DETERMINANTAL REPRESENTATION OF TRIGONOMETRIC POLYNOMIAL CURVES VIA SYLVESTER METHOD

MAO-TING CHIEN ${ }^{1 *}$ AND HIROSHI NAKAZATO ${ }^{2}$
Communicated by F. Kittaneh

Abstract

For any trigonometric polynomial $\phi(\theta)$, we give a constructive algorithm by Sylvester elimination which produces matrices C_{1}, C_{2}, C_{3} such that $\operatorname{det}\left(C_{1}+\Re(\phi(\theta)) C_{2}+\Im(\phi(\theta)) C_{3}\right)=0$. For a typical trigonometric polynomial, we assert that C_{1} is positive definite, and thus the typical polynomial curve admits a determinantal representation.

1. Introduction and preliminaries

Let A be an $n \times n$ matrix. The real ternary form $F_{A}(t, x, y)$ associated to A is defined as

$$
F_{A}(t, x, y)=\operatorname{det}\left(t I_{n}+x \Re(A)+y \Im(A)\right),
$$

where $\Re(A)=\left(A+A^{*}\right) / 2$ and $\Im(A)=\left(A-A^{*}\right) /(2 i)$. Kippenhahn [8] characterized the numerical range of $A, W(A)=\left\{\xi^{*} A \xi: \xi \in \mathbb{C}^{n}, \xi^{*} \xi=1\right\}$, as the convex hull of the real affine part of the dual curve of the curve $F_{A}(t, x, y)=0$. The form $F_{A}(t, x, y)$ is hyperbolic with respect to $(1,0,0)$, i.e., $F_{A}(1,0,0) \neq 0$, and for any real pair $x, y, F_{A}(t, x, y)$ has only real roots in t. The converse part was conjectured by Fiedler [5] and Lax [9], namely, for any real ternary hyperbolic form $f(t, x, y)$, there exist Hermitian(or real symmetric) matrices S_{1} and S_{2} such that

$$
f(t, x, y)=\operatorname{det}\left(t I_{n}+x S_{1}+y S_{2}\right)=F_{S}(t, x, y)
$$

Date: Received: 18 March 2013; Accepted: 23 June 2013.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 47A10; Secondary 47A12.
Key words and phrases. Determinantal representation, Sylvester method, numerical range.
where $S=S_{1}+i S_{2}$. Helton and Vinnikov [6] gave an affirmative answer to the conjecture (see also [10, 12]). In this case, we call that the form $f(t, x, y)$ admits a determinantal representation by the matrix S.

In [2], the authors of this paper study a typical roulette curve given by

$$
\begin{equation*}
\phi(\theta)=\exp (i n \theta)+a \exp (-i(n-1) \theta) \tag{1.1}
\end{equation*}
$$

$0 \leq \theta \leq 2 \pi, n=2,3, \ldots$, and $0<a<1$. In particular, they obtain that there exists a $2 n \times 2 n$ matrix A so that the roulette (1.1) is exactly the algebraic curve defined by $F_{A}(t, x, y)$. In other words,

$$
\begin{equation*}
F_{A}(1, \Re(\phi(\theta)), \Im(\phi(\theta)))=0, \quad 0 \leq \theta \leq 2 \pi \tag{1.2}
\end{equation*}
$$

A more general form of the roulette curve (1.1) is a class of trigonometric polynomials given by

$$
\begin{equation*}
\phi(\theta)=\sum_{j=-n}^{n} c_{j} \exp (i j \theta) \tag{1.3}
\end{equation*}
$$

The curve C_{ϕ} in the Gaussian plane associated to the trigonometric polynomial ϕ is defined as

$$
C_{\phi}=\{(\Re(\phi(\theta)), \Im(\phi(\theta))): 0 \leq \theta \leq 2 \pi\} .
$$

By using Henrion method [7] based on Bezoutian resultant, it is shown in [3] that there exist $2 n \times 2 n$ real symmetric matrices A_{1}, A_{2}, A_{3} so that the curve C_{ϕ} lies in the curve

$$
\operatorname{det}\left(A_{1}+x A_{2}+y A_{3}\right)=0
$$

Sufficient conditions are given in [3] that guarantee the matrix A_{1} being positive definite. In this case, the curve C_{ϕ} admits a determinantal representation by the matrix

$$
A_{0}=A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right) A_{1}^{-1 / 2}
$$

that is $F_{A_{0}}(1, \Re(\phi(\theta)), \Im(\phi(\theta)))=0$.
We continue our study to construct another algorithm, based on Sylvester matrix, that produces matrices C_{1}, C_{2}, C_{3} for trigonometric polynomial $\phi(\theta)$ in (1.3) satisfying

$$
\begin{equation*}
\operatorname{det}\left(C_{1}+\Re(\phi(\theta)) C_{2}+\Im(\phi(\theta)) C_{3}\right)=0 \tag{1.4}
\end{equation*}
$$

