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Abstract. We yield operators U and V on Hilbert spaces that are parame-
terized by the orbits of certain interval maps that exhibit chaotic behavior and
obey the (deformed) Baumslag–Solitar relation

UV = e2πiαV Un, α ∈ R, n ∈ N.

We then prove that the scalar e2πiα can be removed whilst retaining the isomor-
phism class of the C∗-algebra generated by U and V . Finally, we simultane-
ously unitarize U and V by gluing pairs of orbits of the underlying noninvertible
dynamical system and investigate these unitary representations under distinct
pairs of orbits.

1. Introduction and preliminaries

In [6, 7, 8, 10] we use symbolic dynamics and yield representations of Cuntz,
Cuntz–Krieger, subshift C∗-algebras determined by orbits of nonlinear systems
– in particular iterated maps of the interval, and Markov systems. These repre-
sentations has allowed us to get a clearer relationship between the structure of
these algebras and the underlying nonlinear dynamics. The studied systems are
non-invertible and the symbolic dynamics is based on one-sided sequences. We
obtained operators that are partial isometries, generating the referred algebras.
In the present paper, we will be able to obtain unitary operators (leading to

Date: Received: 4 March 2013; 30 May 2013.
∗ Corresponding author.
2010 Mathematics Subject Classification. Primary 46L55; Secondary 46L05, 37B10, 37A20.
Key words and phrases. Group C∗-algebras, representations of C∗-algebras, symbolic dy-

namics, interval maps.
138



BAUMSLAG–SOLITAR GROUP C∗-ALGEBRAS FROM INTERVAL MAPS 139

representations of group C∗-algebras of amenable groups) by inducing invertible
nonlinear systems.

The underlying groups we consider are the Baumslag–Solitar groups [1]:

BS(1, n) := 〈u, v|uv = vun〉. (1.1)

There is a rich structure relating the representation theory of the Baumslag–
Solitar groups and wavelet representations [4, 5] which goes back to the classical
translation operator Tf(x) = f(x−1) and the dilation operator Uf(x) = 1√

n
f(x

n
),

with f ∈ L2(R) and x ∈ R satisfying the Baumslag–Solitar relation UTU−1 = T n

(with n ∈ N fixed).
Using symbolic dynamics tools, we constructed in [7] operators U and V acting

on a Hilbert space Hx (related to the orbit of a point x) and satisfying the relation

UV = e2πiαV Un (1.2)

for α ∈ R and n ∈ N. So (1.2) can be thought of as a deformation of the relation

UV = V Un , (1.3)

which encodes a unitary representation of the Baumslag–Solitar group BS(1, n),
provided U and V in (1.3) are unitary operators. One natural question to ask
is how the C∗-algebra generated by U and V satisfying (1.2) is sensible to the
change of the parameter. Note that an isomorphism between the C∗-algebra
generated by U and V obeying (1.2) and the C∗-algebra generated by U and V
obeying (1.3) can only possibly hold if n > 1 since when n = 1 the C∗-algebra
generated by (1.2) is the rotation algebra [14], while the one attached to (1.3) is
commutative (if n = 1).

In this paper we show that one can indeed remove the parameter e2πiα in the
relation (1.2) provided n 6= 1, i.e. given U and V operators acting on a Hilbert
space H satisfying the relation (1.2) then we can find new operators U ′ and V ′

acting on the same Hilbert space H satisfying the relation (1.3) with the C∗-
algebras C∗(U, V ) and C∗(U ′, V ′) being isomorphic (see Lemma 3.3).

In the setup of [7], the operators U and V satisfying (1.2) act on a Hilbert
space Hx that depends on the orbit of x under the interval map

f(x) = nx + α (mod 1).

Besides, the parameter is given by e2πiα, the integer number in the relation (1.2)
is precisely the slope n of f , the operator U is clearly unitary while V fails to
be unitary (as the underlying dynamical system is noninvertible). Lemma 3.3
implies in particular that it is enough to consider the representations obtained
from (1.2) with α = 0 and n ∈ N.

