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Abstract. For a compact K, a necessary condition for C(K) to have the
Controlled Separable Complementation Property is that K be monolithic. In
this paper, we prove that when K contains no copy of [0, ωω] and the set of
points which admit a countable neighborhood base is a cofinite subset of K,
then monolithicity of K is sufficient for C(K) to enjoy the Controlled Separable
Complementation Property. We also show that, for this type of compacta K,
the space C(K) is separably extensible.

1. Introduction and preliminaries

We began to study the Controlled Separable Complementation Property (which
in what follows we shall refer to as CSCP , to shorten up) when, back in 2002,
R. M. Aron posed us the problem of studying conditions on a real Banach space
under which one could have that every continuous homogeneous polynomial would
have a zero-set containing an infinite-dimensional linear subspace. In particular,
it was conjectured in [2] that if a real Banach space X is not injected into a
Hilbert space, i.e., no one-to-one bounded linear map can be defined from X into
a Hilbert space, then the zero-set of each continuous quadratic polynomial must
contain a non-separable linear subspace. In [4], this conjecture was shown to be
true for spaces having the CSCP , and this is how we started getting involved
with this property.
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A Banach space X (always real) is said to possess the CSCP if, for every two
separable subspaces E and F of X and X∗, respectively, there is a bounded
projection P on X such that

(i) P (X) is separable,
(ii) E ⊆ P (X),
(iii) F ⊆ P ∗(X∗).

The notion of CSCP was introduced in [14] to study the structure of certain
quotients of Banach spaces, although it was refered to as the Controlled Separable
Projection Property. There is a wide class of Banach spaces which have this
property, in fact, after the characterization of the Weakly Lindelöf Determined
spaces (WLD) given in [9], it can be deduced that the class of spaces having
the CSCP contains the WLD. Since we showed in [6] that the space C[0, ω1]
has the CSCP , it follows that the inclusion between those two classes is strict.
Although we still do not know whether the CSCP is inherited by closed linear
subspaces in general, it was also proved in the above reference that countable
intersections of closed hyperplanes do inherit the property. Thus, the closed
hyperplane of C[0, ω1] formed by the elements which vanish in ω1 has the CSCP .
It may be interesting to notice that this hyperplane does not admit a Projectional
Resolution of the Identity (PRI), [5]. Let us also mention that there are other
examples of C(K) spaces (with K linearly ordered) having the CSCP and being
non-isomorphic to any space with a PRI, [11, Th. 18.4].

If X has the CSCP , it is not hard to see, [7], that the dual unit ball BX∗

is monolithic respect to the weak-star topology. Let us just say that the no-
tion of a monolithic space is due to Arkhangel’skii, [1]. A compact K is said to
be monolithic whenever each separable subset is second countable, by Uryshon’s
metrization theorem, this equals to say that each separable subset must be metriz-
able. Probably, the best known class of this type of spaces is the one formed by
Corson compacta. As a consequence of what we stated before, since monolithicity
is hereditary, if C(K) has the CSCP then K has to be monolithic.

Let us first admit our incapability in finding a monolithic compact K whose
C(K) space does not have the CSCP , i.e., we do not know wether monolithicity of
K alone implies the CSCP for C(K). Therefore, the main purpose of this paper
is to study under what extra conditions monolithicity of K will be sufficient to
guarantee that C(K) has the CSCP . It may be interesting to recall that in [12]
it has been shown that for K a compact line the above stated problem has a
positive answer, i.e., C(K) has the CSCP if and only if K is monolithic. Also, in
[7] and [8], it is proved that the same can be said when K is a Mrówka compact.
As a matter of fact, what we obtain here is an extension of this last result.