For a typical trigonometric polynomial $\phi(\theta)$, we assert that C_{1} is positive definite, and thus the corresponding curve C_{ϕ} admits a determinantal representation.

2. Sylvester method

Consider a complex trigonometric polynomial $\phi(\theta)$ as in (1.3). The conjugate of $\phi(\theta)$ is denoted by

$$
\begin{equation*}
\psi(\theta)=\sum_{j=-n}^{n} \overline{c_{j}} \exp (-i j \theta)=\sum_{j=-n}^{n} \overline{c_{-j}} \exp (i j \theta) \tag{2.1}
\end{equation*}
$$

We substitute the variable $u=\exp (i \theta)$. Then (1.3) and (2.1) respectively become

$$
\begin{equation*}
\sum_{j=-n}^{n} c_{j} u^{n+j}-\phi(\theta) u^{n}=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=-n}^{n} \overline{c_{-j}} u^{n+j}-\psi(\theta) u^{n}=0 \tag{2.3}
\end{equation*}
$$

Recall that the $2 \ell \times 2 \ell$ Sylvester matrix H of two polynomials

$$
p(u)=\sum_{j=0}^{\ell} \gamma_{\ell-j} u^{j} \text { and } q(u)=\sum_{j=0}^{\ell} \delta_{\ell-j} u^{j}
$$

is defined as

$$
H=H_{p, q}=\left(\begin{array}{cccccccc}
\gamma_{0} & \gamma_{1} & \ldots & \gamma_{\ell} & 0 & 0 & \ldots & 0 \\
0 & \gamma_{0} & \gamma_{1} & \ldots & \gamma_{\ell} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & \ldots & \gamma_{0} & \gamma_{1} & \ldots & \ldots & \gamma_{\ell} \\
\delta_{0} & \delta_{1} & \ldots & \ldots & \delta_{\ell} & 0 & \ldots & 0 \\
0 & \delta_{0} & \delta_{1} & \ldots & \ldots & \delta_{\ell} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & \ldots & \delta_{0} & \delta_{1} & \ldots & \ldots & \delta_{\ell}
\end{array}\right) .
$$

The determinant of the matrix H is called the resultant of $p(u)$ and $q(u)$ with respect to u. It is well known that $p(u)$ and $q(u)$ have a common non-constant factor if and only if $\operatorname{det}(H)=0$ (cf. [4, 13]).

To construct matrices C_{1}, C_{2}, C_{3} satisfying (1.4), we introduce a new parameter t in (2.2) and (2.3), and write

$$
\begin{aligned}
t \sum_{j=-n}^{n} c_{j} u^{n+j}-\phi(\theta) u^{n} & =\sum_{j=0}^{2 n} \gamma_{2 n-j}(t, z) u^{j} \\
t \sum_{j=-n}^{n} \overline{c_{-j}} u^{n+j}-\psi(\theta) u^{n} & =\sum_{j=0}^{2 n} \delta_{2 n-j}(t, w) u^{j}
\end{aligned}
$$

Now, let H be the $4 n \times 4 n$ Sylvester matrix of polynomials

$$
p(u: t, z)=\sum_{j=0}^{2 n} \gamma_{2 n-j}(t, z) u^{j} \text { and } q(u: t, z)=\sum_{j=0}^{2 n} \delta_{2 n-j}(t, z) u^{j} .
$$

Denote the matrix H with rows $r_{1}, r_{2}, \ldots, r_{4 n}$ as

$$
\begin{equation*}
H=H\left(r_{1}, r_{2}, \ldots, r_{4 n}\right) \tag{2.4}
\end{equation*}
$$