In this manner we prove that it is possible to unitarize these operators (meaning
that we obtain unitary operators U and V obeying the relation (1.3)).

This unitarization is achieved by some sort of gluing the orbits (tensor product
of Hilbert spaces) of the underlying noninvertible dynamical system, implicitly
inducing an invertible 2-dimensional dynamical system. Namely we slightly mod-
ify the construction of U and V given in [7], and construct new operators U and



140 C. CORREIA RAMOS, R. EL HARTI, N. MARTINS, P.R. PINTO

V, see Eq. (3.3), acting on the Hilbert space tensor product Hx ⊗Hy and prove
that U and V are both unitary operators and satisfy the same relation of the
original ones U and V . We finally study these new representations in terms of
the orbits of x and y by studying the spectrum of U and V (see Theorem 3.6).
In particular, they are shown to be *-representations of the group C∗-algebra
C∗(BS(1, n)) as in [9] since BS(1, n) is an amenable group.

We review in Section 2 some necessary material from the Baumslag-Solitar
groups, operator algebras and symbolic dynamics. In Section 3, we prove the
main results as already described above.

2. The Baumslag-Solitar group and its group C∗-algebra

The group BS(1, n) defined in (1.1) is amenable because it can be written as
a crossed product BS(1, n) ∼= G o Z by an abelian group G (thus amenable).
Indeed as shown in [5], G is the group of n-adic numbers Z[ 1

n
] :=

⋃
k≥0 n−kZ, and

αi(
k

np
) = ni k

np
, i ∈ Z,

k

np
∈ Z[

1

n
]

defines an action of Z on G and the crossed product structure is given by

(i, b)(j, c) = (i + j, αi(c) + b), (j, k ∈ Z, b, c ∈ G). (2.1)

Note that Z[ 1
n
] is a discrete abelian group and thus it is amenable. Also the

elements k
np in Z[ 1

n
] correspond to v−pukvp and the elements i in Z correspond to

v−i in BS(1, n). Set uk/np := v−pukvp. In this way the multiplication rule in (2.1)
maybe written as follows:

(viud)(v
i′ud′) = vi+i′un−i′d+d′ .

We note that BS(1, n) ∼= BS(1, n′) if and only if n = n′, see [11]. A map
π : BS(1, n) → B(H) is a unitary representation of the group BS(1, n) on a
Hilbert space H (where B(H) denotes the algebra of bounded linear operators
on H) if π i s a group homomorphism such that π(g−1) = π(g)∗.

Remark 2.1. One non-trivial representation of the Baumslag–Solitar group B(1, n)
in 2× 2 matrices is given by

u →
(

1
n

0
0 1

)
, v →

(
1 1
0 1

)
.

2.1. Operator algebras input. A representation of a ∗-algebra A on a complex
Hilbert space H is a ∗-homomorphism π : A → B(H) into the ∗-algebra B(H)
of bounded linear operators on H. Usually representations are studied up to
unitary equivalence. Two representations π : A → B(H) and ρ : A → B(K)
are (unitarily) equivalent if there is a unitary operator W : H → K (i.e., W is a
surjective isometry) such that

Wπ(a) = ρ(a)W, for every a ∈ A.

A representation π : A → B(H) of some ∗-algebra is said to be irreducible if
there is no non-trivial subspace of H invariant with respect to all operators π(a)
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with a ∈ A. A well known result, see e.g. [13, Proposition 3.13.2], says that π is
irreducible if and only if

x ∈ B(H) : xπ(a) = π(a)x, for all a ∈ A =⇒ x = λ1, (2.2)

for some complex number λ, where 1 denotes the identity of B(H). By the very
definition of comutant, (2.2) can be restated as follows: π(A)′ = C1. Equiv-

alently, π is an irreducible representation if π(A)ξ = H for all non-zero vector
ξ ∈ H, where π(A)ξ is the span of {π(a)ξ : a ∈ A}. The representation is called
faithful if it is injective. We will be interested in some classes of C∗-algebras (Ba-
nach *-algebras such that ||aa∗|| = ||a||2 holds for all a, see e.g. [13]). Besides,
if we have a representation π : A → B(H) of a C∗-algebra A, then π being a
*-homomorphism implies that ||π(a)|| ≤ ||a|| for all a ∈ A an thus in particular
π is automatically continuous, see also e.g. [13, Section 1.5.7].

