
Banach J. Math. Anal. 8 (2014), no. 2, 1–15

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)
www.emis.de/journals/BJMA/

COMPACT OPERATORS IN THE COMMUTANT OF
ESSENTIALLY NORMAL OPERATORS

H. S. MUSTAFAYEV1∗ AND F. B. HÜSEYNOV2

Communicated by D. Bakić

Abstract. Let T be a bounded, linear operator on a complex, separable, infi-
nite dimensional Hilbert space H. We assume that T is an essentially isometric
(resp. normal) operator, that is, IH −T ∗T (resp. TT ∗−T ∗T ) is compact. For
the compactness of S from the commutant of T, some necessary and sufficient
conditions are found on S. Some related problems are also discussed.

1. Introduction and preliminaries

LetH be a complex, separable, infinite dimensional Hilbert space and let B (H)
be the algebra of all bounded, linear operators on H. As usual, we denote the
spectrum (resp. left, right) of T ∈ B (H) by σ (T ) (resp. σl (T ) , σr (T )). The unit
circle in the complex plane will be denoted by Γ, whereas D indicates the open
unit disk. The disc-algebra and the algebra of all bounded analytic functions on
D are denoted by A (D) and H∞ := H∞ (D), respectively.

If T ∈ B (H) , we let AT denote the closure in the uniform operator topology
of all polynomials in T . Notice that AT is a commutative unital Banach algebra.
The Gelfand space of AT can be identified with σAT

(T ), the spectrum of T with
respect to the algebra AT . Since σ (T ) is a (closed) subset of σAT

(T ) , for every
λ ∈ σ (T ) there exists a multiplicative functional φλ on AT such that φλ (T ) = λ.

By Ŝ, we will denote the Gelfand transform of S ∈ AT . Here and in the sequel,
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instead of Ŝ (φλ) (= φλ (S)) , where λ ∈ σ (T ) , we will use the notation Ŝ (λ) .

Notice that λ 7→ Ŝ (λ) is a continuous function on σ (T ) .
Recall that σ (T ) ∩ Γ is called the unitary spectrum of T ∈ B (H) . It follows

from the Shilov’s Theorem [7, Theorem 2.3.1] that if T is a contraction, then

σAT
(T ) ∩ Γ = σ (T ) ∩ Γ.

A contraction T on H is said to be completely nonunitary (c.n.u.) if it has no
proper reducing subspace on which it acts as a unitary operator. If T is a c.n.u.
contraction, then f (T ) (f ∈ H∞) can be defined by the Nagy–Foias functional
calculus [13, Chapter III]. We put H∞ (T ) := {f (T ) : f ∈ H∞} . A c.n.u. con-
traction T is called a C0−contraction if there exists a nonzero function f ∈ H∞

such that f (T ) = 0. B. Sz.-Nagy [12] proved that if T is a C0−contraction, then
the commutant {T}′ := {S ∈ B (H) : TS = ST} of T contains a nonzero com-
pact operator, but there exists a C0−contraction T such that zero is the unique
compact operator contained in H∞ (T ) . An operator T ∈ B (H) is said to be
essentially unitary if both IH − T ∗T and IH − TT ∗ are compact. Nordgren [16]
proved that if T is an essentially unitary C0−contraction, then H∞ (T ) contains
a nonzero compact operator.

If T is a contraction on H, then it follows from the von Neumann inequality
that there exists a contractive algebra homomorphism h : A (D) → AT (with
dense range) such that h (1) = IH and h (z) = T. We will use the notation
f (T ) := h (f) , f ∈ A (D) . Thus we have ‖f (T )‖ ≤ ‖f‖∞ for all f ∈ A (D) .

Recall that T ∈ B (H) is called essentially isometric operator if IH − T ∗T
is compact. Kellay and Zarrabi [6] proved that if the essentially isometric con-
traction T satisfies the condition D�σ (T ) 6= ∅ (it follows that T is a compact
perturbation of a unitary operator and therefore it is essentially unitary) and if
f ∈ A (D) vanishes on σ (T ) ∩ Γ, then f (T ) is compact. Notice that under the
above conditions the Lebesgue measure of σ (T ) ∩ Γ is necessarily zero. In [6],
it is also shown that if T is an essentially isometric C0−contraction, then f (T )
(f ∈ H∞) is compact if and only if limn→∞ ‖T nf (T )‖ = 0. The proofs of these
results essentially use the Beurling–Rudin theorem about the structure of closed
ideals of A (D) and the corona theorem.