Given an infinite set S, two subsets A, B of S are said to be almost disjoint
whenever A ∩ B is a finite set. Let A be a family formed by almost disjoint
countably infinite subsets of S. In S ∪A we define the following topology: The
points of S are isolated and, for each A ∈ A, a basic neighborhood of A has the
form {A}∪B, where B is a cofinite subset of A. It is plain that, with this topology,
S ∪A is a scattered locally compact space. Its one-point compactification KA :=
S ∪A ∪ {∞} is known as a Mrówka compact.
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For a compact K, we say that a point s ∈ K is a locally first countable point
provided there is an open neighborhood V of s such that V is first countable.
Denoting by FK the set of points of K which are not locally first countable, it is
clear that FK is a closed subset of K. We say that a compact K is locally almost
first countable whenever the set FK is finite. Notice that all Mrówka compacta
are locally almost first countable.

A Banach space X is said to be separably extensible whenever, for each sepa-
rable closed subspace Y of X and each bounded linear map S : Y → X, there is
a bounded linear map T : X → X such that T|Y = S. Whenever bounded linear
maps on arbitrary closed subspaces of a Banach space admit a bounded extension
to the whole space, then the space is said to be extensible, see [13]. In [3], an
implicit demand for scattered compacta K whose C(K) space may be extensible
but not isomorphic to any c0(Γ) is made. Although we have not been able to
give a definite answer to this demand, we shall show that there is a whole class of
such compacta whose space of continuous functions is separably extensible. This
class contains all monolithic non-Eberlein Mrówka compacta, in particular the
Mrówka compacta induced by the so called non-trivial ladder systems, see [7]. In
the last section, we give an example of one of such Mrówka compacta KL such
that C(KL) is not isomorphic to any c0(Γ), C(KL) is separably extensible, but it
is not extensible since it contains complemented and uncomplemented copies of
c0(ω1).

2. Monolithicity versus the CSCP

We begin this section by stating its main result

Theorem 2.1. Let K be a locally almost first countable compact such that it
contains no copy of [0, ωω]. Then, C(K) has the Controlled Separable Comple-
mentation Property if and only if K is monolithic.

In order to give the proof of the above theorem, since necessity is always true,
we only need showing its sufficiency. Probably, the most determining fact which
led us to try to achieve the former theorem was learning that a monolithic compact
with no copies of [0, ωω] has to be scattered and of finite height. This result, with
a quite clear and elegant proof, can be found in [3]. Thus, we just have to show
that, for K a locally almost first countable monolithic scattered compact of finite
height, C(K) has the CSCP .

If S is a topological space and α is an ordinal number, the α-th derivative of
S is defined inductively as follows: S(0) = S, S(α+1) = S(α) ′, i.e. the set of
accumulation points of S(α), finally S(α) = ∩β<αS(β), when α is a limit ordinal.
The smallest ordinal α for which S(α+1) = S(α) is called the Cantor–Bendixson
height of S. For a scattered compact K, we know that there is a certain ordinal
α such that K(α) = ∅, thus the Cantor–Bendixson height of K coincides with the
smallest ordinal α for which K(α) = ∅; consequently, if K has a Cantor–Bendixson
height, which is non-limit, say α + 1, then the set K(α) is a non-empty finite set.
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In what follows, when K is a scattered compact of height n + 1, we use the
following notation. By defining

M1 := K \K(1), M2 := K(1) \K(2), · · · , Mn := K(n−1) \K(n),

we have that

K = M1 ∪M2 ∪ · · · ∪Mn ∪K(n),

where all these sets are pairwise disjoint. Clearly, it is important to recall that
for a scattered compact being monolithic equals saying that the closure of each
countable subset is also countable. If A is a subset of K, we write CA(K) to
represent the closed subspace of C(K) formed by all elements which vanish in A.
Although the following auxiliary lemma may be well-known, we prove it here for
the sake of completeness.

Lemma 2.2. Let K be a locally almost first countable scattered compact of height
n+1. Then each point s ∈ K \FK \K(n) admits a countable clopen neighborhood
V (s), contained in K \FK \K(n), such that, if s ∈ Mi for some i ∈ {1, 2, · · · , n},
then

V (s) ∩ (Mi ∪Mi+1 ∪ · · · ∪Mn ∪K(n)) = {s}.