For a discrete group G, the full group C∗-algebra C∗(G) of G is the C∗-
enveloping algebra of l1(G), i.e. the completion of l1(G) with respect to the largest
C∗-norm:

||f ||C∗(G) := sup
π
‖π(f)‖,

where π ranges over all non-degenerate ∗-representations of l1(G) on Hilbert
spaces. The reduced C∗-algebra C∗

red(G) is the C∗-algebra generated by the
(image of) left regular representation λ : G → B(l2(G)) so that (λg(f))(h) =
f(g−1h). The left regular representation gives rise to a natural C∗-morphism
C∗(G) → C∗

red(G) which is an isomorphism if and only if G is amenable [9]. Note
that {∑

g∈F

cgλ(g) : cg ∈ C, F finite subset of G
}

is a dense *-subalgebra of C∗(G), see e.g. [9]. In general, for f ∈ l1(G), we have:

||f ||C∗
red(G) ≤ ||f ||C∗(G) ≤ ||f ||l1(G).

We remark that the unit representation provides a morphism C∗(G) → C, there-
fore C∗(G) is never a simple C∗-algebra for any (non-trivial) group G. Let
π : G → B(H) be a unitary representation of a discrete group G on a Hilbert space
H. Then we can uniquely extend π to a C∗-representation (i.e. *-homomorphism)
π̃ of the C∗-algebra C∗(G) on the same Hilbert space as in [9]. Of course we may
restrict a given C∗-representation of C∗(G) to the group G. The irreducibility is
preserved [9]:

π irred. unitary representation of G ⇐⇒ π̃ irred. representation of C∗(G).

3. Hilbert spaces from Interval maps

Let f : I → I be a piecewise monotone map of the interval I = [0, 1] into itself,
that is, there is a minimal partition of open sub-intervals of I, I = {I1, · · · , Im}
such that ∪m

j=1Ij = I and f|Ij
is continuous monotone, for every j = 1, · · · , m,

see [12]. We define fj := f|Ij
. The inverse branches are denoted by f−1

j : f(Ij) →
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Ij. Let χIi
be the characteristic function on the interval Ii. The following are

naturally satisfied

f ◦ f−1
i (x) = x, x ∈ f(Ii), and f−1

i ◦ f|Ii
(x) = x, x ∈ Ii

Let {1, · · · , n} be the alphabet associated to some partition P = {I1, · · · , In}
of open sub-intervals of I so that ∪n

j=1Ij = I, not necessarily I. The address
map, is defined by

ad :
n⋃

j=1

Ij → {1, · · · , n}, ad(x) = i if x ∈ Ii.

We define

Ωf := {x ∈ I : fk(x) ∈ ∪m
j=1Ij for all k = 0, 1, · · · }.

Note that Ωf = I. The itinerary map it : Ωf → {1, · · · , n}N is defined by

it(x) = ad(x)ad(f(x))ad(f 2(x)) · · ·

and let Σf = it(Ωf ). The space Σf is invariant under the shift map

σ : {1, · · · , n}N → {1, · · · , n}N defined by σ(i1i2 · · · ) = (i2i3 · · · ),

and we have it ◦ f = σ ◦ it. We will use σ meaning in fact σ|Σf
. A sequence in

{1, · · · , n}N is called admissible, with respect to f , if it occurs as an itinerary for
some point x in I, that is, if it belongs to Σf . An admissible word is a finite
sub-sequence of some admissible sequence. The set of admissible words of size k
is denoted by Wk = Wk(f). Given i1 · · · ik ∈ Wk, we define Ii1···ik as the set of
points x in Ωf which satisfy

ad(x) = i1, · · · , ad(fk(x)) = ik.