By K (H) we will denote the ideal of compact operators on H. The quo-
tient algebra B (H) �K (H) is a C∗−algebra called the Calkin algebra. Let
π : B (H) → B (H) �K (H) be the canonical map. The essential spectrum σe (T )
of T ∈ B (H) is the spectrum of π (T ) in the Calkin algebra. As is well known,
σe (T ) is a nonempty compact subset of σ (T ) . Similarly, the left and right essen-
tial spectrum of T are defined by σle (T ) := σl (π (T )) and σre (T ) := σr (π (T )) .
Recall also that T ∈ B (H) is a (left, right ) Fredholm operator if π (T ) is (left,
right) invertible in the Calkin algebra.

The main results of this note can be summarized as follows. If T is a c.n.u.
contraction and S ∈ AT is compact, then Ŝ vanishes on σ (T ) ∩ Γ. If T is an
essentially isometric operator and if the Gelfand transform of S ∈ AT vanishes
on σle (T ) (or on σre (T ) ∩ Γ), then S is compact. In addition if T is a c.n.u.
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contraction, then S ∈ {T}′ is compact if and only if

lim
n→∞

‖T nS‖ = 0.

Furthermore, the compactness of S ∈ {T}′ characterized via the ergodic condi-
tions. If

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

ξ
k
T kS

∥∥∥∥∥ = 0

holds for every ξ ∈ σle (T ) (or ξ ∈ σre (T ) ∩ Γ), then S is compact.
Similar results for essentially normal operators are also obtained. Let T be

an essentially normal operator. If the Gelfand transform of S ∈ AT vanishes on
σe (T ) , then S is compact. In addition if T is a Fredholm operator and if

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

λ−kT kS

∥∥∥∥∥ = 0

holds for every λ ∈ σe (T ), then S ∈ {T}′ is compact.

2. Essentially isometric operators

Let T be an essentially isometric operator, that is, IH − T ∗T is compact. In
this section, for the compactness of the operator S from the commutant of T, we
give some necessary and sufficient conditions on S.

We start with the following result.

Proposition 2.1. Let T be a c.n.u. contraction on H and let S ∈ AT . If S is
compact, then its Gelfand transform vanishes on σ (T ) ∩ Γ.

Proof. We know [9, Lemma 3.3] that if T is a c.n.u. contraction, then T n → 0 in
the weak operator topology. If S ∈ AT is compact, then for arbitrary x ∈ H we
can write

lim
n→∞

‖T nSx‖ = lim
n→∞

‖ST nx‖ = 0.

Since the set {Sx : ‖x‖ ≤ 1} is relatively compact, for a given ε > 0 it has a finite
ε-mesh, say {Sx1, · · · , Sxk}, where ‖xi‖ ≤ 1 (i = 1, · · · , k). Consequently, we
have

‖T nS‖ ≤ max
i
{‖T nSxi‖}+ ε (n ∈ N) .

It follows that limn→∞ ‖T nS‖ = 0. On the other hand, for every ξ ∈ σ (T ) ∩ Γ
there exists a multiplicative functional φξ on AT such that φξ (T ) = ξ. Since φξ

has norm one, we have∣∣∣Ŝ (ξ)
∣∣∣ = |φξ (T nS)| ≤ ‖T nS‖ → 0 (n→∞) .

�

Next, we have the following

Theorem 2.2. Let T be an essentially isometric operator. If the Gelfand trans-
form of S ∈ AT vanishes on σle (T ) (or on σre (T ) ∩ Γ), then S is compact.
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For the proof we need some preliminary results.
Let A be a C∗−algebra with the unit element e and let SA be the set of all

pure states on A. We know [14, Corollary V.23.3] that if a ∈ A, then σl (a)
consists of all λ ∈ C for which there exists f ∈ SA such that λ = f (a) and
f (a∗a) = f (a∗) f (a) . Assume that a∗a = e. If λ ∈ σl (a) , then we have

|λ|2 = f (a)f (a) = f (a∗) f (a) = f (a∗a) = f (e) = 1.

This shows that σl (a) ⊂ Γ. Similarly, we can see that if a is a normal element of
A, then σl (a) = σr (a) = σ (a) . In particular, if a is a unitary element of A, then
σl (a) = σr (a) = σ (a) ⊂ Γ.

Let T be an essentially isometric operator on H. Since π (T )∗ π (T ) = π (IH) ,
it follows from what is showed above that σle (T ) = σl (π (T )) ⊂ Γ. Notice also
that if T is essentially unitary, then σle (T ) = σre (T ) = σe (T ) ⊂ Γ.

The following result is probably known. Not being able to find a ready refer-
ence, we include a proof of it.

Proposition 2.3. (a) If V is a nonunitary isometry on H, then

σl (V ) = Γ; σr (V ) = σ (V ) = D.

(b) If V is an arbitrary isometry on H, then

σl (V ) = σr (V ) ∩ Γ = σ (V ) ∩ Γ.

