GENERALIZATION OF SOME RESULTS ON $p \alpha$-DUALS

IVANA DJOLOVIĆ ${ }^{1 *}$ AND EBERHARD MALKOWSKY ${ }^{2}$

Communicated by D. Werner

Abstract

We will find the $p \alpha$-dual for X_{T}, where X is one of the spaces c, c_{0}, ℓ_{∞} and T is a triangle matrix. This will be achieved in two ways: firstly, under some conditions for the inverse matrix S of T and secondly, for arbitrary triangles T.

1. Notation, motivation and known results

Before we explain the motivation for the paper, we give the notations which will be used in the paper.

As usual, let ω, ℓ_{∞}, c and c_{0} denote the sets of all complex, bounded, convergent and null sequences. We also write $\ell_{p}=\left\{\left.x \in \omega\left|\sum_{k=0}^{\infty}\right| x_{k}\right|^{p}<\infty\right\}$.

Let X and Y be subsets of ω and $z \in \omega$. Then we use the notation $z^{-1} * Y=$ $\left\{x \in \omega \mid x z=\left(x_{k} z_{k}\right)_{k=0}^{\infty} \in Y\right\}$ and write $M(X, Y)=\cap_{x \in X} x^{-1} * Y$ for multiplier space of X and Y.

The definition of the $p \alpha$-dual for $1 \leq p<\infty$ of a sequence space X was given in [2] as

$$
X^{p \alpha}=M\left(X, \ell_{p}\right)=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} x_{k}\right|^{p}<\infty, \text { for each } x \text { in } \mathrm{X}\right\} .
$$

It can be shown (see [2]), that $c_{0}^{p \alpha}=c^{p \alpha}=\ell_{\infty}^{p \alpha}=\ell_{p}$ for $1 \leq p<\infty$.

Date: Received: Oct. 19, 2013; Accepted: Nov. 6, 2013.

* Corresponding author.

2010 Mathematics Subject Classification. Primary: 40H05; Secondary: 46H05.
Key words and phrases. $p \alpha-$ dual, sequence spaces, matrix domain of triangle.

As mentioned, the idea for this paper arises from the results obtained in [3]. In $[3,2]$, the authors deal with difference sequence spaces and find their $p \alpha$ duals. Also, in [1], the authors consider some classical sequence spaces and their generalized Köthe-Toeplitz duals. All these results inspired us to generalize the existing results and determine the $p \alpha$-duals for the matrix domains of triangles T in the classical sequence spaces c_{0}, c and ℓ_{∞}. This will be achieved under some conditions on the matrix T, but we will also establish some results without restrictions on T. This generalizes the results in $[3,2,1]$.

Let us recall that if we denote by $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$ an infinite matrix with complex entries and by A_{n} its n-th row, we write $A_{n} x=\sum_{k=0}^{\infty} a_{n k} x_{k}$ and $A x=\left(A_{n} x\right)_{n=0}^{\infty}$ (provided all the series converge); the set $X_{A}=\{a \in \omega \mid A(x) \in X\}$ is called the matrix domain of A in X. Furthermore, a matrix $T=\left(t_{n k}\right)_{n, k=0}^{\infty}$ is said to be a triangle if $t_{n k}=0$ for all $k>n$ and $t_{n n} \neq 0(n=0,1 \ldots)$. Throughout, we will write T for a triangle and S for its inverse.

Hence, our task is to find $M\left(X_{T}, \ell_{p}\right)$ for $1 \leq p<\infty$, that is, the $p \alpha$-dual for X_{T} where T is an arbitrary triangle and $X \in\left\{c, c_{0}, \ell_{\infty}\right\}$. This generalizes the results in $[3,2,1]$.

2. Main Results

We start this section with a theorem whose results are based on the assumption, that the terms of each of the rows of the inverse S of the triangle T have the same sign. This is the case for the matrix of the m-th difference. Furthermore, we will establish a more general result without that restriction on T.

Theorem 2.1. Let $1 \leq p<\infty$, T be triangle such that its inverse S has the property that the entries in each row of S have constant sign, and S^{t} denote the transpose of S. Then we have

$$
\left(\left(c_{0}\right)_{T}\right)^{p \alpha}=\left(c_{T}\right)^{p \alpha}=\left(\left(\ell_{\infty}\right)_{T}\right)^{p \alpha}=B=\left(\ell_{p}\right)_{S^{t}}
$$

that is,

$$
\begin{equation*}
B=\left\{a \in \omega: \sum_{k=0}^{\infty}\left|a_{k} \sum_{j=0}^{k} s_{k j}\right|^{p}<\infty\right\} . \tag{2.1}
\end{equation*}
$$