More precisely, the j-th row of the matrix H is

$$
r_{j}=\left(0_{j-1}, c_{n} t, c_{n-1} t, \ldots, c_{0} t-\phi, \ldots, c_{-n} t, 0_{2 n-j}\right)
$$

for $1 \leq j \leq 2 n$, and

$$
r_{j}=\left(0_{j-2 n-1}, \overline{c_{-n}} t, \overline{c_{-n+1}} t, \ldots, \overline{c_{0}} t-\psi, \ldots, \overline{c_{n}} t, 0_{4 n-j}\right)
$$

for $2 n+1 \leq j \leq 4 n$, where 0_{k} stands for k-dimensional zero vector. We will produce a $2 n \times 2 n$ matrix associated to $\phi(\theta)$ by modifying the matrix H. At first, we define the matrix

$$
\begin{equation*}
\tilde{H}=\tilde{H}\left(r_{1}, \ldots, r_{n}, \tilde{r}_{n+1}, \ldots, \tilde{r}_{3 n}, r_{3 n+1}, \ldots, r_{4 n}\right) \tag{2.5}
\end{equation*}
$$

which is obtained from H (2.4) by replacing the $n+1, n+2, \ldots, 3 n$ rows with the following new rows

$$
\begin{aligned}
\tilde{r}_{n+1}= & r_{n+1}-c_{-n} / \overline{c_{n}} r_{3 n+1}, \\
\tilde{r}_{n+2}= & r_{n+2}-c_{-n} / \overline{c_{n}} r_{3 n+2}-\left(c_{-n+1} \overline{c_{n}}-c_{-n} \overline{c_{n-1}}\right) /{\overline{c_{n}}}^{2} r_{3 n+1} \\
\tilde{r}_{n+3}= & r_{n+3}-c_{-n} / \overline{c_{n}} r_{3 n+3}-\left(c_{-n+1} \overline{c_{n}}-c_{-n} \overline{c_{n-1}}\right) /{\overline{c_{n}}}^{2} r_{3 n+2} \\
& -\left[c_{-n+2}{\overline{c_{n}}}^{2}-c_{-n+1} \overline{c_{n-1}} \overline{c_{n}}+c_{-n}\left(\overline{c_{n-1}}{ }^{2}-\overline{c_{n-2}} \overline{c_{n}}\right)\right] /{\overline{c_{n}}}^{3} r_{3 n+1},
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{r}_{3 n}= & r_{3 n}-\overline{c_{-n}} / c_{n} r_{n}, \\
\tilde{r}_{3 n-1}= & r_{3 n-1}-\overline{c_{-n}} / c_{n} r_{n-1}-\left(c_{n} \overline{c_{-n+1}}-c_{n-1} \overline{c_{-n}}\right) / c_{n}^{2} r_{n}, \\
\tilde{r}_{3 n-2}= & r_{3 n-2} \overline{c_{-n}} / c_{n} r_{n-2}-\left(c_{n} \overline{c_{-n+1}}-c_{n-1} \overline{c_{-n}}\right) / c_{n}^{2} r_{n-1} \\
& -\left[\left(c_{n}^{2} \overline{c_{-n+2}}-c_{n} c_{n-1} \overline{c_{-n+1}}\right)+\overline{c_{-n}}\left(c_{n-1}^{2}-c_{n-2} c_{n}\right)\right] / c_{n}^{3} r_{n},
\end{aligned}
$$

The general rows $\tilde{r}_{n+k}, k=1,2, \ldots, n$, are formulated by

$$
\tilde{r}_{n+k}=r_{n+k}+\sum_{j=1}^{k} \alpha_{j} r_{3 n+k+1-j}
$$

where the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are uniquely determined so that the ($3 n+1$)th, $(3 n+2)$-th, $\ldots,(3 n+k)$-th entries of the row \tilde{r}_{n+k} all equal 0 , while the coefficients $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ of the general rows

$$
\tilde{r}_{3 n+1-k}=r_{3 n+1-k}+\sum_{j=1}^{k} \beta_{j} r_{n+j-k}, k=1, \ldots, n
$$

are uniquely determined so that the n-th, $(n-1)$-th, $\ldots,(n-k+1)$-th entries of the row $\tilde{r}_{3 n+1-k}$ equal 0 .

The following result is a key observation for the properties of the matrix \tilde{H} in (2.5).

