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ABSTRACT. We yield operators U and V on Hilbert spaces that are parame-
terized by the orbits of certain interval maps that exhibit chaotic behavior and
obey the (deformed) Baumslag—Solitar relation

UV = e2™aoyyn, acR, neN.

We then prove that the scalar e?™*® can be removed whilst retaining the isomor-
phism class of the C*-algebra generated by U and V. Finally, we simultane-
ously unitarize U and V' by gluing pairs of orbits of the underlying noninvertible
dynamical system and investigate these unitary representations under distinct
pairs of orbits.

1. INTRODUCTION AND PRELIMINARIES

In [0, 7, 8, 10] we use symbolic dynamics and yield representations of Cuntz,
Cuntz—Krieger, subshift C*-algebras determined by orbits of nonlinear systems
— in particular iterated maps of the interval, and Markov systems. These repre-
sentations has allowed us to get a clearer relationship between the structure of
these algebras and the underlying nonlinear dynamics. The studied systems are
non-invertible and the symbolic dynamics is based on one-sided sequences. We
obtained operators that are partial isometries, generating the referred algebras.
In the present paper, we will be able to obtain unitary operators (leading to
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representations of group C*-algebras of amenable groups) by inducing invertible
nonlinear systems.
The underlying groups we consider are the Baumslag—Solitar groups [!]:

BS(1,n) := (u, v|uv = vu™). (1.1)
There is a rich structure relating the representation theory of the Baumslag—
Solitar groups and wavelet representations [, 5] which goes back to the classical

translation operator T'f(z) = f(x—1) and the dilation operator U f(z) = \/Lﬁf(%),

with f € L?(R) and x € R satisfying the Baumslag—Solitar relation UTU ! = T™
(with n € N fixed).

Using symbolic dynamics tools, we constructed in [7] operators U and V' acting
on a Hilbert space H, (related to the orbit of a point x) and satisfying the relation

UV =™ yyn (1.2)
for « € R and n € N. So (1.2) can be thought of as a deformation of the relation

Uv =vur, (1.3)

which encodes a unitary representation of the Baumslag—Solitar group BS(1,n),
provided U and V in (1.3) are unitary operators. One natural question to ask
is how the C*-algebra generated by U and V satisfying (1.2) is sensible to the
change of the parameter. Note that an isomorphism between the C*-algebra
generated by U and V' obeying (1.2) and the C*-algebra generated by U and V
obeying (1.3) can only possibly hold if n > 1 since when n = 1 the C*-algebra
generated by (1.2) is the rotation algebra [11], while the one attached to (1.3) is
commutative (if n = 1).

In this paper we show that one can indeed remove the parameter €™ in the
relation (1.2) provided n # 1, i.e. given U and V operators acting on a Hilbert
space H satisfying the relation (1.2) then we can find new operators U’ and V'
acting on the same Hilbert space H satisfying the relation (1.3) with the C*-
algebras C*(U, V') and C*(U’, V') being isomorphic (see Lemma 3.3).

In the setup of [7], the operators U and V satisfying (1.2) act on a Hilbert
space H, that depends on the orbit of x under the interval map

f(z) =nx + a (mod 1).

Besides, the parameter is given by €*™@ the integer number in the relation (1.2)
is precisely the slope n of f, the operator U is clearly unitary while V fails to
be unitary (as the underlying dynamical system is noninvertible). Lemma 3.3
implies in particular that it is enough to consider the representations obtained
from (1.2) with a =0 and n € N.

In this manner we prove that it is possible to unitarize these operators (meaning
that we obtain unitary operators U and V obeying the relation (1.3)).

This unitarization is achieved by some sort of gluing the orbits (tensor product
of Hilbert spaces) of the underlying noninvertible dynamical system, implicitly
inducing an invertible 2-dimensional dynamical system. Namely we slightly mod-
ify the construction of U and V' given in [7], and construct new operators U and
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V, see Eq. (3.3), acting on the Hilbert space tensor product H, ® H, and prove
that U and V are both unitary operators and satisfy the same relation of the
original ones U and V. We finally study these new representations in terms of
the orbits of z and y by studying the spectrum of U and V (see Theorem 3.6).
In particular, they are shown to be *-representations of the group C*-algebra
C*(BS(1,n)) as in [9] since BS(1,n) is an amenable group.