Proof. Let $\mathrm{e}^{i \alpha_{k}}(k=0,1, \ldots)$ be the constant sign of all non-zero term in the $k^{\text {th }}$ row of S, that is, $s_{k j}=\mathrm{e}^{i \alpha_{k}}\left|s_{k j}\right|(0 \leq j \leq k ; k=0,1, \ldots)$. We know by [5 , Theorem 4.3.12, 4.3.14] that $c_{0} \subset c \subset \ell_{\infty}$ implies

$$
\left(c_{0}\right)_{T} \subset c_{T} \subset\left(\ell_{\infty}\right)_{T},
$$

and also by $[1$, Lemma 1(ii)] that

$$
\begin{equation*}
\left(\left(\ell_{\infty}\right)_{T}\right)^{p \alpha} \subset\left(c_{T}\right)^{p \alpha} \subset\left(\left(c_{0}\right)_{T}\right)^{p \alpha} \tag{2.2}
\end{equation*}
$$

First we show

$$
\begin{equation*}
B \subset\left(\left(\ell_{\infty}\right)_{T}\right)^{p \alpha} \tag{2.3}
\end{equation*}
$$

Let $a \in B$ and $x \in\left(\ell_{\infty}\right)_{T}$, hence $y=T x \in \ell_{\infty}$ and so $x=S y$. We obtain

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k} x_{k}\right|^{p} & =\sum_{k=0}^{\infty}\left|a_{k} \cdot S_{k} y\right|^{p}=\sum_{k=0}^{\infty}\left|a_{k} \sum_{j=0}^{k} s_{k j} y_{j}\right|^{p} \leq \sum_{k=0}^{\infty}\left(\left|a_{k}\right| \cdot\left|\mathrm{e}^{i \alpha_{k}} \sum_{j=0}^{k}\right| s_{k j}\left|y_{j}\right|\right)^{p} \\
& \leq \sum_{k=0}^{\infty}\left(\left|a_{k}\right| \sup _{j}\left|y_{j}\right| \sum_{j=0}^{k}\left|s_{k j}\right|\right)^{p}<\infty
\end{aligned}
$$

that is, $a \in\left(\left(\ell_{\infty}\right)_{T}\right)^{p \alpha}$. Thus we have shown (2.3).
Now we show

$$
\begin{equation*}
\left(\left(c_{0}\right)_{T}\right)^{p \alpha} \subseteq B \tag{2.4}
\end{equation*}
$$

We assume $a \notin B$. Then there is a sequence $(k(r))_{r=0}^{\infty}$ of integers with $0=k(0)<$ $k(1)<k(2)<\cdots$ such that

$$
\sum_{k=k(r)}^{k(r+1)-1}\left|a_{k}\right|^{p} \cdot\left(\sum_{j=0}^{k}\left|s_{k j}\right|\right)^{p}>(r+1)^{p}(r=0,1, \ldots) .
$$

We define sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$ and $y=\left(y_{n}\right)_{n=0}^{\infty}$ by
$x_{k}=\sum_{\ell=0}^{r-1} \frac{1}{\ell+1} \sum_{j=k(\ell)}^{k(\ell+1)-1} s_{k j}+\frac{1}{r+1} \cdot \sum_{j=k(r)}^{k} s_{k j}$ for $(k(r) \leq k \leq k(r+1)-1 ; r=0,1, \cdots)$
and

$$
y_{n}=\frac{1}{r+1} \text { for } k(r) \leq k \leq k(r+1)-1 ; r=0,1, \ldots
$$

Then we have $y=T x$. To see this let $k \in \mathbb{N}_{0}$ be given. Then there exists a unique $r \in \mathbb{N}_{0}$ such that $k(r) \leq k \leq k(r+1)-1$ and then

$$
\begin{aligned}
S_{k} y & =\sum_{j=0}^{k} s_{k j} y_{j}=\sum_{\ell=0}^{r-1} \sum_{j=k(\ell)}^{k(\ell+1)-1} s_{k j} y_{j}+\sum_{j=k(r)}^{k} s_{k j} y_{j} \\
& =\sum_{\ell=0}^{r-1} \frac{1}{\ell+1} \sum_{j=k(\ell)}^{k(\ell+1)-1} s_{k j}+\frac{1}{r+1} \sum_{j=k(r)}^{k} s_{k j}=x_{k},
\end{aligned}
$$

that is, $x=S y$, and so $y=T x$.
Since obviously $y \in c_{0}$, it follows that $x \in\left(c_{0}\right)_{T}$. Furthermore,