Theorem 2.1. Let \tilde{H} be the matrix defined in (2.5) corresponding to the trigonometric polynomial $\phi(\theta)$ in (1.3). Then the following hold:
(i) The upper left $n \times n$ principal submatrix of \tilde{H} is an upper triangular matrix with diagonals $\left(c_{n} t, c_{n} t, \ldots, c_{n} t\right)$.
(ii) The lower right $n \times n$ principal submatrix of \tilde{H} is a lower triangular matrix with diagonals $\left(\overline{n_{n}} t, \overline{c_{n}} t, \ldots, \overline{c_{n}} t\right)$.
(iii) The first n entries and the last n entries of the new rows $r_{n+1}^{\sim}, \ldots, r_{2 n}$, $r_{2 \tilde{n}+1}, \ldots, r \tilde{3 n}$ are all 0 .
(iv) The form associated to $\phi(\theta)$ in (1.3) is given by

$$
\begin{equation*}
R(t, x, y) \equiv \operatorname{det}(H)=\operatorname{det}(\tilde{H})=\left|c_{n}\right|^{2 n} t^{2 n} \times \operatorname{det}\left(H_{0}\right) \tag{2.6}
\end{equation*}
$$

where H_{0} is the $2 n \times 2 n$ principal submatrix of \tilde{H} by deleting the first n and last n rows and columns.
(v) If we denote the matrix H_{0} by

$$
\begin{equation*}
H_{0}=H_{0}(t, \phi, \psi)=H_{0}(t, x+i y, x-i y)=t C_{1}+x C_{2}+y C_{3}, \tag{2.7}
\end{equation*}
$$

then we have

$$
\operatorname{det}\left(C_{1}+\Re(\phi(\theta)) C_{2}+\Im(\phi(\theta)) C_{3}\right)=0
$$

The matrix C_{1} obtained in Theorem 2.1 is not necessarily Hermitian and is therefore not positive definite; see, for example, the remark at the end of this section. It is shown in [2] that a special trigonometric polynomial (1.1) admits a determinantal representation. We apply Theorem 2.1 to more general typical trigonometric polynomials of the form $\phi(\theta)=\exp (\operatorname{in} \theta)+a \exp (-i m \theta)$ which guarantee the positive definiteness of C_{1}.

Theorem 2.2. Let $\phi(\theta)$ be a trigonometric polynomial defined by

$$
\phi(\theta)=\exp (i n \theta)+a \exp (-i m \theta)
$$

$0 \leq \theta \leq 2 \pi$, where $0<m<n$ are positive integers and $0<a<1$ is a positive real number. Then the matrix $H_{0}=t C_{1}+x C_{2}+y C_{3}$ in (2.7) satisfies the following conditions:
(i) The $2 n \times 2 n$ matrices C_{1}, C_{2}, C_{3} are Hermitian and C_{1} is positive definite.
(ii) The matrix $C_{0}=C_{1}^{-1 / 2}\left(C_{2}+i C_{3}\right) C_{1}^{-1 / 2}$ satisfies

$$
F_{C_{0}}(t, x, y) \operatorname{det}\left(C_{1}\right)=\operatorname{det}\left(H_{0}\right) .
$$

(iii) For $0 \leq \theta \leq 2 \pi$,

$$
F_{C_{0}}(1, \cos (n \theta)+a \cos (m \theta), \sin (n \theta)-a \sin (m \theta))=0 .
$$

Proof. From (2.7), the matrix $H_{0}(0, x, y)=x C_{2}+y C_{3}$ is the following form

$$
\left(\begin{array}{cc}
0 & P(x, y) \\
Q(x, y) & 0
\end{array}\right)
$$

where $P(x, y)$ is a lower triangular Toeplitz matrix

$$
P(x, y)=\left(\begin{array}{cccc}
p_{1}(x, y) & 0 & 0 & \ldots \\
r p_{2}(x, y) & p_{1}(x, y) & 0 & \ldots \\
r p_{3}(x, y) & p_{2}(x, y) & p_{1}(x, y) & \ldots \\
r \ldots & \ldots & \ldots & \ldots
\end{array}\right) \in M_{n}
$$

with

$$
\begin{aligned}
p_{1}(x, y)= & {\left[\left(-\overline{c_{n}}+c_{-n}\right) x+i\left(-\overline{c_{n}}-c_{-n}\right) y\right] / \overline{c_{n}}, } \\
p_{2}(x, y)= & \left(c_{-n+1} \bar{c}_{n}-c_{-n} \overline{c_{n-1}}\right)(x-i y) /{\overline{c_{n}}}^{2}, \\
p_{3}(x, y)= & \left\{c_{-n+2}{\overline{c_{n}}}^{2}-c_{-n+1} \overline{c_{n-1}} \overline{c_{n}}+c_{-n}\left({\overline{c_{n-1}}}^{2}-\overline{c_{n-2}} \overline{c_{n}}\right)\right\}(x-i y) /{\overline{c_{n}}}^{3}, \\
& \ldots \ldots,
\end{aligned}
$$