We review in Section 2 some necessary material from the Baumslag-Solitar
groups, operator algebras and symbolic dynamics. In Section 3, we prove the
main results as already described above.

2. THE BAUMSLAG-SOLITAR GROUP AND ITS GROUP C*-ALGEBRA

The group BS(1,n) defined in (1.1) is amenable because it can be written as
a crossed product BS(1,n) = G x Z by an abelian group G (thus amenable).

Indeed as shown in [7], G is the group of n-adic numbers Z[1] := (57 *Z, and
k -k k 1
a(—)=n"—, i€ Z,— €Z]-]
np n? n? n

defines an action of Z on G and the crossed product structure is given by
(1,0)(j,c) = (i +j,eu(c) +0),  (j,k €Z,b,ceq). (2.1)

Note that Z[%] is a discrete abelian group and thus it is amenable. Also the
elements % in Z[%] correspond to v"Pu*v? and the elements i in Z correspond to
v~"in BS(1,n). Set ug/pe := v PuFvP. In this way the multiplication rule in (2.1)
maybe written as follows:

(Viug) (v ug) = v”ilun_i/dﬂl/.

We note that BS(1,n) = BS(1,n’) if and only if n = n’, see [I1]. A map
m : BS(1,n) — B(H) is a unitary representation of the group BS(1,n) on a
Hilbert space H (where B(H) denotes the algebra of bounded linear operators
on H) if 7 i s a group homomorphism such that 7(¢~!) = 7(g)*.

Remark 2.1. One non-trivial representation of the Baumslag—Solitar group B(1,n)
in 2 X 2 matrices is given by

_)%0 (11
Vo 1) Y“7\o1)

2.1. Operator algebras input. A representation of a x-algebra A on a complex
Hilbert space H is a #-homomorphism 7 : A — B(H) into the x-algebra B(H)
of bounded linear operators on H. Usually representations are studied up to
unitary equivalence. Two representations 7 : A — B(H) and p : A — B(K)
are (unitarily) equivalent if there is a unitary operator W : H — K (i.e., W is a
surjective isometry) such that

Wr(a) = p(a)W, for every a € A.

A representation 7 : A — B(H) of some x-algebra is said to be irreducible if
there is no non-trivial subspace of H invariant with respect to all operators 7(a)
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with a € A. A well known result, see e.g. [13, Proposition 3.13.2], says that 7 is
irreducible if and only if
r € B(H):zm(a) =m(a)x, foralla € A = z = A1, (2.2)

for some complex number A\, where 1 denotes the identity of B(H). By the very
definition of comutant, (2.2) can be restated as follows: m(A) = C1. Equiv-
alently, 7 is an irreducible representation if w(A)¢ = H for all non-zero vector
¢ € H, where m(A)¢ is the span of {m(a)¢ : a € A}. The representation is called
faithful if it is injective. We will be interested in some classes of C*-algebras (Ba-
nach *-algebras such that ||aa*|| = ||a||* holds for all a, see e.g. [13]). Besides,
if we have a representation 7 : A — B(H) of a C*-algebra A, then 7 being a
*-homomorphism implies that ||7(a)|| < ||a|| for all a € A an thus in particular
7 is automatically continuous, see also e.g. [13, Section 1.5.7].

For a discrete group G, the full group C*-algebra C*(G) of G is the C*-
enveloping algebra of ['(G), i.e. the completion of [*(G) with respect to the largest
C*-norm:

[1£]

where 7 ranges over all non-degenerate *-representations of ['(G) on Hilbert
spaces. The reduced C*-algebra C*,q(G) is the C*-algebra generated by the
(image of) left regular representation A : G — B(I*(G)) so that (A\,(f))(h) =
f(g7'h). The left regular representation gives rise to a natural C*-morphism
C*(G) — Cf4(G) which is an isomorphism if and only if G is amenable [9]. Note
that