$$
\begin{aligned}
\sum_{k=k(r)}^{k(r+1)-1}\left|a_{k} x_{k}\right|^{p} & =\sum_{k=k(r)}^{k(r+1)-1}\left(\left|a_{k}\right| \cdot\left|\sum_{j=0}^{k} s_{k j} \cdot \frac{1}{r+1}\right|\right)^{p} \\
& =\left(\frac{1}{r+1}\right)^{p} \sum_{k=k(r)}^{k(r+1)-1}\left|a_{k}\right| \cdot\left(\left|\mathrm{e}^{i \alpha_{k}}\right| \cdot \sum_{j=0}^{k}\left|s_{j k}\right|\right)^{p} \\
& =\left(\frac{1}{r+1}\right)^{p} \sum_{k=k(r)}^{k(r+1)-1}\left|a_{k}\right|\left(\sum_{j=0}^{k}\left|s_{j k}\right|\right)^{p}>1 \text { for } r=0,1, \ldots
\end{aligned}
$$

implies

$$
\sum_{k=0}^{\infty}\left|a_{k} x_{k}\right|^{p}=\sum_{r=0}^{\infty} \sum_{k=k(r)}^{k(r+1)-1}\left|a_{k} x_{k}\right|^{p}>\sum_{r=0}^{\infty} 1=\infty
$$

Thus we have shown (2.4).
Now the statement of the theorem follows from (2.2), (2.3) and (2.4).
Now, using the theory of matrix transformations between classical sequence spaces [4, 5], we give a general result without conditions on T and S. We use standard arguments for the triangle T.
Theorem 2.2. Let $1 \leq p<\infty, X \in\left\{c, c_{0}, \ell_{\infty}\right\}, T$ be an arbitrary triangle and S be its inverse. Then we have

$$
\begin{equation*}
a=\left(a_{k}\right) \in X_{T}^{p \alpha} \text { if and only if } \sup _{\substack{K \subset I N_{0} \\ K \text { finite }}} \sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} a_{n} s_{n k}\right|^{p}<\infty \tag{2.5}
\end{equation*}
$$

Proof. Since $z \in X_{T}$ if and only if $T z \in X$ we have $z=S x$ for some $x \in X$. If we denote by $B^{(a)}=\left(b_{n k}^{(a)}\right)_{n, k=0}^{\infty}$ triangle matrix with entries $b_{n k}^{(a)}=a_{n} s_{n k}$, we get

$$
a_{n} z_{n}=a_{n} S_{n} x=\sum_{k=0}^{n} a_{n} s_{n k} x_{k}=B_{n}^{(a)} x \text { for all } n
$$

Hence

$$
a \in\left(X_{T}, Y\right) \Leftrightarrow B^{(a)} \in(X, Y)
$$

that is, in our case

$$
a \in X_{T}^{p \alpha} \Leftrightarrow B^{(a)} \in\left(X, \ell_{p}\right)
$$

Specially for $X \in\left\{c, c_{0}, \ell_{\infty}\right\}$, applying [5, Examples 8.4.3B, 8.4.9A and 8.4.8A] we have

$$
B^{(a)} \in\left(X, \ell_{p}\right) \Leftrightarrow \sup _{\substack{K \subset \mathbb{N}_{0} \\ K \text { finite }}} \sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} a_{n} s_{n k}\right|^{p}<\infty .
$$

Now, it is clear that (2.5) holds.

3. Applications

Here, we will cover existing results from [3]. Actually, we will apply our generalized results to some special cases and obtain results from [3] which have been treated separately.

There are a great number of papers on spaces of m-th order difference sequences. If we use notation from the beginning, the inverse matrix S of the matrix of the m-th difference is with non-negative entries, so results from [3] can be covered just applying our Theorem 2.1. Of course, the same can be done and by Theorem 2.2. but this is not necessary.

Let us start with results from [3, Theorem 2.6]. The set $E\left(k^{m}\right)$ is defined by:

$$
E\left(k^{m}\right)=\left\{x=\left(x_{k}\right) \mid\left(k^{m} x_{k}\right) \in E\right\},
$$

where E is one of the classical spaces l_{∞}, c, c_{0}. It has been claimed that $\left(E\left(k^{m}\right)\right)^{p \alpha}=$ $U^{(p)}$, where

$$
U^{(p)}=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k=1}^{\infty}\right| \frac{a_{k}}{k^{m}}\right|^{p}<\infty\right\} .
$$