Proof. We proceed inductively over the height of K. For height of K being 2,
since K = M1∪K(1) and M1 consists of isolated points, for each s ∈ M1, {s} is a
clopen neighborhood of s satisfying all our requirements. Assuming the statement
is true for any scattered compact of height less or equal to n satisfying all our
conditions, we show that it also holds for this type of compact K when its height
is n + 1.

Let s ∈ K \FK \K(n). Since, for s ∈ M1, again the clopen set {s} fulfills all our
conditions, we assume that s ∈ Mi, for some i ∈ {2, 3, · · · , n}. Since K\FK \K(n)

is open and first countable, there is a decreasing sequence {Vj : j ≥ 1} of clopen
neighborhoods of s (notice that a scattered compact is always zero-dimensional)
such that it is a neighborhood base for s, Vj ⊆ K \ FK \K(n), j ≥ 1, and also,
from the definition of the sets M1, M2, · · · , Mn,

Vj ∩ (Mi ∪ Mi+1 ∪ · · · ∪ Mn) = {s}, j ≥ 1.

Noticing that

V1 = (V1 ∩M1) ∪ (V1 ∩M2) ∪ · · · ∪ (V1 ∩Mi−1) ∪ {s}

is a scattered compact of height i ≤ n such that FV1 = ∅, we have that V1 is a
first countable scattered compact of finite height. It is well-known that this type
of compacta are countable. Taking V (s) := V1, we are done. �

Lemma 2.3. For K as before, each closed set of K contained in K \ FK is
countable.

Proof. Let S be a closed set of K which is is contained in K \ FK . Since
S = (S \K(n)) ∪ (S ∩K(n)), making use of Lemma 2.2 and its notation plus the
fact that, for each point s ∈ S ∩K(n), there is a clopen neighborhood W (s) of s
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which is first countable, hence countable after being scattered with finite height,
we have that the collection

{K \ S } ∪ {V (s) : s ∈ S \K(n)} ∪ {W (s) : s ∈ S ∩K(n)}

is an open cover of K and so there are s1, s2, · · · , sp in S \K(n) and sp+1, · · · , sq

in S ∩K(n) such that S ⊆ V (s1) ∪ V (s2) ∪ · · · ∪ V (sp) ∪W (sp+1) ∪ · · · ∪W (sq).
This shows that S must be countable. �

Lemma 2.4. Let K be as before. If K is monolithic, then, given a countable
subset N of K \FK \K(n), there is a countable open set G ⊆ K \FK \K(n) such
that the closure G ⊆ G ∪ FK ∪K(n) and G contains N .

Proof. Again we proceed by induction over the height n + 1. Since for height 2
the statement holds trivially, we assume that it is true for scattered compacta of
height n satisfying our conditions and we prove that it is also true for a scattered
compact K of height n + 1 with the above properties.

Let N be a countable subset of (M1∪M2∪· · ·∪Mn)\FK . Since K is monolithic,
the closure N is countable and so is N ∩ (M2 ∪M3 ∪ · · · ∪Mn) \ FK . Now, this
is a countable subset of the scattered compact of height n K0 := (M2 ∪ M3 ∪
· · · ∪ Mn) ∪ K(n), which satisfies all our requirements. Hence, since FK0 ⊆ FK

and K
(n)
0 = K(n), there is a countable subset H of (M2 ∪M3 ∪ · · · ∪Mn) \ FK0 ,

which is open in K0, such that

N ∩(M2∪M3∪· · ·∪Mn)\FK ⊆ N ∩(M2∪M3∪· · ·∪Mn)\FK0 ⊆ H ⊆ H = H
K0

⊆ H ∪ FK0 ∪ K(n) ⊆ H ∪ FK ∪ K(n).

For i = 2, 3, · · · , n, we write H ∩Mi as the sequence (possibly finite)

H ∩ Mi = { sij : j ≥ 1},
and so

H =
n⋃

i=2

{sij : j ≥ 1}.