and $Q(x, y)$ is an upper triangular Toeplitz matrix

$$
Q(x, y)=\left(\begin{array}{cccc}
q_{1}(x, y) & q_{2}(x, y) & q_{3}(x, y) & \ldots \\
0 & q_{1}(x, y) & q_{2}(x, y) & \ldots \\
0 & 0 & q_{1}(x, y) & \ldots \\
\cdots & \cdots & \cdots & \ldots
\end{array}\right) \in M_{n}
$$

with

$$
\begin{aligned}
& q_{1}(x, y)=\left[\left(-c_{n}+\overline{c_{-n}}\right) x+i\left(c_{n}+\overline{c_{-n}}\right) y\right] / c_{n} \\
& q_{2}(x, y)=\left[\left(c_{n} \overline{c_{-n+1}}-c_{n-1} \overline{c_{-n}}\right)(x+i y)\right] / c_{n}^{2} \\
& \left.q_{3}(x, y)=\left[\left\{c_{n}^{2} \overline{c_{-n+2}}-c_{n-1} c_{n} \overline{c_{-n+1}}\right)+\overline{c_{-n}}\left(c_{n-1}^{2}-c_{n-2} c_{n}\right)\right\}(x+i y)\right] / c_{n}^{3}
\end{aligned}
$$

\qquad
Hence the matrices C_{2}, C_{3} are Hermitian, and

$$
\begin{aligned}
\operatorname{det}\left(H_{0}(0, x, y)\right)= & \operatorname{det}\left(x C_{2}+y C_{3}\right) \\
= & (-1)^{n} p_{1}(x, y)^{n} q_{1}(x, y)^{n} \\
= & (-1)^{n}\left\{-\overline{c_{n}}(x+i y)+c_{-n}(x-i y)\right\}^{n} \\
& \times\left\{\overline{c_{-n}}(x+i y)-c_{n}(x-i y)\right\}^{n} /\left|c_{n}\right|^{2 n}
\end{aligned}
$$

Let $\ell=n-m$. Then the matrix C_{1} is given by

$$
\left(\begin{array}{ccc}
I_{\ell} & 0_{\ell, 2 n-2 \ell} & a I_{\ell} \\
0_{2 n-2 \ell, \ell} & \left(1-a^{2}\right) I_{2 n-2 \ell} & 0_{2 n-2 \ell, \ell} \\
a I_{\ell} & 0_{\ell, 2 n-2 \ell} & I_{\ell}
\end{array}\right),
$$

which is a real symmetric positive definite matrix. The matrix

$$
C_{0}=C_{1}^{-1 / 2}\left(C_{2}+i C_{3}\right) C_{1}^{-1 / 2}
$$

gives a homogeneous polynomial

$$
F_{C_{0}}(t, x, y)=\operatorname{det}\left(t I_{n}+x C_{1}^{-1 / 2} C_{2} C_{1}^{-1 / 2}+y C_{1}^{-1 / 2} C_{3} C_{1}^{-1 / 2}\right)
$$

satisfying

$$
F_{C_{0}}(t, x, y) \operatorname{det}\left(C_{1}\right)=\operatorname{det}\left(H_{0}\right)=\operatorname{det}\left(t C_{1}+x C_{2}+y C_{3}\right) .
$$

The assertion (iii) follows from the Sylvester construction (2.6) and (2.7) for the trigonometric polynomial $\phi(\theta)$, i.e.,

$$
F_{C_{0}}(1, \Re(\phi(\theta)), \Im(\phi(\theta)))=0, \quad 0 \leq \theta \leq 2 \pi
$$

Remark 2.3. Although the matrix C_{1} in Theorem 2.2 is positive definite for $\phi(\theta)=\exp (\operatorname{in} \theta)+a \exp (-i m \theta)$, in general, C_{1} is not Hermitian for an arbitrary trigonometric polynomial $\phi(\theta)$ given in (1.3). For example, let $n=2$ and

$$
\phi(\theta)=\exp (2 i \theta)-\frac{1}{4} \exp (i \theta)-\frac{17}{72}+\frac{1}{36} \exp (-i \theta)+\frac{1}{72} \exp (-2 i \theta)
$$

