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Abstract. In this paper, we consider orthonormal bases for finite dimensional
normed linear spaces which are related to Birkhoff orthogonality. We also
study the relationship between orthonormal bases and a structure of finite
dimensional normed linear spaces.

1. Introduction

Throughout this paper, the term “normed linear space” always means a real
normed linear space. Let X be a normed linear space equipped with the norm
‖ · ‖. Then BX and SX are, respectively, the closed unit ball and unit sphere of
X. If A is a subset of a normed linear space, let 〈A〉 be the linear span of A.

Orthogonality is one of the most important concepts in the theory of inner prod-
uct spaces. It appears in many fundamental theorems such as the Pythagorean
theorem. However, when switching from the theory of inner product spaces to
Banach space geometry, we cannot maintain the notion of orthogonality. There-
fore, since 1934 generalized orthogonality types for normed linear spaces have
been introduced and studied.

(i) Roberts⊥R: x ⊥R y if ‖x+αy‖ = ‖x−αy‖ for all α ∈ R (cf. Roberts [13]).
(ii) Isosceles ⊥I : x ⊥I y if ‖x + y‖ = ‖x− y‖ (cf. James [9]).
(iii) Pythagorean ⊥P : x ⊥P y if ‖x− y‖2 = ‖x‖2 + ‖y‖2 (cf. James [9]).
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There are many other types of orthogonality in normed linear spaces such as
Diminnie [8], Carlsson [5], T -orthogonality [15], and so on. The survey of Alonso-
Martini-Wu [2] is a good starting point to study the history of generalized or-
thogonality.

In this paper, we focus on Birkhoff orthogonality especially. Let X be a normed
linear space and let x, y ∈ X. Then, recall that x is said to be Birkhoff orthogonal
to y, denoted by x ⊥B y, if ‖x + αy‖ ≥ ‖x‖ for all α ∈ R. If M and N are two
subspaces of X, then M is said to be Birkhoff orthogonal to N , denoted by
M ⊥B N , if x ⊥B y for all x ∈ M and all y ∈ N . In particular, 〈{x}〉 ⊥B N
and M ⊥B 〈{y}〉 are simply denoted by x ⊥B N and M ⊥B y, respectively.
Recall that Birkhoff orthogonality is always homogeneous, that is, x ⊥B y implies
αx ⊥B βy for any real numbers α and β. However, Birkhoff orthogonality is not
symmetric in general, that is, x ⊥B y does not imply y ⊥B x. Indeed, a real
normed linear space of dimension greater than or equal to three is an inner product
space if and only if Birkhoff orthogonality is symmetric (Day [7], James [10]).
More details about Birkhoff orthogonality can be found in [4, 6, 7, 9, 10, 11].

A norm ‖ · ‖ on Rn is said to be normal if it satisfies ‖ · ‖1 ≤ ‖ · ‖ ≤ ‖ · ‖∞. Let
NNn denote the set of all normal norms on Rn. In the previous paper [16], we
showed that every n-dimensional normed linear space is isometrically isomorphic
to the space Rn endowed with a normal norm. If n = 2, the result is due to
Alonso [1]. This is essentially based on the following result of Day [6]: Every
n-dimensional normed linear space X has a basis {e1, e2, . . . , en} ⊂ SX such that

(B1) ek ⊥B Mk for all k = 1, 2, . . . , n,

where Mk = 〈{e1, . . . , ek−1, ek+1, . . . , en}〉. However, as mentioned in above,
ek ⊥B Mk is not equivalent to Mk ⊥B ek. So we consider a basis {e1, e2, . . . , en} ⊂
SX satisfying the following condition:

(B2) Mk ⊥B ek for all k = 1, 2, . . . , n,

A basis {e1, e2, . . . , en} for an n-dimensional normed linear space is said to be
Bi-orthogonal if it satisfies the condition (Bi) (i = 1, 2), and Bi-orthonormal if
it is Bi-orthogonal and normal, that is, {e1, e2, . . . , en} ⊂ SX .

In this paper, we study B1-orthonormal bases and B2-orthonormal bases for
finite dimensional normed linear spaces.

2. Orthonormal bases

We first consider a characterization of orthonormal bases in terms of norms.

