

∣∣∣ n∑
k=0

ansnk

∣∣∣p < ∞. (2.5)

Proof. Since z ∈ XT if and only if Tz ∈ X we have z = Sx for some x ∈ X. If

we denote by B(a) = (b
(a)
nk )∞n,k=0 triangle matrix with entries b

(a)
nk = ansnk, we get

anzn = anSnx =
n∑

k=0

ansnkxk = B(a)
n x for all n.

Hence

a ∈ (XT , Y ) ⇔ B(a) ∈ (X, Y ),

that is, in our case

a ∈ Xpα
T ⇔ B(a) ∈ (X, `p).

Specially for X ∈ {c, c0, `∞}, applying [5, Examples 8.4.3B, 8.4.9A and 8.4.8A]
we have

B(a) ∈ (X, `p) ⇔ sup
K ⊂ IN0

K finite

∞∑
n=0

∣∣∣ n∑
k=0

ansnk

∣∣∣p < ∞.

Now, it is clear that (2.5) holds. �

3. Applications

Here, we will cover existing results from [3]. Actually, we will apply our gener-
alized results to some special cases and obtain results from [3] which have been
treated separately.

There are a great number of papers on spaces of m−th order difference se-
quences. If we use notation from the beginning, the inverse matrix S of the
matrix of the m−th difference is with non-negative entries, so results from [3]
can be covered just applying our Theorem 2.1. Of course, the same can be done
and by Theorem 2.2. but this is not necessary.

Let us start with results from [3, Theorem 2.6]. The set E(km) is defined by:

E(km) = {x = (xk) | (kmxk) ∈ E},
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where E is one of the classical spaces l∞, c, c0. It has been claimed that (E(km))pα =
U (p), where

U (p) = {a = (ak) |
∞∑

k=1

∣∣∣ ak

km

∣∣∣p < ∞}.

If we go back to our generalized results, first, it can be seen that the set E(km)
is actually matrix domain of triangle T , given by:

tnk =

{
km (k = n)

0 (k 6= n)
(n = 0, 1, . . . )

in classical sequence space E ∈ {l∞, c, c0}. It is obvious that the inverse S of T
is also triangle defined by:

snk =

{
k−m (k = n)

0 (k 6= n)
(n = 0, 1, . . . ).

Hence,
∑k

j=0 skj = skk = k−m and this implies the following:

(E(km))pα = (ET )pα;

(ET )pα = B =
{

a = (ak) |
∑

k

|ak|p ·
( k∑

j=0

skj

)p
< ∞

}
=

{
a = (ak) |

∑
k

|ak|p · sp
kk < ∞

}
;

B =
{

a = (ak) |
∑

k

|ak|p · |k−m|p < ∞
}

=
{

a = (ak) |
∞∑

k=1

∣∣∣ ak

km

∣∣∣p < ∞
}

= U (p).

Further, we will consider the sequence space based on difference sequence
spaces, defined in [3]:

∆(m)
v,r (E) = {x = (xk) | (kr∆(m)

v x)k ∈ E}

where E ∈ {l∞, c, c0}, v = (vk) is any fixed sequence of non-zero complex num-
bers, m ∈ IN, r ∈ IR and(

kr∆(m)
v xk

)
k

= kr ·
m∑

i=0

(−1)m

(
m
i

)
vk−ixk−i.

In the mentioned paper in Theorem 2.5 authors have claimed that(
∆(m)

v,r (c0)
)pα

=
(
∆(m)

v,r (c)
)pα

=
(
∆(m)

v,r (`∞)
)pα

= U1,

where

U1 = {a = (ak) |
∞∑

k=1

kp(m−r)|v−1
k ak|p < ∞}.
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It is clear that the space ∆
(m)
v,r (E) is matrix domain of certain triangle T in the

space E and its inverse is matrix S with entries defined in the following way:

skj =
1

krvk

(
m + k − j − 1

k − j

)
.

Here we will give general result for pα− dual of sequence space which can be
represented as matrix domain of arbitrary triangle in one of the classical sequence
spaces c, c0, `∞ and after that we will apply our results to the spaces considered
in [3, Theorem 2.5].

From the definition of the space ∆
(m)
v,r (E), we can conclude that ∆

(m)
v,r (E) =

v−1 ∗ XT , where T = T1∆
(m), T1 is diagonal matrix with tkk = kr and ∆(m) is

matrix of m− th order difference operator.
Hence, we will give general result for pα− dual of the space v−1 ∗ XT ′ for

arbitrary triangle T ′ (with inverse S ′)and X ∈ {l∞, c, c0} and after that apply
that to the special case considered in [3, Theorem 2.5]. In that way we will cover
and generalize all existing results.

As we know, v−1 ∗X = {x | vx ∈ X} and by the definition of pα− dual of the
space, we have that

(v−1 ∗X)pα =
{
a = (ak) |

∑
k

|akxk|p < ∞, for each x ∈ v−1 ∗X
}
.

It can be shown easily that (v−1 ∗X)pα = v ∗Xpα. Actually, if a ∈ (v−1 ∗X)pα

and x ∈ v−1 ∗X, we have∑
k

|akxk|p =
∑

k

|akv
−1
k |p · |vkxk|p < ∞

This implies that av−1 ∈ Xpα, that is a ∈ v∗Xpα. On the other side, if a ∈ v∗Xpα

and x ∈ v−1 ∗X, similarly we can conclude that that a ∈ (v−1 ∗X)pα.
Following all noticed, we have that (v−1 ∗XT ′)pα = v ∗ (XT ′)pα = v ∗B, where

the set B is given by (2.1).

Let us consider the space ∆
(m)
v,r (E) and its pα− dual. We have:(

∆(m)
v,r (c0)

)pα

=
(
∆(m)

v,r (c)
)pα

=
(
∆(m)

v,r (`∞)
)pα

= v ∗B,

that is (
∆(m)

v,r (E)
)pα

= v ∗
{

a = (ak) |
∑

k

|ak|p ·
( k∑

j=0

s′kj

)p
< ∞

}
=

=
{

a = (ak) |
∑

k

|akv
−1
k |p ·

( k∑
j=0

s′kj

)p
< ∞

}
.

Since

s′kj =
1

kr

(
m + k − j − 1

k − j

)
,
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we obtain:( k∑
j=0

s′kj

)p
=
( k∑

j=0

1

kr

(
m + k − j − 1

k − j

))p
= k−pr ·

( k∑
j=0

(
m + k − j − 1

k − j

))p
.

Further, as we know that
∑k

j=0

(
m+j−1

j

)
=
(

m+k
k

)
[4, (3.11)], we have:

( k∑
j=0

s′kj

)p
= k−pr ·

(
m + k

k

)p

.

Also, we apply result [4, (3.12)] that there are positive constants M1 and M2 such
that M1k

m ≤
(

m+k
k

)
≤ M2k

m, for all k = 0, 1, 2 · · ·Applying that we obtain that(
∆(m)

v,r (E)
)pα

=
{

a = (ak) |
∑

k

|akv
−1
k |p · k−pr ·

(
m + k

k

)p

< ∞
}

=

=
{

a = (ak) |
∑

k

|akv
−1
k |p · k−pr · kpm < ∞

}
=

=
{

a = (ak) |
∑

k

|akv
−1
k |p · kp(m−r) < ∞

}
= U1.

We have covered results from [3, Theorem 2.5].
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