As in [6], we consider the following equivalence relation on the set Ωf ,

Rf = {(x, y) : fn(x) = fm(y) for some n, m ∈ N0}.

We write x ∼ y whenever (x, y) ∈ Rf . Consider the equivalence class Rf (x) and
set Hx the Hilbert space

Hx := l2(Rf (x))

with canonical orthonormal basis {|y〉 : y ∈ Rf (x)}, in the Dirac notation. Note
that Hx = Hy (are the same Hilbert spaces) whenever x ∼ y. The inner product
(·, ·) is given by

〈y|z〉 = (|y〉 , |z〉) = δy,z, with y, z ∈ Rf (x).

For each i = 1, · · · , n, let us define an operator Si on Hx, with respect to some
partition P = {I1, · · · , In} of I, as follows:

Si |y〉 = χf(Ii)(y)
∣∣f−1

i (y)
〉
.

Note that χf(Ii)(x) = 1 if and only if there is a pre-image of x in Ii. We have
S∗

i |y〉 = χIi
(y) |f(y)〉 . In fact

〈y|Si |z〉〉 =
〈
y|f−1

i (z)
〉

= δy,f−1
i (z).
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On the other hand we have

〈y|S∗
i |z〉〉 = χIi

(y) 〈f(y)|z〉 = χIi
(y)δf(y),z.

Since δy,f−1
i (z) = χIi

(y)δf(y),z we have shown that the operators Si, S∗
i are adjoint

of each other. We further remark that Si is a partial isometry: namely, Si is
an isometry on its restriction to span{|y〉 : y ∈ f(Ii)} ∩Hx and vanishes in the
remaining part of Hx.

For µ = µ1 · · ·µk ∈ Wk we define Sµ = Sµ1 · · ·Sµk
. Also S∗

µ = S∗
µk
· · ·S∗

µ1
. Thus

SµS
∗
µ |y〉 = χIµ(y).

3.1. Linear mod 1 interval maps. Now, let us consider the family of maps

f(x) = βx + α (mod 1) (3.1)

with β ≥ 1 and α ∈ [0, 1[. Let us consider the partition I = {I0, · · · , In−1} of the
interval I, with

I0 = ]0, (1− α)/β[ , · · · , Ij = ](j − α)/β, (j + 1− α)/β[ , · · · ,

· · · In−1 = ](n− 1− α)/β, 1[ ,

which is the minimal partition of monotonicity for f , and {cj} the set of dis-
continuity points of f . The set {0, 1, · · · , n − 1} will be the alphabet. Set
ξβ,α = (ξi)i∈N = itf (0) and consider the σ-invariant compact subset Σβ,α = it(I)
of {0, 1, · · ·n−1}N. Depending on the parameters α, β the orbit of 0 can be finite,
in which case we obtain a Markov partition, see [10], which is a refinement of the
above partition I.

Let ι be the function defined as follows:

ι (x) :=


0 if x ∈

[
0, 1−α

β

[
,

1 if x ∈
]

1−α
β

, 2−α
β

[
,

· · ·
[β]− 1 if x ∈

]
n−1−α

β
, 1

[
,

where [β] denotes the integral part of β and n = [β] + 1. Note that ι (x) is
always a natural number in the set {0, 1, · · · , [β]− 1}. Eq. (3.1) can therefore be
rewritten as follows

f(x) = βx + α− ι(x). (3.2)

In order to lift the map f to a circle map, we need the condition f(0) = f(1),
see [7]. This implies that β = n must be a positive integer number. Then we
may define bounded operators U and V (or Ux and Vx if confusion arises) acting
on the Hilbert space Hx as follows

V |x〉 = (S∗
1 + · · ·+ S∗

n)|x〉 = |f(x)〉, U |y〉 = e2πiy |y〉 .
Then we prove in [7, Theorem 3.4] that for n = 1, these operators give rise to

an irreducible representation of the irrational rotation algebra Aα. For generic n
we have the following generalization.