Proof. (a) As we have seen above, σl (V ) ⊂ Γ. On the other hand, we know that if
V is nonunitary isometry, then σ (V ) = D. It follows that Γ = ∂σ (V ) ⊂ σl (V ) .

Let λ ∈ D. Since λ ∈ σ (V ) , from the relation

‖(V − λIH)x‖ ≥ (1− |λ|) ‖x‖ (x ∈ H)

we deduce that the range of V − λIH is closed and (V − λIH)H 6= H. Conse-
quently, V ∗x = λx for some x ∈ H \ {0} . On the other hand, we know that for
any T ∈ B (H) ,

σr (T ) =
{
λ ∈ C : inf

∥∥(
T ∗ − λ

)
x
∥∥ = 0, ‖x‖ = 1

}
[3, p.200]. It follows that λ ∈ σr (V ) and therefore, D ⊂ σr (V ) . Since σr (V ) is
closed, we have σr (V ) = D.

(b) follows from (a) and the fact that if V is unitary, then σl (V ) = σr (V ) =
σ (V ) . �

As we have seen above if V is a nonunitary isometry, then σ (V ) = D. It follows
from the von Neumann inequality and the spectral theorem that for an arbitrary
isometry V on H,

‖f (V )‖ = sup
ξ∈σ(V )∩Γ

|f (ξ)| , ∀f ∈ A (D) . (2.1)

Let H0 be the linear space of all weakly null sequences {xn} in H. Let us define
a semi-inner product on H0 by

〈{xn} , {yn}〉 = l.i.m.n 〈xn, yn〉 ,
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where l.i.m. is a Banach limit. Let

E =
{
{xn} ∈ H0 : l.i.m.n ‖xn‖2 = 0

}
.

Then, H0�E becomes a pre-Hilbert space with respect to the inner product
defined by

〈{xn}+ E, {yn}+ E〉 = l.i.m.n 〈xn, yn〉 .
Let H be the completion of H0�E with respect to the induced norm given by

‖{xn}+ E‖ =
(
l.i.m.n ‖xn‖2) 1

2 .

Then, H is a Hilbert space.
For a given T ∈ B (H), define the operator T on H0�E by

T : {xn}+ E 7→ {Txn}+ E.

Then we have

‖T ({xn}+ E)‖ =
(
l.i.m.n ‖Txn‖2) 1

2

≤ ‖T‖
(
l.i.m.n ‖xn‖2) 1

2

= ‖T‖ ‖{xn}+ E‖ .
Since H0�E is dense in H, the operator T can be extended to the whole H
which we also denote by T . Clearly, ‖T ‖ ≤ ‖T‖. The pair (H, T ) (sometimes
the operator T ) will be called the limit operator associated with T (see also [11]).

Proposition 2.4. Let T ∈ B (H) and let (H, T ) be the limit operator associated
with T. The following assertions hold:

(a) The mapping T 7→ T is a contractive algebra ∗−homomorphism.
(b) T is compact if and only if T = 0.
(c) σl (T ) ⊂ σle (T ), σr (T ) ⊂ σre (T ), and σ (T ) ⊂ σe (T ).
(d) T is an essentially isometric (resp. essentially unitary, essentially normal)

operator if and only if T is an isometry (resp. unitary, normal).
(e) If T is an essentially isometric operator and if σle (T ) 6= Γ

(
or σre (T ) 6= D

)
,

then T is essentially unitary.

Proof. The proof of (a) being very easy is omitted.
(b) It is obvious that if T is compact, then T = 0. If T = 0, then for every

weakly null sequence {xn}n∈N in H, we have l.i.m.n ‖Txn‖2 = 0. Consequently,
there is a subsequence {xnk

}k∈N of {xn}n∈N such that

lim
n→∞

‖Txn‖2 = lim
k→∞

‖Txnk
‖2 = l.i.m.k ‖Txnk

‖2 = 0.

It follows that limn→∞ ‖Txn‖ = 0 and therefore T is compact.
(c) If λ /∈ σle (T ) , then λIH − T is a left Fredholm operator. So, there exists

S ∈ B (H) such that S (λIH − T )− IH ∈ K (H) . It follows from (a) and (b) that
S (λIH − T ) = IH, where S is the limit operator associated with S. This shows
that λ /∈ σl (T ) . The proofs of the second and third parts of (c) are similar.

(d) is an immediate consequence of (a) and (b).
(e) Assume that T is an essentially isometric operator and σle (T ) 6= Γ (or

σre (T ) 6= D). By (c) we have σl (T ) 6= Γ (or σr (T ) 6= D). Since T is an isometry,
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it follows from Proposition 2.3 that T is unitary. Consequently, both I − T ∗T
and I − TT ∗ are compact. �

We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. Assume that the Gelfand transform of S ∈ AT vanishes on
σle (T ) (or on σre (T ) ∩ Γ). Since S ∈ AT , there exists a sequence of polynomials
{Pn} such that

lim
n→∞

‖Pn (T )− S‖ = 0.