Proposition 2.1. Let X be an n-dimensional normed linear space and {e1, . . . , en}
be a normal basis for X. Then, the following are equivalent:

(i) {e1, e2, . . . , en} is B1-orthonormal.
(ii) The equation ∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥ ≥ max
1≤i≤n

|ai|

holds for all (a1, a2, . . . , an) ∈ Rn.



ORTHONORMAL BASES AND THE NORM STRUCTURE 91

Proof. We only note that for each k = 1, 2, . . . , n, ek ⊥B [{ei}i6=k] if and only if∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥ =

∥∥∥∥∥akek +
∑
i6=k

aiei

∥∥∥∥∥ ≥ |ak|

for all (a1, a2, . . . , an) ∈ Rn. Then one can easily check that (i) is equivalent to
(ii). �

Remark 2.2. Bases satisfying (ii) of Proposition 2.1 was considered by Khalil [12].
He mainly studied Schauder bases which satisfies (ii).

Proposition 2.3. Let X be an n-dimensional normed linear space and {e1, . . . , en}
be a normal basis for X. Then, the following are equivalent:

(i) {e1, e2, . . . , en} is B1-orthonormal.
(ii) The inequality ∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥ ≥ max
1≤k≤n

∥∥∥∥∥∑
i6=k

aiei

∥∥∥∥∥
holds for all (a1, a2, . . . , an) ∈ Rn.

Proof. Let i = 1, 2, . . . , n. Since [{e1, . . . , ek−1, ek+1, . . . , en}] ⊥B ek if and only if∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥ ≥
∥∥∥∥∥∑

i6=k

aiei

∥∥∥∥∥
for all (a1, a2, . . . , an) ∈ Rn, one has the equivalence of (i) and (ii). �

We next consider the relationship between the conditions (B1) and (B2). Then,
the following lemma is needed, which is an important characterization of the
condition (B2). The proof is easy, and so is omitted.

Lemma 2.4. Let {e1, e2, . . . , en} be a B2-orthonormal basis for an n-dimensional
normed linear space. Then,∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥ = max

{∥∥∥∥∥∑
i∈A

aiei

∥∥∥∥∥ : A ⊂ {1, 2, . . . , n}

}
for all (a1, a2, . . . , an) ∈ Rn.

This means that if {e1, e2, . . . , en} is B2-orthonormal, any natural projection on
X has norm 1. Hence, B2-orthonormal bases can be viewed as finite dimensional
version of 1-unconditional bases.

From the preceding lemma, we immediately have the following result.

Theorem 2.5. Let X be an n-dimensional real normed linear space. Suppose
that {e1, e2, . . . , en} is a normal basis for X. Then, the following hold:

(i) If {e1, e2, . . . , en} is B2-orthonormal, then it is B1-orthonormal.
(ii) If n = 2, then {e1, e2} is B2-orthonormal if and only if it is B1-orthonormal.

In symbols, (B2) ⇒ (B1), and (B2) ⇔ (B1) if n = 2.

As seen in the following example, (B1) does not imply (B2) if n ≥ 3.
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Example 2.6. Suppose that n ≥ 3. Our purpose is to show that (B1) does not
imply (B2) if n ≥ 3. Let {e1, e2, . . . , en} be the standard unit vector basis for Rn

and let ‖ · ‖ be the normalized norm on Rn defined by

‖(a1, a2, . . . , an)‖ = max

{
|a1|,

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ , max
2≤i≤n

∣∣∣∣∣
n∑

k=1

εikak

∣∣∣∣∣
}

for all (a1, a2, . . . , an) ∈ Rn, where

εik =

{
1 if k 6= i,
−1 if k = i.

Then we have

|ai| =

∣∣∣∣∣12
(

n∑
k=1

ak −
n∑

k=1

εikak

)∣∣∣∣∣
≤ 1

2

(∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=1

εikak

∣∣∣∣∣
)

≤ ‖(a1, a2, . . . , an)‖
for each i ≥ 2, and so

‖(a1, a2, . . . , an)‖ ≥ max
1≤i≤n

|ai|

for all (a1, a2, . . . , an) ∈ Rn. Thus {e1, e2, . . . , en} satisfies (B1). However,

‖(−1, 1, . . . , 1)‖ = n− 2 < n− 1 = ‖(0, 1, . . . , 1)‖.
Therefore 〈{ek}k≥2〉 6⊥B e1, and so {e1, e2, . . . , en} does not satisfy (B2).