Proposition 3.1. The operators U and V satisfy the relation (1.2), with the
parameter given by e2πiα.
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Proof. We have

UV |y〉 = e2πif(y) |f(y)〉 = e2πiαe2πiny |f(y)〉 .

On the other hand

V Un |y〉 = e2πiny |f(y)〉 .
Therefore, UV = e2πiαV Un. �

This relation appears in [7, Proposition 3.6] under the condition that f is a
Markov map, but in Proposition 3.1 we obtain the same relation even in the non
Markov cases. We note that for n 6= 1, the operator V is not a unitary (in fact it
is an partial isometry), even for α = 0, because the underlying dynamical system
is noninvertible. Clearly, the operator U is always unitary.

Furthermore, we have the following irreducibility criterion for C∗(U, V ) as a
subalgebra of B(Hx).

Proposition 3.2. If α /∈ Q then C∗(U, V )′ = CI.

Proof. Let T ∈ B(Hx) so that it commutes with the generators U and V of
C∗(U, V ). Since U |f j(x)〉 = e2πi(x+jα)|f j(x)〉, where {|f j(x)〉} is the canonical
orthonormal basis of Hx with j ∈ Z, and the eigenvalues e2πi(x+jα) of U are all
distinct, we conclude that T |f j(x)〉 = cj|f j(x)〉 for some scalar cj. On the other
hand, V |f j(x)〉 = |f j+1(x)〉, so the commutation V T = TV gives us cj = cj+1.
Therefore T is a scalar multiple of the identity operator I. �

Lemma 3.3. The C∗-algebra generated by two operators U and V satisfying the
relation UV = e2παiV Un is isomorphic to the C∗-algebra generated by U ′ and V ′

satisfying U ′V ′ = V ′U ′n, for n > 1.

Proof. Given µ ∈ R, let W = e2πµiU . Then

WV = e2πµiUV = e2πµie2παiV Un =

= e2π(α+µ)iV Un = e2π(α+µ)iV e−2nπµiV W n = e2π(α+(1−n)µ)iV W n.

If µ = −α/(1 − n) then we have WV = V W n and the algebra generated by U
and V is the same generated by U and W . Now set U ′ := W, V ′ := V . �

It is clear from the above proof that if U and V are unitary operators so are the
new operators U ′ and V ′. Now Lemma 3.3 implies that the operators U ′ and V ′

do satisfy the relation (1.3) thus C∗(U, V ) ∼= C∗(U ′, V ′) as subalgebras of B(Hx).

Remark 3.4. Lemma 3.3 does not hold for n = 1. Indeed, the relation UV =
e2πiαV U is the famous defining relation of the (universal) rotation C∗-algebra Aα,
see [14]. It is the the C∗-algebra generated by two unitaries u and v satisfying
the relation

uv = e2πiαvu,

which is non-commutative, whereas the C∗-algebra generated by the unitaries u
and v satisfying uv = vu is commutative and in fact isomorphic to C(S1 × S1).
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3.2. Unitarization. We propose in this section to enlarge the Hilbert Hx and
define new linear operators U and V so that the relation (1.3) holds with the
advantage of U and V being both unitary operators.

For every x ∈ I, let Hx (see (3)) be the Hilbert space associated to the gener-
alized orbit of x under the interval map (3.2) with α = 0:

f(x) = nx− ι(x).

Now for every x, y ∈ I, let us consider the Hilbert space Hx ⊗Hy. The basis
is given by {|z〉 ⊗ |w〉 with z ∈ Rf (x) and w ∈ Rf (y)}. Next, consider the
operators Ux,y,Vx,y ∈ B(Hx ⊗Hy) defined as follows

Ux,y |z〉 ⊗ |w〉 := e2πiz |z〉 ⊗ |w〉 , Vx,y |z〉 ⊗ |w〉 := |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

. (3.3)

If no confusion arises, we shall denote Ux,y and Vx,y by U and V, respectively.
The operator U is clearly unitary, and in fact:

U∗ |z〉 ⊗ |w〉 = e−2πiz |z〉 ⊗ |w〉 .
The adjoint of V∗ is given by

V∗ |z〉 ⊗ |w〉 =
∣∣∣f−1

ι(w) (z)
〉
⊗ |f (w)〉 .