Let T and S be the limit operators associated with T and S, respectively. In
view of Proposition 2.4 (a), we have

lim
n→∞

‖Pn (T )− S‖ = 0.

On the other hand, for every ξ ∈ σle (T ) (ξ ∈ σre (T ) ∩ Γ) there exists a multi-
plicative functional φξ on AT such that φξ (T ) = ξ. Consequently, we have

|Pn (ξ)| =
∣∣∣Pn (ξ)− Ŝ (ξ)

∣∣∣
= |φξ (Pn (T )− S)|
≤ ‖Pn (T )− S‖ .

From this we deduce that limn→∞ Pn (ξ) = 0 uniformly on σle (T ) (on σre (T )∩Γ).
Further, it follows from Proposition 2.4 (d), (c), and Proposition 2.3 that T is an
isometry and

σ (T ) ∩ Γ = σl (T ) ⊂ σle (T )

(σ (T ) ∩ Γ = σr (T ) ∩ Γ ⊂ σre (T ) ∩ Γ).

Consequently, limn→∞ Pn (ξ) = 0 uniformly on σ (T )∩Γ. Now, taking into account
the identity (2.1), we obtain

lim
n→∞

‖Pn (T )‖ = 0.

Hence, S = 0. By Proposition 2.4 (b), S is compact. �

The following proposition is an improvement of [6, Proposition 2.5] and shows
that the condition ”T is essentially isometric” is necessary in the Theorem 2.2.

Proposition 2.5. (a) Let T be a contraction on H and let K be a closed subset
of Γ of Lebesgue measure zero. Assume that f (T ) is compact for every f ∈ A (D)
vanishing on K. Then, T is essentially unitary and σe (T ) ⊂ K.

(b) Let T be an essentially unitary, but nonunitary contraction such that σe (T )
is of Lebesgue measure zero. Then, there exists f ∈ A (D) such that f (T ) is a
nonzero compact operator.

Proof. (a) Let π : B (H) → B (H) �K (H) be the canonical map. By Rudin–
Carleson Theorem [1, Theorem VIII.7.4], there exists f ∈ A (D) such that f (ξ) =
ξ for all ξ ∈ K and ‖f‖∞ = 1. Since the function zf (z) − 1 vanishes on K, the
operator Tf (T )−IH is compact. Consequently, we have π (T )π (f (T )) = π (IH) .
This imply that π (T ) is invertible and∥∥π (T )−1

∥∥ = ‖π (f (T ))‖ ≤ ‖f (T )‖ ≤ ‖f‖∞ ≤ 1.
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Since ‖π (T )‖ ≤ 1, we have ‖π (T )‖ =
∥∥π (T )−1

∥∥ = 1. This shows that π (T ) is
unitary and therefore T is essentially unitary.

We have σe (T ) ⊂ Γ. Let us show that σe (T ) ⊂ K. Let ξ0 ∈ Γ \K. By Rudin–
Carleson Theorem, there exists f ∈ A (D) such that f (ξ) = (ξ0 − ξ)−1 on K.
Since the function (ξ0 − z) f (z)−1 vanishes onK, the operator (ξ0IH − T ) f (T )−
IH is compact. This shows that ξ0 /∈ σe (T ) .

(b) By Theorem 2.2, it suffices to show that there exists f ∈ A (D) such that
f vanishes on σe (T ) , but f (T ) 6= 0. Assume on the contrary that f (T ) = 0 for
every f ∈ A (D) vanishing on σe (T ) . By Rudin–Carleson Theorem, there exists
f ∈ A (D) such that f (ξ) = ξ for all ξ ∈ K and ‖f‖∞ = 1. Since the function
zf (z) − 1 vanishes on K, we have Tf (T ) = IH . Consequently, T is invertible
and ∥∥T−1

∥∥ = ‖f (T )‖ ≤ ‖f‖∞ ≤ 1.

Thus we have ‖T‖ = ‖T−1‖ = 1. This shows that T is unitary. This is a contra-
diction. �

Recall [15, III.1] that the spectrum Σ (ϕ) of an inner function ϕ is defined by

Σ (ϕ) = ϕ−1 (0) ∪ suppµ,

where µ is the singular measure associated to the singular part of ϕ. As is known
[13, Proposition III.4.4] if T is a C0−contraction, then there exists a minimal inner
function mT that annihilates T, i.e., mT (T ) = 0 and we have σ (T ) = Σ (mT ).
Now, it follows from Proposition 2.4 (e) that if T is an essentially isometric
C0−contraction, then it is essentially unitary. In fact, T is a compact perturbation
of a unitary operator [6, 17].