Then

$$
\phi(\theta) \exp (2 i \theta)=\left(\exp (i \theta)+\frac{1}{3}\right)\left(\exp (i \theta)+\frac{1}{4}\right)\left(\exp (i \theta)-\frac{1}{3}\right)\left(\exp (i \theta)-\frac{1}{2}\right)
$$

The matrices constructed by Theorem 2.2 are

$$
C_{1}=\left(\begin{array}{cccc}
20732 & -5192 & -4828 & 648 \\
-9 & 20714 & -5039 & -4666 \\
-4666 & -5039 & 20714 & -9 \\
r 648 & -4828 & -5192 & 20732
\end{array}\right)
$$

and

$$
x C_{2}+y C_{3}=\left(\begin{array}{cccc}
0 & 0 & \alpha & 0 \\
0 & 0 & \beta & \alpha \\
\bar{\alpha} & \bar{\beta} & 0 & 0 \\
0 & \bar{\alpha} & 0 & 0
\end{array}\right),
$$

where $\alpha=-20448 x-21024 y i, \beta=648 x-648 y i$. The matrix C_{1} is not Hermitian.

3. Discussion

Let $0<m<n$ be two positive integers and $0<a<1$ be a real number. Consider a trigonometric polynomial $\phi(\theta)=\exp (\operatorname{in} \theta)+a \exp (-i m \theta), 0 \leq \theta \leq 2 \pi$ which defines a real affine curve by the relation

$$
x=x(\theta)=\Re(\phi(\theta)), y=y(\theta)=\Im(\phi(\theta)),
$$

$0 \leq \theta \leq 2 \pi$. Based on Bezoutian, the authors of this paper [3] gave a constructive proof by providing real symmetric matrices A_{1}, A_{2}, A_{3} so that the curve $(x(\theta), y(\theta))$ lies on $\operatorname{det}\left(A_{1}+x A_{2}+y A_{3}\right)=0$.

We compare the two construction matrices obtained in [3] and Theorem 2.2 by investigating the following example. The relation between Bezoutian and Sylvester resultants can be found in [11]. Let $n=2, m=1, a=4 / 5$,

$$
\phi(\theta)=\exp (2 i \theta)+\frac{4}{5} \exp (-i \theta)
$$

Then the matrix $H_{0}(t, x, y)=t C_{1}+x C_{2}+y C_{3}$ in (2.7) is computed by

$$
\begin{gathered}
C_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 4 / 5 \\
0 & 9 / 25 & 0 & 0 \\
0 & 0 & 9 / 25 & 0 \\
4 / 5 & 0 & 0 & 1
\end{array}\right), \\
C_{2}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 4 / 5 & -1 \\
-1 & 4 / 5 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), C_{3}=\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & -4 i / 5 & -i \\
i & 4 i / 5 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right) .
\end{gathered}
$$

We have that

$$
\left(C_{1}\right)^{-1 / 2} C_{2}\left(C_{1}\right)^{-1 / 2}=\frac{5}{9}\left(\begin{array}{cccc}
0 & \sqrt{5} & -2 \sqrt{5} & 0 \\
\sqrt{5} & 0 & 4 & -2 \sqrt{5} \\
-2 \sqrt{5} & 4 & 0 & \sqrt{5} \\
0 & -2 \sqrt{5} & \sqrt{5} & 0
\end{array}\right)
$$

and

$$
\left(C_{1}\right)^{-1 / 2} C_{3}\left(C_{1}\right)^{-1 / 2}=\frac{5}{9}\left(\begin{array}{cccc}
0 & -i \sqrt{5} & -2 i \sqrt{5} & 0 \\
i \sqrt{5} & 0 & -4 i & -2 i \sqrt{5} \\
2 i \sqrt{5} & 4 i & 0 & -i \sqrt{5} \\
0 & 2 i \sqrt{5} & i \sqrt{5} & 0
\end{array}\right)
$$