Since K \FK \K(n) is first countable, we know from Lemma 2.2 that each element
s ∈ K \FK \K(n) admits a clopen neighborhood V (s), contained in K \FK \K(n),
which is countable and such that, if s ∈ Mi for some i ∈ {1, 2, · · · , n}, then

V (s) ∩ (Mi ∪Mi+1 ∪ · · · ∪Mn ∪K(n)) = {s}.
Also, since H is open in K0, there is an open set W in K such that W ∩
K0 = H. Thus, for each j ≥ 1, there are countable clopen neighborhoods
W (s2j), W (s3j), · · · , W (snj) of s2j, s3j, · · · , snj, respectively, each one of them
contained in W ∩ V (s2j), W ∩ V (s3j), · · · , W ∩ V (snj), respectively. Let

V :=
⋃
j≥1

(W (s2j) ∪W (s3j) ∪ · · · ∪W (snj)).

Then, V is a countable set and we may write

V \ FK \K(n) = (V ∩M1) ∪ (V ∩M2 \ FK) ∪ · · · . ∪ (V ∩Mn \ FK),
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with, for i = 2, 3, · · · , n,

V ∩Mi \ FK = { sij : j ≥ 1} ∪ { tij : j ≥ 1},
where, for i = 2, 3, · · · , n, the set {tij : j ≥ 1} is a (possibly finite) subset of
Mi\FK which is disjoint with {sij : j ≥ 1}. Notice that, since H \FK \K(n) ⊆ H,
for each i = 2, 3, · · · , n and each j ≥ 1, tij /∈ H. Consequently, there is a clopen
neighborhood U(tij) of tij such that

U(tij) ∩ H = ∅.
For i = 2, 3, · · · , n, we define inductively the following sets{

Ci1 := W (si1) \ FK ,
Cij := W (sij) \ (

⋃n
h=2(U(th1) ∪ U(th2) ∪ · · · ∪ U(th j−1))) \ FK , j ≥ 2.

For i = 2, 3, · · · , n, setting Ci := ∪j≥1Cij, we have that each Ci is a subset of V
and so it is countable. Let

G := N ∪ C2 ∪ C3 ∪ · · · ∪ Cn \ FK \K(n).

Then, after the monolithicity, G is countable, N ⊆ G, G ⊆ G ∪ FK ∪K(n). To
finish the job, we must show that G is open in K:

Observing that G = (G ∩M1) ∪ (G ∩M2) ∪ · · · ∪ (G ∩Mn) and that G ∩M1

is clearly open, it all reduces to see that G is a neighborhood of each point in
G ∩Mi, 2 ≤ i ≤ n. But, for i = 2, 3, · · · , n,

G ∩Mi = (N ∪ C2 ∪ C3 ∪ · · · ∪ Cn) ∩ Mi \ FK ⊆ (H ∩Mi) ∪ (V ∩Mi \ FK)

= {sij : j ≥ 1} ∪ {tij : j ≥ 1},
and, for each j ≥ 1, the set

U := U(tij) \ (
n⋃

h=2

(W (sh1) ∪W (sh2) ∪ · · · ∪W (shj)) \N

is a neighborhood of tij (notice that tij /∈ N and tij /∈ W (shk), 2 ≤ h ≤ n,
1 ≤ k ≤ j, otherwise tij ∈ W ∩ Mi ⊆ H). Consequently, since for 2 ≤ h ≤ n,
k > j, U ∩ Chk = ∅,

U ∩ (N ∪ C2 ∪ C3 ∪ · · · ∪ Cn) = U ∩ (
n⋃

h=2

(Ch1 ∪ Ch2 ∪ · · · ∪ Chj)

⊆ U ∩ (
n⋃

h=2

W (sh1) ∪W (sh2) ∪ · · · ∪W (shj)) = ∅,

and this shows that tsj /∈ G, i.e.,

G ∩ Mi = {sij : j ≥ 1 }.
Now, for each j ≥ 1, Cij is a neighborhood of sij contained in G, therefore G is
a neighborhood of each point in G ∩Mi as we wanted. �

Proposition 2.5. If K is a monolithic scattered compact of finite height, then
CFK

(K) has the CSCP .
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Proof. Assuming the height of K is n + 1, using the terminology previously in-
troduced, consider the finite-codimensional closed subspace of CFK

(K) given by

CFK∪K(n)(K) := {x ∈ C(K) : x|
FK∪K(n)

= 0 }.