Corollary 2.6. If T is an essentially isometric C0−contraction on H, then there
exist a nonzero T−invariant subspace E and f ∈ A (D) such that f (T |E) is a
nonzero compact operator.

Proof. Let mT be the minimal inner function that annihilates T. Then, there
exists an inner function θ such that θ divides mT and Σ (θ) ∩ Γ is of Lebesgue
measure zero [6, 16]. Let

ψ :=
mT

θ
; E := ψ (T )H.

The minimality of mT implies that E 6= {0} and T |E is a C0−contraction with
mT |E = θ. Moreover, the operator

IE − (T |E)∗ (T |E) = PE (IH − T ∗T ) |E
is compact, where PE is the orthogonal projection from H onto E. As we al-
ready noted above, essentially isometric C0−contractions are essentially unitary.
Thus, T |E is an essentially unitary (but nonunitary) contraction and σ (T |E)∩Γ
(= Σ (θ) ∩ Γ) is of Lebesgue measure zero. By Proposition 2.5 (b), there exists
f ∈ A (D) such that f (T |E) is a nonzero compact operator. �

We already noted in the introduction that if T is an essentially unitary C0−cont-
raction, then H∞ (T ) contains a nonzero compact operator [16]. Notice that this
result can be derived form the preceding corollary as follows. Let ψ, E, and f be
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as in the proof of Corollary 2.6. Then, f (T |E) is a nonzero compact operator.
Now, from the identity f (T )ψ (T ) = f (T |E)ψ (T ) we deduce that f (T )ψ (T )
is a nonzero compact operator, which is contained in H∞ (T ) .

If T is a contraction on H, then there exists a canonical decomposition of
H into two T−invariant subspaces H = H0 ⊕ Hu such that T0 := T |H0 is a
c.n.u. contraction and Tu := T |Hu is unitary [13, I.3.2]. It can be seen that
σ (Tu) ⊂ σ (T ) ∩ Γ. For a nonempty closed subset S of Γ, by H∞

S we denote
the set of all those f in H∞ that have a continuous extension f to D ∪ S. If
f ∈ H∞

σ(T )∩Γ with continuous extension f to D ∪ (σ (T ) ∩ Γ), then we can define

f (T ) ∈ B (H) , by

f (T ) = f (T0)⊕ f (Tu) ,

where f (T0) is given by the Nagy–Foias functional calculus and

f (Tu) =
(
f |σ(T )∩Γ

)
(Tu)

is defined by the usual functional calculus for continuous functions of a unitary
operator (see also [5]). Notice that

‖f (T )‖ ≤ ‖f‖∞ , ∀f ∈ H∞
σ(T )∩Γ.

Now, let f ∈ H∞
σ(T )∩Γ with continuous extension f to D ∪ (σ (T ) ∩ Γ). By the

Gamelin-Garnett Theorem [4], there exists a sequence {fn} in H∞ such that

lim
n→∞

‖fn − f‖∞ = 0

and each fn has an analytic extension gn to an open set On containing D ∪
(σ (T ) ∩ Γ). Then, gn (T ) can be defined by the Riesz-Dunford functional calculus
and coincides with fn (T ) , where fn (T ) is defined as above. Notice also that
gn (T ) is in AT . Consequently, we have

‖gn (T )− f (T )‖ = ‖fn (T )− f (T )‖ ≤ ‖fn − f‖∞ → 0 (n→∞) .

It follows that f (T ) ∈ AT .
The next corollary is now an immediate consequence of Theorem 2.2.

Corollary 2.7. Let T be an essentially isometric contraction and let f ∈ H∞
σ(T )∩Γ

with continuous extension f to D ∪ (σ (T ) ∩ Γ). If f (ξ) = 0 on σ (T ) ∩ Γ, then
f (T ) is compact.

Corollary 2.8. Let T be an essentially unitary c.n.u. contraction such that
σ (T ) ∩ Γ is of Lebesgue measure zero. Then,

σe (T ) = σ (T ) ∩ Γ.

Proof. Assume on the contrary that there exists ξ0 ∈ σ (T ) ∩ Γ, but ξ0 /∈ σe (T ) .
Then, there exists a continuous function f0 on σ (T ) ∩ Γ such that f0 (ξ0) 6= 0
and f0 (ξ) = 0 for all ξ ∈ σe (T ) . Let f ∈ A (D) be the Rudin–Carleson extension
of f0. By Theorem 2.2, f (T ) is compact. On the other hand, it follows from
Proposition 2.1 that f vanishes on σ (T ) ∩ Γ. This contradicts f0 (ξ0) 6= 0. �
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Recall that a contraction T on H is said to be of class C00 if T nx → 0 and
T ∗nx→ 0 for every x ∈ H.