C*(G) ‘= Sup (),

™

{ch)\(g) : ¢y € C, F finite subset of G}

geEF

is a dense *-subalgebra of C*(G), see e.g. [9]. In general, for f € I'(G), we have:
1]

We remark that the unit representation provides a morphism C*(G) — C, there-
fore C*(G) is never a simple C*-algebra for any (non-trivial) group G. Let
7 : G — B(H) be a unitary representation of a discrete group G on a Hilbert space
H. Then we can uniquely extend 7 to a C*-representation (i.e. *~homomorphism)
7 of the C*-algebra C*(G) on the same Hilbert space as in [9]. Of course we may
restrict a given C*-representation of C*(G) to the group G. The irreducibility is
preserved [9]:

cx @ < flles@ < N fllne:-

7 irred. unitary representation of G <= 7 irred. representation of C*(G).

3. HILBERT SPACES FROM INTERVAL MAPS

Let f : I — I be a piecewise monotone map of the interval I = [0, 1] into itself,
that is, there is a minimal partition of open sub-intervals of I, Z = {Iy,--- , [,,}

such that U™, [; = I and fj;; is continuous monotone, for every j = 1,---,m,
see [12]. We define f; := fi;,. The inverse branches are denoted by fj_1 cf(L) —
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I;. Let xj, be the characteristic function on the interval ;. The following are
naturally satisfied

fofil(z)==w, € f(I;), and f o fr(z)=m z€I
Let {1,--- ,n} be the alphabet associated to some partition P = {I,--- ,I,}

of open sub-intervals of I so that U7_,I; = I, not necessarily Z. The address
map, is defined by

ad:U]j—>{1,---,n}, ad(z) =iif z € I.
j=1

We define
Qpi={rel: ffz)eUp,lforallk =01}

Note that Q; = I. The itinerary map it : Q; — {1,--+ ,n}" is defined by
it(z) = ad(z)ad(f(z))ad(f*(x)) - -
and let Xy = it(€2y). The space X is invariant under the shift map
o:{l,- . n}N = {1,--- 0} defined by o (iyig---) = (iyiz---),

and we have it o f = o o4t. We will use 0 meaning in fact o)s,. A sequence in
{1,--- ,n}V is called admissible, with respect to f, if it occurs as an itinerary for
some point z in I, that is, if it belongs to ;. An admissible word is a finite
sub-sequence of some admissible sequence. The set of admissible words of size k
is denoted by Wy = Wi(f). Given iy ---ix € Wy, we define I;,..;, as the set of
points z in Q0 which satisfy

ad(z) =iy, ,ad(f*(x)) = i.
As in [6], we consider the following equivalence relation on the set Qy,
Ry ={(z,y): f"(x) = f"(y) for some n,m € No}.

We write z ~ y whenever (z,y) € Ry. Consider the equivalence class Ry(x) and
set H, the Hilbert space

H, = I*(Ry(x))
with canonical orthonormal basis {|y) : y € Rs(z)}, in the Dirac notation. Note
that H, = H, (are the same Hilbert spaces) whenever x ~ y. The inner product
(+,+) is given by
(Wlz) = Iy}, |2)) = 0y, withy,z € Ry(x).

For each i = 1,--- ,n, let us define an operator S; on H,, with respect to some
partition P = {Iy,---,I,} of I, as follows:

Sily) = xsa W) | £ () -
Note that xy,)(z) = 1 if and only if there is a pre-image of z in I;. We have
Sily) = x1,(y) [f(y)) - In fact

| Sil2)) = (ylfi'(2)) = Oy, f=1(2)"
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On the other hand we have

(Wl 57 12)) = xn () (FW)12) = x5 (W)d5).q-

Since 5y7f_71(z) = X1, (¥)0f(y),- we have shown that the operators S;, S are adjoint
of each other. We further remark that S; is a partial isometry: namely, S; is
an isometry on its restriction to span{|y) : y € f(f;)} N H_ and vanishes in the
remaining part of H,.