The operator V is unitary because

VV∗ |z〉 ⊗ |w〉 = V
∣∣∣f−1

ι(w) (z)
〉
⊗ |f (w)〉 =

=
∣∣∣f (

f−1
ι(w) (z)

)〉
⊗

∣∣∣∣f−1

ι
�
f−1

ι(w)
(z)

� (f (w))

〉
=

= |z〉 ⊗
∣∣∣f−1

ι(w) (f (w))
〉

= |z〉 ⊗ |w〉 ,

since ι
(
f−1

ι(w) (z)
)

= ι (w). On the other hand,

V∗V |z〉 ⊗ |w〉 = |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

=

=

∣∣∣∣f−1

ι
�
f−1

ι(z)
(w)

� (f (z))

〉
⊗

∣∣∣f (
f−1

ι(z) (w)
)〉

=

=
∣∣∣f−1

ι(z) (f (z))
〉
⊗ |w〉 = |z〉 ⊗ |w〉 .

We have the following relations between U and V

UV |z〉 ⊗ |w〉 = e2πif(z) |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

=

= e2πinz |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

and

VU |z〉 ⊗ |w〉 = e2πiz |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

,

VUn |z〉 ⊗ |w〉 = e2πinz |f (z)〉 ⊗
∣∣∣f−1

ι(z) (w)
〉

.

Therefore we easily obtain
UV = VUn.
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In particular, we have proven the following.

Theorem 3.5. The map u → U, v → V gives rise to a unitary representation

πx,y : BS(1, n) → B(Hx ⊗Hy)

of the Baumslag–Solitar group BS(1, n) on te Hilbert space Hx ⊗Hy.

Since the group BS(n, 1) is discrete and πx,y is a unitary representation, it can
be lifted to a *-representation of the group C∗-algebra C∗(BS(n, 1)).

We remark that the representation πx,y is not irreducible. Indeed, if we let
T ∈ B(Hx ⊗ Hy) commuting with U, then for every z ∈ [x] and w ∈ [y] we
conclude (see proof of Proposition 3.2) that:

T (z ⊗ w) =
∑

w′∈[y]

cz,w′ z ⊗ w′

for some complex numbers cz,w′ (with an extra freedom in the second variable,
unlike the case in proof of Proposition 3.2). If we further impose that T commutes
with V then we easily see that in T /∈ CI in general. Hence πx,y(C

∗(BS(n, 1)))′ 6=
CI. Since C∗(BS(n, 1)) ∼= C∗

red(BS(n, 1)) as BS(n, 1) is an amenable group, we
conclude that λ(BS(n, 1))′ 6= CI, where λ is the left regular representation. Note
that

πx,y(C
∗
red(BS(n, 1)))′ ⊆ πx,y(C

∗
red(BS(n, 1))′).

Theorem 3.6.

(1) If πx,y and πx′,y′ are unitarily equivalent, then x ∼ x′.
(2) If x ∼ x′ and y ∼ y′, then πx,y and πx′,y′ are unitarily equivalent.

Proof. We first prove (1). Since πx,y and πx′,y′ are unitarily equivalent, there
exists a surjective isometry W : Hx ⊗Hy → Hx′ ⊗Hy′ such that

πx′,y′(a) = Wπx,y(a)W ∗, for all a ∈ C∗(BS(n, 1)).

Hence the spectrum σ(Ux,y) of Ux,y equals the spectrum σ(Ux′,y′) of Ux′,y′ . How-
ever σ(Ux,y) = {e2πiz : z ∼ x} and σ(Ux′,y′) = {e2πiw : w ∼ x′}. Therefore x ∼ x′.

We now justify 2). If x ∼ x′ and y′ ∼ y′ then Hx = Hx′ and Hy = Hy′ .
Moreover Ux,y = Ux′,y′ and Vx,y = Vx′,y′ . Therefore πx,y and πx′,y′ are unitarily
equivalent. �
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