Assume that the contraction T is of class C00. Moreover, assume that

dim (I − TT ∗)H = dim (I − T ∗T )H = 1

(consequently, T is essentially unitary). According to the well-known model
theorem of Nagy–Foias [13, 15], T is unitary equivalent to its model operator
Mϕ = PϕS |Kϕ acting on the model space Kϕ := H2 	 ϕH2, where ϕ is an inner
function, Sf = zf is the shift operator on the Hardy space H2, and Pϕ is the
orthogonal projection from H2 onto Kϕ. It follows that for every f ∈ H∞, the
operator f (T ) is unitary equivalent to

f (Mϕ) := Pϕf (S) |Kϕ .

As is known [15, p.235], {T}′ = {f (T ) : f ∈ H∞}. By Hartman-Sarason theorem
[15, p.235], f (T ) (f ∈ H∞) is compact if and only if limn→∞ ‖T nf (T )‖ = 0.

We have the following

Theorem 2.9. If T is an essentially isometric c.n.u. contraction, then S ∈ {T}′
is compact if and only if

lim
n→∞

‖T nS‖ = 0.

Proof. Assume that S ∈ {T}′ is compact. Since T is a c.n.u. contraction, T n → 0
in the weak operator topology. Consequently, for every x ∈ H we can write

lim
n→∞

‖T nSx‖ = lim
n→∞

‖ST nx‖ = 0.

As in the proof of Proposition 2.1, we have

lim
n→∞

‖T nS‖ = 0.

Let T and S be the limit operators associated with T and S, respectively. By
Proposition 2.4 (a),

‖T nS‖ ≤ ‖T nS‖ , ∀n ∈ N.
Since T is an isometry, we have

‖S‖ ≤ lim
n→∞

‖T nS‖ = 0,

so that S = 0. By Proposition 2.4 (b), S is compact. �

Note that the preceding theorem contains the main results of [6].
In the proof of the following proposition we use the dilation arguments of

Nagy–Foias (see, [13, p.140] and [17, Theorem 3.3]).

Proposition 2.10. Let T be a c.n.u. contraction on H. Assume that there
exists a nonzero function f ∈ H∞ such that f (T ) is compact. Then for every
S ∈ K (H), we have

lim
n→∞

‖T nS‖ = lim
n→∞

‖ST n‖ = 0.
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Proof. Assume that f (T ) is compact for some nonzero f ∈ H∞. Since T is a
c.n.u. contraction, T n → 0 in the weak operator topology and therefore,

lim
n→∞

‖T nf (T )x‖ = 0,∀x ∈ H.

Let f = fife be the canonical inner-outer factorization of f , where fi is inner
and fe is outer function. Since fe (T ) has dense range [13, Proposition III.3.1],
we have

lim
n→∞

‖T nfi (T )x‖ = 0, ∀x ∈ H.

If U is the minimal unitary dilation of T, then

lim
n→∞

U−nT nx = Px,

where P is the orthogonal projection onto the residual part of the dilation space
[13, Proposition II.3.1]. It follows that

lim
n→∞

‖T nx‖ = ‖Px‖ (x ∈ H) .

Let us show that Px = 0. We can write

U−mPTmx = lim
n→∞

U−m−nTm+nx = Px,

which implies

PTmx = UmPx (m ∈ N) .

Consequently, we have

PT nfi (T )x = Unfi (U)Px (n ∈ N) .

Since fi (U) is unitary, we can write

‖Px‖ = ‖Unfi (U)Px‖
= ‖PT nfi (T )x‖
≤ ‖T nfi (T )x‖ → 0 (n→∞) .

Hence we have limn→∞ ‖T nx‖ = 0 which implies that

lim
n→∞

‖T nSx‖ = 0 for every S ∈ B (H) and x ∈ H.

As in the proof of Proposition 2.1 we can see that if S ∈ K (H) , then

lim
n→∞

‖T nS‖ = 0.

Taking into account the fact that f (T )∗ = f̃ (T ∗) , where f̃ (z) = f (z), we can
apply the above result to T ∗ to obtain

lim
n→∞

‖T ∗nS∗x‖ = 0 for every S ∈ B (H) and x ∈ H.

It follows that if S ∈ K (H) , then limn→∞ ‖ST n‖ = 0. �

The following result is of independent interest (for related results see [10]).
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Proposition 2.11. Let T be an essentially unitary c.n.u. contraction on H such
that σe (T ) is of Lebesgue measure zero. For every S ∈ AT , we have

dist (S,AT ∩K (H)) = sup
ξ∈σe(T )

∣∣∣Ŝ (ξ)
∣∣∣ .