For p = py -+ - px € Wy, we define S, = S, --- Sy, Also S, =S}, --- S}, . Thus
SuSily) = x1,(y)-
3.1. Linear mod 1 interval maps. Now, let us consider the family of maps

f(z) = fxr 4+ a (mod 1) (3.1)

with > 1 and « € [0, 1]. Let us consider the partition Z = {ly,--- ,I,_1} of the
interval I, with

ly=10,A=)/B[ -+, Li=]0—-)/B,+1=a)/B[, -,
Iy = ](n_ 1-— a)/ﬁv 1[7
which is the minimal partition of monotonicity for f, and {c;} the set of dis-
continuity points of f. The set {0,1,--- ,n — 1} will be the alphabet. Set
£s.0 = (&)ien = it£(0) and consider the o-invariant compact subset X3, = it([)
of {0,1,---n—1}Y. Depending on the parameters a, 3 the orbit of 0 can be finite,
in which case we obtain a Markov partition, see [10], which is a refinement of the
above partition Z.
Let ¢ be the function defined as follows:

,
0 if zc 0,%[,

L) em ) LT 1*7&,2*7&[,
-1 if xe]"_lT_“,l[,
\
where [5] denotes the integral part of § and n = [§] + 1. Note that ¢ (z) is
always a natural number in the set {0,1,---,[3] — 1}. Eq. (3.1) can therefore be
rewritten as follows
f(z) =Px+ a—x). (3.2)
In order to lift the map f to a circle map, we need the condition f(0) = f(1),
see [7]. This implies that 5 = n must be a positive integer number. Then we

may define bounded operators U and V' (or U, and V, if confusion arises) acting
on the Hilbert space H, as follows

Vlg) = (ST +---+ Sp)la) = |f(2)),  Uly) = [y).
Then we prove in [7, Theorem 3.4] that for n = 1, these operators give rise to
an irreducible representation of the irrational rotation algebra A,. For generic n
we have the following generalization.

Proposition 3.1. The operators U and V' satisfy the relation (1.2), with the
parameter given by €™,
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Proof. We have
UV |y) = e | f(y)) = ™™ | [(y))

On the other hand
VU y) = ™™ |f(y)) .
Therefore, UV = 2™y ", O

This relation appears in [7, Proposition 3.6] under the condition that f is a
Markov map, but in Proposition 3.1 we obtain the same relation even in the non
Markov cases. We note that for n # 1, the operator V' is not a unitary (in fact it
is an partial isometry), even for o = 0, because the underlying dynamical system
is noninvertible. Clearly, the operator U is always unitary.

Furthermore, we have the following irreducibility criterion for C*(U,V) as a
subalgebra of B(H,).

Proposition 3.2. If a ¢ Q then C*(U,V) = CI.

Proof. Let T € B(H,) so that it commutes with the generators U and V' of
C*(U,V). Since U|fi(z)) = e @+i®)| fi(z)), where {|f7(x))} is the canonical
orthonormal basis of H, with j € Z, and the eigenvalues e?™(*+%) of U are all
distinct, we conclude that T|f7(z)) = ¢;|f?(z)) for some scalar ¢;. On the other
hand, V|f7(z)) = |f7"!(x)), so the commutation VT = TV gives us ¢; = ¢j;1.
Therefore T' is a scalar multiple of the identity operator I. O

Lemma 3.3. The C*-algebra generated by two operators U and V' satisfying the
relation UV = e*™ VU™ is isomorphic to the C*-algebra generated by U’ and V'
satisfying U'V' = V'U", forn > 1.

Proof. Given p € R, let W = 2™/, Then
WV = eQwuiUV — 627rui€27raiVUn —

_ 627r(a+u)iVUn _ e27r(a+u)ive—2n7rmvwn _ eQTr(a—l—(l—n)u)ivwn'

If x = —a/(1 —n) then we have WV = VIW" and the algebra generated by U
and V' is the same generated by U and W. Now set U' := W, V' :=V. OJ

It is clear from the above proof that if U and V' are unitary operators so are the
new operators U’ and V’. Now Lemma 3.3 implies that the operators U’ and V'
do satisfy the relation (1.3) thus C*(U,V) = C*(U’, V') as subalgebras of B(H,,).