It all reduces to show that CFK∪K(n)(K) has the CSCP . Thus, let {xj : j ≥
1} and {µj : j ≥ 1} be countable subsets of CFK∪K(n)(K) and CFK∪K(n)(K)∗,
respectively. For each j, h ≥ 1, the set Ajh := {s ∈ K : | xj(s) | ≥ 1

h
}

is a closed subset of K contained in K \ FK \ K(n), which after Lemma 2.3 is
countable. Also, after the monolithicity, since, for each j ≥ 1, µj is a purely
atomic Radon measure in K, its support supp µj is a countable subset of K, let
Bj := supp µj \ FK \ K(n). Therefore, setting N := (∪j,h≥1Ajh) ∪ (∪j≥1Bj), we
obtain a countable subset N ⊆ K \ FK \K(n) such that, for each j ≥ 1,

xj|K\N
= 0, supp µj ⊆ N ∪ FK ∪K(n).

From Lemma 2.4, there is a countable open subset G of K \ FK \K(n) such that

N ⊆ G ⊆ G ⊆ G ∪ FK ∪ K(n).

Defining

P x := x · 1G, x ∈ CFK∪K(n)(K),

we obtain a well-defined bounded projection P on CK∪K(n)(K) such that G ⊆
(Ker P )⊥. Since G is metrizable we have that P (CK∪K(n)(K)) is separable. It is
straightforward to check that {xj : j ≥ 1} is contained in P (CK∪K(n)(K)) and
also that {µj : j ≥ 1 } is contained in (Ker P )⊥ = P ∗(CK∪K(n)(K)∗). �

Corollary 2.6. If K is a monolithic scattered compact of finite height such that
it is locally almost first countable, then C(K) has the CSCP .

Proof of Theorem 2.1. As we said before, sufficiency is the only part needing
be proved. If K is a monolithic compact with no copies of [0, ωω], then, after [3,
Proposition 3], we have that K is scattered with finite height. If K is also locally
almost first countable, the former corollary now applies. �

As mentioned in the introduction, we do not know if in general monolithicity
of a compact K alone is enough to guarantee that C(K) has the CSCP , even the
same problem for scattered compacta is still open. Therefore, after our former re-
sult, it may be interesting to notice that there are monolithic scattered compacta
which are not locally almost first countable. For this, just consider K as the
set of all characteristic functions of at most 2-element subsets of an uncountable
set, endowed with the product topology. Obviously, K is Eberlein and therefore
monolithic; on the other hand, it has uncountably many points of uncountable
character.
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3. A class of separably extensible spaces

This last section is devoted to show that the C(K) spaces corresponding
to the class of compacta K appearing in the previous section have the property
of being separably extensible. Hence, the main result of this part reads as follows

Theorem 3.1. Let K be a locally almost first countable compact such that it
contains no copy of [0, ωω]. If K is monolithic, then C(K) is separably extensible.

In order to prove the above stated theorem, we start by showing a general
result.

Proposition 3.2. Let X be a Banach space such that every separable subspace
is contained in a complemented copy of c0. Then X is separably extensible.