Proof. Let S ∈ AT , K ∈ AT ∩ K (H) , and ξ ∈ σe (T ) be given. There exists a
multiplicative functional φξ on AT such that φξ (T ) = ξ. Consequently, we have∣∣∣Ŝ (ξ)

∣∣∣ = |φξ (T nS)| ≤ ‖T nS‖

≤ ‖T nS − T nK‖+ ‖T nK‖
≤ ‖S −K‖+ ‖T nK‖ .

Since T n → 0 in the weak operator topology, as in the proof of Proposition 2.1
we have

lim
n→∞

‖T nK‖ = 0.

Letting n → ∞ in the preceding inequality, we obtain
∣∣∣Ŝ (ξ)

∣∣∣ ≤ ‖S −K‖ . It

follows that

sup
ξ∈σe(T )

∣∣∣Ŝ (ξ)
∣∣∣ ≤ dist (S,AT ∩K (H)) .

To prove the opposite inequality, let ε > 0 be given. Then there exists f ∈
A (D) such that ‖S − f (T )‖ ≤ ε. It follows that

sup
ξ∈σe(T )

|f (ξ)| ≤ sup
ξ∈σe(T )

∣∣∣Ŝ (ξ)
∣∣∣ + ε.

By Rudin–Carleson Theorem, there exists g ∈ A (D) such that g (ξ) = f (ξ) on
σe (T ) and

‖g‖∞ = sup
ξ∈σe(T )

|f (ξ)| .

Since g−f vanishes on σe (T ) , by Theorem 2.2, g (T )−f (T ) is compact. Hence,
we can write

dist (S,AT ∩K (H)) ≤ ‖S + g (T )− f (T )‖
≤ ‖g (T )‖+ ε

≤ ‖g‖∞ + ε

= sup
ξ∈σe(T )

|f (ξ)|+ ε

≤ sup
ξ∈σe(T )

∣∣∣Ŝ (ξ)
∣∣∣ + 2ε.

Since ε was arbitrary, we obtain that

dist (S,AT ∩K (H)) ≤ sup
ξ∈σe(T )

∣∣∣Ŝ (ξ)
∣∣∣ .

�

Next, we characterize the compactness via the ergodic conditions. The follow-
ing lemma was proved in [8, Lemma 2.4].
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Lemma 2.12. Let V be an isometry on H and let S ∈ {V }′ . If

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

ξ
k
V kS

∥∥∥∥∥ = 0

holds for every ξ ∈ σ (V ) ∩ Γ, then S = 0.

As an application, we have the following

Theorem 2.13. Let T be an essentially isometric operator and let S ∈ {T}′ . If

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

ξ
k
T kS

∥∥∥∥∥ = 0

holds for every ξ ∈ σle (T ) (or ξ ∈ σre (T ) ∩ Γ), then S is compact.

Proof. Let T and S be the limit operators associated with T and S, respectively.
From Proposition 2.4 (d), (c), and Proposition 2.3 we deduce that T is an isometry
and

σ (T ) ∩ Γ ⊂ σle (T ) (or σ (T ) ∩ Γ ⊂ σre (T ) ∩ Γ) .

Furthermore, S ∈ {T }′ . Now, it follows from Proposition 2.4 (a) that

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

ξ
kT kS

∥∥∥∥∥ = 0

holds for every ξ ∈ σ (T ) ∩ Γ. By the preceding lemma, S = 0. Consequently, by
Proposition 2.4 (b), S is compact. �

3. Essentially normal operators

Let T be an essentially normal operator, that is, TT ∗−T ∗T is compact. Since
π (T ) is a normal element of the Calkin algebra, we have σle (T ) = σre (T ) =
σe (T ) . It will be useful to note that if ind(T − λIH) = 0 for every λ ∈ C\σe (T ) ,
then T is a compact perturbation of a normal operator [2].

In this section, for the compactness of S from the commutant of T, some
necessary and sufficient conditions are found on S. The compactness of S ∈ {T}′
via the ergodic conditions is also characterized.

The first main result of this section is the following

Theorem 3.1. Let T be an essentially normal operator. If the Gelfand transform
of S ∈ AT vanishes on σe (T ) , then S is compact.

Proof. Assume that the Gelfand transform of S ∈ AT vanishes on σe (T ) . Since
S ∈ AT , there exists a sequence of polynomials {Pn} such that

lim
n→∞

‖Pn (T )− S‖ = 0.

Let T and S be the limit operators associated with T and S, respectively. In
view of Proposition 2.4 (a), we have

lim
n→∞

‖Pn (T )− S‖ = 0.