Thus the matrix $C_{0}=C_{1}^{-1 / 2}\left(C_{2}+i C_{3}\right) C_{1}^{-1 / 2}$ in Theorem 2.2 is given by

$$
C_{0}=\frac{10}{9}\left(\begin{array}{cccc}
0 & \sqrt{5} & 0 & 0 \tag{3.1}\\
0 & 0 & 4 & 0 \\
-2 \sqrt{5} & 0 & 0 & \sqrt{5} \\
0 & -2 \sqrt{5} & 0 & 0
\end{array}\right)
$$

On the other hand, the matrices constructed by Bezoutian in [3] satisfying

$$
6250000 \operatorname{det}\left(t C_{1}+x C_{2}+y C_{3}\right)=\operatorname{det}\left(t A_{1}+x A_{2}+y A_{3}\right)
$$

are given by

$$
A_{1}=\left(\begin{array}{cccc}
27 & 0 & -63 & 0 \\
0 & 27 & 0 & -3 \\
-63 & 0 & 207 & 0 \\
0 & -3 & 0 & 7
\end{array}\right)
$$

and

$$
A_{2}=\left(\begin{array}{cccc}
-15 & 0 & 35 & 0 \\
0 & 65 & 0 & 15 \\
35 & 0 & 85 & 0 \\
0 & 15 & 0 & -35
\end{array}\right), A_{3}=\left(\begin{array}{cccc}
0 & -60 & 0 & -10 \\
-60 & 0 & -10 & 0 \\
0 & -10 & 0 & 40 \\
-10 & 0 & 40 & 0
\end{array}\right)
$$

The matrix $A_{1}^{-1 / 2}$ is a scalar multiple of the matrix

$$
S=\left(\begin{array}{cccc}
p & 0 & q & 0 \\
0 & u & 0 & v \\
q & 0 & r & 0 \\
0 & v & 0 & w
\end{array}\right)
$$

where

$$
\begin{aligned}
& p=\sqrt{218(6217+98 \sqrt{5})}, q=7 \sqrt{218(13-2 \sqrt{5})}, r=\sqrt{218(257+98 \sqrt{5})} \\
& u=\sqrt{298(1373+54 \sqrt{5})}, v=3 \sqrt{298(17-6 \sqrt{5})}, w=3 \sqrt{298(637+6 \sqrt{5})}
\end{aligned}
$$

More precisely $S=2 \sqrt{108} \sqrt{149} A_{1}^{-1 / 2}$.
The matrices $A_{1}^{-1 / 2} A_{2} A_{1}^{-1 / 2}$ and $A_{1}^{-1 / 2} A_{3} A_{1}^{-1 / 2}$ are respectively real symmetric matrices of the form

$$
\left(\begin{array}{cccc}
a_{11} & 0 & a_{13} & 0 \\
0 & a_{22} & 0 & a_{24} \\
a_{13} & 0 & a_{33} & 0 \\
0 & a_{24} & 0 & a_{44}
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & a_{12} & 0 & a_{14} \\
a_{12} & 0 & a_{23} & 0 \\
0 & a_{23} & 0 & a_{34} \\
a_{14} & 0 & a_{34} & 0
\end{array}\right)
$$

where $a_{i j}$'s are distinct non-zero real numbers. Therefore none of entries of the matrix $A_{0}=A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right) A_{1}^{-1 / 2}$ is 0 , while the matrix C_{0} in (3.1) obtained by

Theorem 2.2 is rather sparse. The sparsity of A_{0} and C_{0}, obtained by the two methods, is an interesting subject for further study.

We have proposed two constructive algorithms for determinantal representations of the trigonometric polynomial $\phi(\theta)=\exp (\operatorname{in} \theta)+a \exp (-i m \theta)$ by matrices $A_{0}=A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right) A_{1}^{-1 / 2}$ and $C_{0}=C_{1}^{-1 / 2}\left(C_{2}+i C_{3}\right) C_{1}^{-1 / 2}$ satisfying (1.2). It is interesting to ask whether the two matrices A_{0} and C_{0} are unitarily similar. At this time, we cannot answer this question. Nevertheless, we give a positive answer for the case when

$$
\phi(\theta)=\exp (2 i \theta)+4 / 5 \exp (-i \theta)
$$

According to [2], there constructs a matrix

$$
B=\frac{10}{9}\left(\begin{array}{cccc}
0 & -4 & 0 & 0 \\
0 & 0 & -4 & -3 \\
-5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

satisfying

$$
729 \operatorname{det}\left(t I_{4}+x \Re(B)+y \Im(B)\right)=15625 \operatorname{det}\left(t C_{1}+x C_{2}+y C_{3}\right)
$$