Proof. Let S : Y → X be a bounded linear map defined in the separable closed
subspace Y of X. Since Y ∪ S(Y ) is separable, by hypothesis, there is a closed
subspace Z of X, which is complemented in X and isomorphic to c0, such that
Y ∪ S(Y ) ⊆ Z. Let P be the bounded projection on X such that P (X) = Z
and let T1 : Z → c0 be a topological isomorphism. The map S0 : T1(Y ) → c0

such that, for each y ∈ Y , S0(T1y) := T1(Sy), is well-defined linear and bounded.
Since it is well known that c0 is an extensible space, there is a bounded linear
map S1 : c0 → c0 such that S1|T1(Y )

= S0. Finally, defining T := T−1
1 S1T1P , we

obtain a well-defined map which is linear bounded and we show that it extends
S. For each y ∈ Y ,

Ty = (T−1
1 S1T1P )y = T−1

1 (S0T1y) = T−1
1 (T1Sy) = Sy . �

Proposition 3.3. Let K be a monolithic locally almost first countable compact
space with no copies of [0, ωω]. Then every separable subspace of C(K) is con-
tained in a complemented isomorphic copy of c0.

Proof. The compact K is a scattered one with finite height, say of height n+1.
Hence, using the terminology settled formerly, since FK ∪K(n) is a finite set, it
will be sufficient to see that each separable subspace Y , which we already assume
has infinite dimension, of the finite-codimensional space X := CFK∪K(n)(K) is
contained in a complemented copy of c0. After the proof of Proposition 2.5, we
know that there is a countably infinite open set G, contained in K \ FK \K(n),
whose closure in K is contained in G∪FK ∪K(n), which provides with a bounded
projection

P : X −→ X
x −→ x · 1G ,

such that Y ⊆ P (X). But P (X) is isomorphic to the space CFK∪K(n)(G), which is

a finite-codimensional subspace of C(G). Now, since G is countable and of finite
height, it is clear that C(G) is isomorphic to c0, and so is P (X). �

Proof of Theorem 3.1. If K is a monolithic locally almost first countable
compact with no copies of [0, ωω], then, from Proposition 3.3, we have that every
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separable subspace of C(K) is contained in a complemented isomorphic copy of
c0. Proposition 3.2 implies that C(K) is separably extensible. �

In the following we give an example of a non-trivial ω1-ladder system compact
KL, which is therefore monolithic non-Eberlein, whose space C(KL) is separably
extensible although it is not extensible. Let us recall that an ω1-ladder system is
an almost disjoint family of countable subsets of ω1 of the form

L = { Lδ : δ ∈ S },

where S is a subset of ω
(1)
1 , the set of order-accumulation points of ω1, and, for

each δ ∈ S,

Lδ = { αδ,j : j ∈ ω },
is a strictly increasing sequence in ω1 such that supj αδ,j = δ. When the set S
is stationary, i.e., it meets every closed unbounded (club) subset of ω1, see [10],
then its associated ladder system L is said to be non-trivial. In [7], it is shown
that the Mrówka compact KL is always monolithic, while it is Eberlein if and
only if L is trivial.

Example 3.4. By ω
(2)
1 we represent the set of order-accumulation points of ω

(1)
1 .

For each ordinal δ ∈ ω
(1)
1 \ω(2), let Lδ be a strictly increasing sequence of elements

of ω1 \ ω
(1)
1 whose supremum is δ. If δ ∈ ω(2), let Lδ be a strictly increasing

sequence of elements of ω
(1)
1 whose supremum is δ. The collection L := {Lδ :

δ ∈ ω
(1)
1 } is an ω1-ladder system, hence its associated Mrówka compact KL is

monolithic and non-Eberlein, since L is non-trivial.

Consider now the Mrówka compact given by, if L0 := {Lδ : δ ∈ ω
(1)
1 \ ω

(2)
1 },

K0 := (∪L0) ∪ {lL : L ∈ L0} ∪ {∞}.

Then, since the set ω
(1)
1 \ ω

(2)
1 is non-stationary, we have that K0 is Eberlein and

so C(K0), as shown in [7], is isomorphic to c0(ω1). We show that K0 is a retract
of KL, hence C(KL) will contain a complemented isomorphic copy of c0(ω1). To
do this, define the map ϕ : KL → KL as, if t ∈ KL,

ϕ(t) :=

{
t, t ∈ K0,
∞, t ∈ KL \K0.