If we go back to our generalized results, first, it can be seen that the set $E\left(k^{m}\right)$ is actually matrix domain of triangle T, given by:

$$
t_{n k}=\left\{\begin{array}{ll}
k^{m} & (k=n) \\
0 & (k \neq n)
\end{array} \quad(n=0,1, \ldots)\right.
$$

in classical sequence space $E \in\left\{l_{\infty}, c, c_{0}\right\}$. It is obvious that the inverse S of T is also triangle defined by:

$$
s_{n k}=\left\{\begin{array}{ll}
k^{-m} & (k=n) \\
0 & (k \neq n)
\end{array} \quad(n=0,1, \ldots)\right.
$$

Hence, $\sum_{j=0}^{k} s_{k j}=s_{k k}=k^{-m}$ and this implies the following:

$$
\begin{gathered}
\left(E\left(k^{m}\right)\right)^{p \alpha}=\left(E_{T}\right)^{p \alpha} ; \\
\left(E_{T}\right)^{p \alpha}=B=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k}\right|^{p} \cdot\left(\sum_{j=0}^{k} s_{k j}\right)^{p}<\infty\right\} \\
=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k}\right|^{p} \cdot s_{k k}^{p}<\infty\right\} \\
B=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k}\right|^{p} \cdot\left|k^{-m}\right|^{p}<\infty\right\}=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k=1}^{\infty}\right| \frac{a_{k}}{k^{m}}\right|^{p}<\infty\right\}=U^{(p)} .
\end{gathered}
$$

Further, we will consider the sequence space based on difference sequence spaces, defined in [3]:

$$
\Delta_{v, r}^{(m)}(E)=\left\{x=\left(x_{k}\right) \mid\left(k^{r} \Delta_{v}^{(m)} x\right)_{k} \in E\right\}
$$

where $E \in\left\{l_{\infty}, c, c_{0}\right\}, v=\left(v_{k}\right)$ is any fixed sequence of non-zero complex numbers, $m \in \mathbb{N}, r \in \mathbb{R}$ and

$$
\left(k^{r} \Delta_{v}^{(m)} x_{k}\right)_{k}=k^{r} \cdot \sum_{i=0}^{m}(-1)^{m}\binom{m}{i} v_{k-i} x_{k-i}
$$

In the mentioned paper in Theorem 2.5 authors have claimed that

$$
\left(\Delta_{v, r}^{(m)}\left(c_{0}\right)\right)^{p \alpha}=\left(\Delta_{v, r}^{(m)}(c)\right)^{p \alpha}=\left(\Delta_{v, r}^{(m)}\left(\ell_{\infty}\right)\right)^{p \alpha}=U_{1}
$$

where

$$
U_{1}=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k=1}^{\infty} k^{p(m-r)}\right| v_{k}^{-1} a_{k}\right|^{p}<\infty\right\} .
$$

It is clear that the space $\Delta_{v, r}^{(m)}(E)$ is matrix domain of certain triangle T in the space E and its inverse is matrix S with entries defined in the following way:

$$
s_{k j}=\frac{1}{k^{r} v_{k}}\binom{m+k-j-1}{k-j}
$$

Here we will give general result for $p \alpha-$ dual of sequence space which can be represented as matrix domain of arbitrary triangle in one of the classical sequence spaces c, c_{0}, ℓ_{∞} and after that we will apply our results to the spaces considered in [3, Theorem 2.5].

From the definition of the space $\Delta_{v, r}^{(m)}(E)$, we can conclude that $\Delta_{v, r}^{(m)}(E)=$ $v^{-1} * X_{T}$, where $T=T_{1} \Delta^{(m)}, T_{1}$ is diagonal matrix with $t_{k k}=k^{r}$ and $\Delta^{(m)}$ is matrix of $m-t h$ order difference operator.

Hence, we will give general result for $p \alpha-$ dual of the space $v^{-1} * X_{T^{\prime}}$ for arbitrary triangle T^{\prime} (with inverse S^{\prime}) and $X \in\left\{l_{\infty}, c, c_{0}\right\}$ and after that apply that to the special case considered in [3, Theorem 2.5]. In that way we will cover and generalize all existing results.

As we know, $v^{-1} * X=\{x \mid v x \in X\}$ and by the definition of $p \alpha-$ dual of the space, we have that

$$
\left(v^{-1} * X\right)^{p \alpha}=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} x_{k}\right|^{p}<\infty, \text { for each } x \in v^{-1} * X\right\} .
$$

It can be shown easily that $\left(v^{-1} * X\right)^{p \alpha}=v * X^{p \alpha}$. Actually, if $a \in\left(v^{-1} * X\right)^{p \alpha}$ and $x \in v^{-1} * X$, we have

$$
\sum_{k}\left|a_{k} x_{k}\right|^{p}=\sum_{k}\left|a_{k} v_{k}^{-1}\right|^{p} \cdot\left|v_{k} x_{k}\right|^{p}<\infty
$$

This implies that $a v^{-1} \in X^{p \alpha}$, that is $a \in v * X^{p \alpha}$. On the other side, if $a \in v * X^{p \alpha}$ and $x \in v^{-1} * X$, similarly we can conclude that that $a \in\left(v^{-1} * X\right)^{p \alpha}$.