COMPACT OPERATORS 13

Further, for every λ ∈ σe (T ) , there exists a multiplicative functional φλ on AT

such that φλ (T ) = λ. Consequently, we can write

|Pn (λ)| =
∣∣∣Pn (λ)− Ŝ (λ)

∣∣∣
= |φλ (Pn (T )− S)|
≤ ‖Pn (T )− S‖ .

From this, we deduce that limn→∞ Pn (λ) = 0 uniformly on σe (T ) . On the other
hand, it follows from Proposition 2.4 (c) and (d) that T is a normal operator and
σ (T ) ⊂ σe (T ) . Consequently, limn→∞ Pn (λ) = 0 uniformly on σ (T ) . It follows
that

lim
n→∞

‖Pn (T )‖ = 0.

Thus we obtain S = 0. By Proposition 2.4 (b), S is compact. �

Corollary 3.2. If T is an essentially normal operator on H, then the following
assertions hold:

(a) If σe (T ) = {λ1, · · · , λn}, then (T − λ1IH) · · · · · (T − λnIH) is compact.
(b) The radical Rad (AT ) of the algebra AT consists of Volterra operators.

Proof. (a) The Gelfand transform of S := (T − λ1IH) · · · · · (T − λnIH) vanishes
on {λ1, · · · , λn} . By Theorem 3.1, S is compact.

(b) If R ∈ Rad (AT ) , then R̂ vanishes on σ (T ) . Since σe (T ) ⊂ σ (T ), it follows

that R̂ vanishes on σe (T ) . By Theorem 3.1, S is compact. �

Next, we will prove the following

Proposition 3.3. Let T be an essentially normal operator such that

σe (T ) ⊂ {λ ∈ C : |λ| ≥ 1}
and let S ∈ B (H) . If

lim
n→∞

‖T nS‖ = 0,

then S is compact.

Proof. Let T and S be the limit operators associated with T and S, respectively.
It follows from Proposition 2.4 (d) and (c) that T is normal and

σ (T ) ⊂ σe (T ) ⊂ {λ ∈ C : |λ| ≥ 1} .
On the other hand, we have

‖S‖ ≤
∥∥T −n

∥∥ ‖T nS‖ = sup
λ∈σ(T )

|λ|−n ‖T nS‖ ≤ ‖T nS‖ .

This clearly implies that S = 0. By Proposition 2.4 (b), S is compact. �

Below, we characterize the compactness via the ergodic conditions.

Theorem 3.4. Let T be an essentially normal Fredholm operator and let S ∈
{T}′. If

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

λ−kT kS

∥∥∥∥∥ = 0
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holds for every λ ∈ σe (T ), then S is compact.

We shall need the following

Lemma 3.5. Let N be an invertible normal operator and let S ∈ {N}′ . If

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

λ−kNkS

∥∥∥∥∥ = 0

holds for every λ ∈ σ (N) , then S = 0.

Proof. It suffices to show that SS∗ = 0. By Fuglede–Putnam theorem, SN∗ =
N∗S which implies NS∗ = S∗N. Consequently, we can write

N (SS∗) = (NS)S∗ = (SN)S∗ = S (NS∗) = S (S∗N) = (SS∗)N.

So, N commutes with SS∗. Let A be the unital C∗−algebra generated by N
and SS∗. Then, A is commutative. Denote by Σ the Gelfand spectrum of A.
Since the algebra A is isomprphic to C (Σ) , it suffices to show that φ (SS∗) = 0
for all φ ∈ Σ. Notice also that A is a full subalgebra of B (H) and therefore,
σ (N) = {φ (N) : φ ∈ Σ} . If φ ∈ Σ and if λ := φ (N) , then we have

|φ (SS∗)| =
1

n

∣∣∣∣∣
n∑

k=1

λ−kφ (N)k φ (SS∗)

∣∣∣∣∣
=

1

n

∣∣∣∣∣〈φ,
n∑

k=1

λ−kNkSS∗〉

∣∣∣∣∣
≤ 1

n

∥∥∥∥∥
n∑

k=1

λ−kNkS

∥∥∥∥∥ ‖S∗‖ .
Taking lower limit as n→∞, we get φ (SS∗) = 0. �

Proof of Theorem 3.4. Let T and S be the limit operators associated with T and
S, respectively. In view of Proposition 2.4 (c) and (d), T is an invertible normal
operator and σ (T ) ⊂ σe (T ) . Furthermore, S ∈ {T }′ . Now, it follows from
Proposition 2.4 (a) that

lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

λ−kT kS

∥∥∥∥∥ = 0

holds for every λ ∈ σ (T ) . By the preceding lemma, S = 0. Consequently, by
Proposition 2.4 (b), S is compact. �
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