In order to see that ϕ is continuous, since it is clearly so in the points of S, which
are isolated, we only need proving it for the points of {lL : L ∈ L} ∪ {∞}. If
t0 = lL, L ∈ L, we consider two possibilities

One: t0 = lL, with L = Lδ, δ ∈ ω
(1)
1 \ ω

(2)
1 . Then, L ∈ L0 and t0 = lL ∈ K0. So,

ϕ(t0) = t0. Thus, if V is a neighborhood of t0 in KL, it contains a set of the form
B ∪ {lL}, where B is a cofinite subset of L ⊆ ∪L0 ⊆ K0, and we have

ϕ(B ∪ {lL}) = B ∪ {lL} ⊆ V .

Two: t0 = lL, with L = Lδ, δ ∈ ω
(2)
1 . Now, since t0 /∈ K0, ϕ(t0) = ∞. But

Lδ ⊆ ω
(1)
1 and ∪L0 ⊆ ω1\ω

(1)
1 imply that Lδ∩K0 = ∅, and so ϕ(L∪{lL}) = {∞}.
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The continuity of ϕ at t0 = ∞ is clear, since, for any neighborhood V of
ϕ(t0) = ∞ in KL, we have

ϕ(V ) = ϕ((V ∩K0) ∪ (V \K0)) = (V ∩K0) ∪ {∞} ⊆ V.

To show that C(KL) is not extensible, it will be sufficient to see that there
exists a copy of c0(ω1) which is not complemented. For this, simply consider
the closed subspace Y := span{1α : α ∈ ∪L}. It can be easily seen that
Y is isomorphic to c0(ω1) and, if Y were complemented in C(KL), then, since
Y = C{lL:L∈L}∪{∞}(KL), we would have

C(KL) ' Y × C({lL : L ∈ L} ∪ {∞}) ' c0(ω1)× c0(ω1).

A contradiction, since KL is not an Eberlein compact.

Notice from what we have seen above that C(KL), where L is a non-trivial
ω1-ladder system, always contains an uncomplemented copy of c0(ω1) given by
the subspace span{1α : α ∈ ∪L} = C{lL:L∈L}∪{∞}(KL).

Question 1. Is it so that, for every Mrówka compact KL, where L is a non-trivial
ω1-ladder system, the space C(KL) contains a complemented copy of c0(ω1) ?

We finish giving a partial answer to the formerly posed question by imposing
a condition on an ω1-ladder system L which, generalizing the situation of Ex-
ample 3.4, yields a space C(KL) containing a complemented copy of c0(ω1), and
consequently not being extensible. We begin by fixing some particular notation.

If A is set of countable ordinals, A(1) will denote the set of order-accumulation

points of A. By a counbounded club in ω
(1)
1 we mean an order-closed unbounded

subset F of ω
(1)
1 such that ω

(1)
1 \ F is not bounded. If A is a subset of ω

(1)
1 , then

we put LA to represent the subfamily of L given by

LA := { Lδ : δ ∈ A }.

Clearly, ∪LA will stand for ∪δ∈ALδ. By a cofinite refinement of L = {Lδ : δ ∈ S}
we mean a collection R = {Rδ : δ ∈ S} such that, for each δ ∈ S, Rδ is a cofinite
subset of Lδ; it is easy to check that the Mrówka compact KR is homeomorphic
to KL.

Lemma 3.5. For each counbounded club F in ω
(1)
1 , there is a cofinite refinement

R of L such that, for each δ ∈ ω
(1)
1 \ F ,

Rδ ∩ (∪RF\F (1)) = ∅.

Proof. We construct a cofinite refinement R of L such that, if R = {Rδ : δ ∈ ω(1)},
then, given δ ∈ ω

(1)
1 \ F and γ ∈ F \ F (1), we have Rδ ∩Rγ = ∅.