Following all noticed, we have that $\left(v^{-1} * X_{T^{\prime}}\right)^{p \alpha}=v *\left(X_{T^{\prime}}\right)^{p \alpha}=v * B$, where the set B is given by (2.1).

Let us consider the space $\Delta_{v, r}^{(m)}(E)$ and its $p \alpha-$ dual. We have:

$$
\left(\Delta_{v, r}^{(m)}\left(c_{0}\right)\right)^{p \alpha}=\left(\Delta_{v, r}^{(m)}(c)\right)^{p \alpha}=\left(\Delta_{v, r}^{(m)}\left(\ell_{\infty}\right)\right)^{p \alpha}=v * B,
$$

that is

$$
\begin{aligned}
\left(\Delta_{v, r}^{(m)}(E)\right)^{p \alpha} & =v *\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k}\right|^{p} \cdot\left(\sum_{j=0}^{k} s_{k j}^{\prime}\right)^{p}<\infty\right\}= \\
& =\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} v_{k}^{-1}\right|^{p} \cdot\left(\sum_{j=0}^{k} s_{k j}^{\prime}\right)^{p}<\infty\right\} .
\end{aligned}
$$

Since

$$
s_{k j}^{\prime}=\frac{1}{k^{r}}\binom{m+k-j-1}{k-j}
$$

we obtain:

$$
\left(\sum_{j=0}^{k} s_{k j}^{\prime}\right)^{p}=\left(\sum_{j=0}^{k} \frac{1}{k^{r}}\binom{m+k-j-1}{k-j}\right)^{p}=k^{-p r} \cdot\left(\sum_{j=0}^{k}\binom{m+k-j-1}{k-j}\right)^{p}
$$

Further, as we know that $\sum_{j=0}^{k}\binom{m+j-1}{j}=\binom{m+k}{k}[4,(3.11)]$, we have:

$$
\left(\sum_{j=0}^{k} s_{k j}^{\prime}\right)^{p}=k^{-p r} \cdot\binom{m+k}{k}^{p}
$$

Also, we apply result [4, (3.12)] that there are positive constants M_{1} and M_{2} such that $M_{1} k^{m} \leq\binom{ m+k}{k} \leq M_{2} k^{m}$, for all $k=0,1,2 \cdots$ Applying that we obtain that

$$
\begin{aligned}
&\left(\Delta_{v, r}^{(m)}(E)\right)^{p \alpha}=\{a\left.=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} v_{k}^{-1}\right|^{p} \cdot k^{-p r} \cdot\binom{m+k}{k}^{p}<\infty\right\}= \\
&=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} v_{k}^{-1}\right|^{p} \cdot k^{-p r} \cdot k^{p m}<\infty\right\}= \\
&=\left\{a=\left.\left(a_{k}\right)\left|\sum_{k}\right| a_{k} v_{k}^{-1}\right|^{p} \cdot k^{p(m-r)}<\infty\right\}=U_{1}
\end{aligned}
$$

We have covered results from [3, Theorem 2.5].
Acknowledgement. Research of the authors supported by the research projects \#174007 and \#174025, respectively, of the Serbian Ministry of Science, Technology and Environmental Development.

References

1. P. Chandra and B.C. Tripathy, On generalized Köthe-Toeplitz duals of some sequence spaces, Indian J. Pure Appl. Math. 38 (2002), no. 8, 1301-1306.
2. M. Et, On some topological properties of generalized difference sequence spaces, Int. J. Math. Math. Sci. 24 (2000), no. 11, 785-791.
3. M. Et and M. Isık, On p α-dual spaces of generalized difference sequence spaces, Appl. Math. Lett. 25 (2012), no. 10, 1486-1489.
4. E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zbornik radova 9 (2000), no. 17, 143-234, Matematički institut SANU, Belgrade
5. A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam, 1984.
${ }^{1}$ Technical Faculty in Bor, University of Belgrade, VJ 12, 19210 Bor, Serbia. E-mail address: zucko@open.telekom.rs
${ }^{2}$ Department of Mathematics, Faculty of Science, Fatih University, Büyükçekmece 34500, Istanbul, Turkey.

E-mail address: Eberhard.Malkowsky@math.uni-giessen.de; ema@Bankerinter.net