Remark 3.4. Lemma 3.3 does not hold for n = 1. Indeed, the relation UV =
e?™V/ U is the famous defining relation of the (universal) rotation C*-algebra A,,
see [11]. Tt is the the C*-algebra generated by two unitaries u and v satisfying
the relation

w = ey,

which is non-commutative, whereas the C*-algebra generated by the unitaries u
and v satisfying uv = vu is commutative and in fact isomorphic to C(S* x S').
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3.2. Unitarization. We propose in this section to enlarge the Hilbert H, and
define new linear operators U and V so that the relation (1.3) holds with the
advantage of U and V being both unitary operators.

For every = € I, let H, (see (3)) be the Hilbert space associated to the gener-
alized orbit of x under the interval map (3.2) with a = 0:

f(z) =nx — o(z).

Now for every x,y € I, let us consider the Hilbert space H, ® H,. The basis
is given by {|z) ® |w) with z € Ry (z) and w € Ry (y)}. Next, consider the
operators U, ,, V,, € B(H, ® H,) defined as follows

Uy 2 @) = @712 @ ), Viy |2 @ ) o= | (2) ® |7 (@) (33)

If no confusion arises, we shall denote U, , and V., by U and V, respectively.
The operator U is clearly unitary, and in fact:

U [2) ® |w) = 7™ |2) @ |w).
The adjoint of V* is given by
Viz) @ |w) =

fimy (@) ©1F (w)).
The operator V is unitary because

VV s @) = V| () @ 1f (w) =

- | @)Y e | ) ) -
Fry (F (@)} = 2) @ ),
since ¢ (fL(l (z)) = ¢ (w). On the other hand,

w)
fble) (w)> =
Gy CE) @7 (5 ) =

LA @)Y @ w) = 12) @ ).

We have the following relations between U and V
UV[s) @) = &0 |f(2) @

— 627rz'nz |f (

= |9

V'V ew = |f(2)e

fih ) =
£ ()
L<z> >

)

(w

and
VU |2) @ |w) = 2™ |f (2))

VU" |2) ® [w) = e[ f (2)) ®

Therefore we easily obtain

)

Uv =vVvu".
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In particular, we have proven the following.

Theorem 3.5. The map v — U,v — V gives rise to a unitary representation
sy @ BS(l,n) — B(H, ® Hy)
of the Baumslag-Solitar group BS(1,n) on te Hilbert space H, @ H,.

Since the group BS(n, 1) is discrete and ,, is a unitary representation, it can
be lifted to a *-representation of the group C*-algebra C*(BS(n,1)).

We remark that the representation m,, is not irreducible. Indeed, if we let
T € B(H, ® H,) commuting with U, then for every z € [z] and w € [y] we
conclude (see proof of Proposition 3.2) that:

T(z@w)= Z Cot 2 QW

w'€[y]

for some complex numbers ¢, ., (with an extra freedom in the second variable,
unlike the case in proof of Proposition 3.2). If we further impose that 7' commutes
with V then we easily see that in T ¢ CI in general. Hence 7, ,(C*(BS(n,1))) #
CI. Since C*(BS(n,1)) = C* (BS(n,1)) as BS(n,1) is an amenable group, we
conclude that A(BS(n,1)) # CI, where ) is the left regular representation. Note
that

T (Cona(BS(0, 1)) € ma(Cooa( BS(,1))).

T

Theorem 3.6.

(1) If 7y, and my .y are unitarily equivalent, then x ~ x'.
(2) If x ~ 2" and y ~ Yy, then m,, and 7y, are unitarily equivalent.

Proof. We first prove (1). Since 7., and 7, , are unitarily equivalent, there
exists a surjective isometry W : H, ® H, — H,» ® H, such that

Ty (@) = Wiy (@)W, for all @ € C*(BS(n,1)).

Hence the spectrum o(U,,,) of U, , equals the spectrum o (U, ) of U,/ ,». How-
ever o(U,,) ={e*™* : z ~z}and 6(Uy ) = {2 : w ~ a'}. Therefore z ~ 2.

We now justify 2). If x ~ 2’ and y ~ y then H, = H, and H, = H,.
Moreover U, , = U,/ and V., = V.. Therefore 7., and 7,/ are unitarily
equivalent. O
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