Recall that, for δ ∈ ω
(1)
1 \ F , there is a unique λ ∈ F ∪ {0} such that δ ∈]λ, λ̂[,

where λ̂ := min{β ∈ F : β > λ} (with the convention 0̂ := min(F )). Similarly,

for δ ∈ F \ F (1), there is a unique λ ∈ F such that λ̂ = δ. Thus, if δ ∈ ω
(1)
1 , we
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define

Rδ :=

 Lδ∩]λ, δ[\Lλ̂, if δ /∈ F (δ ∈]λ, λ̂[),

Lδ∩]λ, δ[, if δ ∈ F \ F (1) (δ = λ̂),
Lδ, if δ ∈ F (1).

It is obvious that R := {Rδ : δ ∈ ω
(1)
1 } is a cofinite refinement of L. Now, if

δ ∈ ω
(1)
1 \ F and γ ∈ F \ F (1), let λ, µ ∈ F be such that δ ∈]λ, λ̂[ and γ = µ̂.

Since δ 6= γ, we consider two possibilities
One. γ < δ. Then, µ < γ ≤ λ < δ and so

Rγ ∩ Rδ ⊆ ]µ, γ[ ∩ ]λ, δ[ = ∅.

Two. δ < γ. Now, λ < δ < λ̂ ≤ γ = µ̂ and we must consider two subcases
1) λ̂ = γ. Here

Rγ ∩ Rδ ⊆ Rγ \ Lλ̂ = Rγ \ Lγ = ∅.

2) λ̂ < γ. In this case µ < δ < λ̂ ≤ µ < γ = µ̂, from where we have

Rδ ∩ Rγ ⊆ ]λ, δ[ ∩ ]µ, γ[ = ∅.
�

For each counbounded club F in ω
(1)
1 and each β ∈ ω1, since F (β) is also a coun-

bounded club in ω
(1)
1 , after the former lemma, there exists a cofinite refinement

R(F, β) = {RF,β
δ : δ ∈ ω

(1)
1 } of L such that, for each δ ∈ ω

(1)
1 \ F (β),

RF,β
δ ∩ (∪R(F, β)F (β)\F (β+1)) = ∅.

We may thus make the following definition: A counbounded club F in ω
(1)
1 is

said to be L-stable whenever there is a cofinite refinement R of L and an ordinal
β ∈ ω1 such that, for each γ ≥ β, R refines R(F, γ). By stab(L) we denote the

collection of all L-stable counbounded clubs in ω
(1)
1 .

Question 2. Is it true that, for each L, stab(L) 6= ∅ ?

Proposition 3.6. If stab(L) 6= ∅, then C(KL) contains a complemented copy of
c0(ω1), thus being non-extensible:

Proof. Assuming F ∈ stab(L), let R and β ∈ ω1 be such that, for each γ ≥ β,

R refines R(F, γ). If R = {Rδ : δ ∈ ω
(1)
1 }, then, for each δ ∈ ω

(1)
1 \ F (β), since

δ ∈ ω
(1)
1 \ F (γ), γ ≥ β, we have

Rδ∩ (∪RF (β)) = Rδ ∩ [
⋃
γ≥β

(∪RF (γ)\F (γ+1))] ⊆
⋃
γ≥β

[RF,γ
δ ∩(∪R(F, γ)F (γ)\F (γ+1))] = ∅.

Putting H := F (β), we have obtained that

(∪R
ω

(1)
1 \H) ∩ (∪RH) = ∅.

Consequently,

{ lδ : δ ∈ H } ∩ (∪R
ω

(1)
1 \H) = ∅.
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This means that the set

G := (∪R
ω

(1)
1 \H) ∪ { lδ : δ ∈ ω

(1)
1 \H }

is almost-clopen in KL, i.e., open and G = G ∪ {∞}. Thus, if X := C∞(KL),
defining P : X → X such that Px := x · 1G, we obtain a bounded projection on
X which satisfies that P (X) is isomorphic to C∞(G). But

G = (∪R
ω

(1)
1 \H) ∪ { lδ : δ ∈ ω

(1)
1 \H } ∪ {∞}

is a trivial ω1-ladder system compact, therefore C∞(G) is isomorphic to c0(ω1).
�

Notice that an affirmative answer to Question 2 would then yield an affirmative
answer for Question 1.
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