At first, we show that the matrices A_{0} and B are unitarily similar by a unitary intertwining matrix W :

$$
W A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right) A_{1}^{-1 / 2}=B W
$$

Setting $W A_{1}^{1 / 2}=V$, the matrix V satisfies
$V A_{1}^{-1}\left(A_{2}+i A_{3}\right)=W A_{1}^{1 / 2} A_{1}^{-1}\left(A_{2}+i A_{3}\right)=W A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right)=B W A_{1}^{1 / 2}=B V$,
and

$$
\begin{equation*}
V A_{1}^{-1} V^{*}=W A_{1}^{1 / 2} A_{1}^{-1} A_{1}^{1 / 2} W^{*}=W W^{*}=I_{4} \tag{3.2}
\end{equation*}
$$

Conversely, if V satisfies (3.2) and (3.3) then the unitary matrix $W=V A_{1}^{-1 / 2}$ satisfies $W A_{1}^{-1 / 2}\left(A_{2}+i A_{3}\right) A_{1}^{-1 / 2} W^{*}=B$. Such a matrix V is given by

$$
V=\left(\begin{array}{cccc}
-3 i / 2 & 3 / 2 & -3 i / 2 & 3 / 2 \\
3 i / 2 & 3 / 2 & 3 i / 2 & 3 / 2 \\
-3 i / 2 & -9 / 2 & 9 i / 2 & 3 / 2 \\
9 i / 2 & -3 / 2 & -27 i / 2 & 1 / 2
\end{array}\right)
$$

This shows that A_{0} and B are unitarily similar.
On the other hand, the matrix C_{0} is unitarily similar to B, and $U C_{0} U^{*}=B$ for the unitary matrix

$$
U=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 / \sqrt{5} & 0 & 0 & -2 / \sqrt{5} \\
2 / \sqrt{5} & 0 & 0 & 1 / \sqrt{5}
\end{array}\right)
$$

Thus, both A_{0} and C_{0} are unitarily similar to B.

Acknowledgement. The authors thank the anonymous referee for his/her careful reading and valuable suggestions. The first author was partially supported by Taiwan National Science Council under NSC101-2115-M-031-002. The second author was supported in part by Japan Society for Promotion of Science, Project Number 23540180.

References

1. E. Bézout, General Theory of Algebraic Equations, Princeton University Press, Princeton and Oxford, 2006. (Tralslared from the French by E. Feron)
2. M.T. Chien and H. Nakazato, Numerical range for orbits under a central force, Math. Phys. Anal. Geom. 13 (2010), 315-330.
3. M.T. Chien and H. Nakazato, Construction of determinantal representation of trigonometric polynomials, Linear Algebra Appl. 435 (2011), 1277-1284.
4. M.T. Chien, H. Nakazato and P. Psarrakos, Point equation of the boundary of the numerical range of a matrix polynomial, Linear Algebra Appl. 347 (2002), 205-217.
5. M. Fiedler, Geometry of the numerical range of matrices, Linear Algebra Appl. 37 (1981), 81-96.
6. J.W. Helton and V. Vinnikov, Linear matrix inequality representations of sets, Comm. Pure Appl. Math. 60 (2007), 654-674.
7. D. Henrion, Detecting rigid convexity of bivariate polynomials, Linear Algebra Appl. 432 (2010), 1218-1233.
8. R. Kippenhahn, Über den wertevorrat einer Matrix, Math. Nachr. 6(1951), 193-228.
9. P.D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math. 6 (1958), 175-194.
10. A.S. Lewis, P.A. Parrilo and M.V. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc. 133 (2005), 2495-2499.
11. M. Mignotte, Mathematics for Computer Algebra, Springer, New York, 1992.
12. D. Plaumann, B. Sturmfels, and C. Vinzant, Computing linear matrix representations of Helton-Vinnikov curves, arXiv:1011.6057v1, 2010.
13. R.J. Walker, Algebraic curves, Dover Publ., New York, 1950.
14. H.K. Wimmer, On the history of the Bezoutian and the resultant matrix, Linear Algebra Appl. 128 (1990), 27-34.
${ }^{1}$ Department of Mathematics, Soochow University, Taipei 11102, Taiwan.
E-mail address: mtchien@scu.edu.tw
${ }^{2}$ Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

E-mail address: nakahr@cc.hirosaki-u.ac.jp