3. The norm structure

In this section, we characterize the existence of orthonormal bases. The exis-
tence of B1-orthonormal bases is characterized using normal norms.

Theorem 3.1. Let X be an n-dimensional normed linear space. Then, X has a
B1-orthonormal basis if and only if it is isometrically isomorphic to the space Rn

endowed with a normal norm.

Proof. Suppose that X has a B1-orthonormal basis {e1, e2, . . . , en}. Define a norm
‖ · ‖0 on Rn by

‖(a1, a2, . . . , an)‖0 =

∥∥∥∥∥
n∑

k=1

akek

∥∥∥∥∥
for all (a1, a2, . . . , an) ∈ Rn. Then, ‖ · ‖0 ∈ NNn by Proposition 2.1, and X is
isometrically isomorphic to the space (Rn, ‖ · ‖0).

Conversely, we assume that X is isometrically isomorphic to the space Rn

endowed with a regular norm ‖ · ‖0. For each i = 1, 2, . . . , n, let ei be the element
of X which identified with the i-th coordinate vector of Rn. Then, we have∥∥∥∥∥

n∑
k=1

αkek

∥∥∥∥∥ = ‖(α1, α2, . . . , αn)‖0
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for all (α1, α2, . . . , αn) ∈ Rn, and so∥∥∥∥∥
n∑

k=1

αkek

∥∥∥∥∥ = ‖(α1, α2, . . . , αn)‖0

≥ max
1≤i≤n

|ai|

holds for all (a1, a2, . . . , an) ∈ Rn. Hence, {e1, e2, . . . , en} is a B1-orthonormal
basis for X by Proposition 2.1. The proof is complete. �

Remark 3.2. As was mentioned in introduction, Day [6] showed that every finite
dimensional normed linear space has a B1-orthonormal basis.

We next consider a characterization of B2-orthonormal bases. For this purpose,
we introduce the notion of regular norm. We recall some about norms on Rn.

Definition 3.3. A norm ‖ · ‖ on Rn is said to be absolute if

‖(a1, a2, . . . , an)‖ = ‖(|a1|, |a2|, . . . , |an|)‖

for all (a1, a2, . . . , an) ∈ Rn, and normalized if

‖(1, 0, . . . , 0)‖ = ‖(0, 1, 0, . . . , 0)‖ = ‖(0, . . . , 0, 1)‖ = 1.

Let ANn denote the family of all absolute normalized norms on Rn.

The following is an important characterization of absolute norm. The proof
can be found in [3, Proposition IV.1.1] (see, also [14, Lemma 4.1]).

Lemma 3.4. A norm ‖ · ‖ on Rn is absolute if and only if it is monotone, that
is, if |ak| ≤ |bk| for all k = 1, 2, . . . , n then ‖(a1, a2, . . . , an)‖ ≤ ‖(b1, b2, . . . , bn)‖.

We now introduce regular norms on Rn.

Definition 3.5. A norm ‖ · ‖ on Rn is said to be regular if it is normalized and

‖(a1, a2, . . . , an)‖ ≥ max
1≤k≤n

‖(a1, . . . , ak−1, 0, ak+1, . . . , an)‖

for all (a1, a2, . . . , an) ∈ Rn. Let RNn denote the family of all regular norms on
Rn.

Regular norms have a characterization analogous to Lemma 3.4. To see this,
we introduce the notion of the Ωi-quadrant. For each n ≥ 2, define a 2n−1 × n
matrix R+

n by the formula

R+
2 =

(
1 1
1 −1

)
and R+

n =



1
... R+

n−1

1
1
... −R+

n−1

1


(n ≥ 3).
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Fix a positive integer n ≥ 2. Let

R+
n =


θ1

θ2
...

θ2n−1

 .

Then, the Ωi-quadrant of Rn is given by

Ωi = θi · Rn
+ = {θi · x : x ∈ Rn

+},
where R+ is the set of all nonnegative real numbers, and θi·x denotes the pointwise
product of θi and x. For example, if n = 3,

R+
3 =


1 1 1
1 1 −1
1 −1 −1
1 −1 1


and

Ω1 = {(x, y, z) ∈ R3 : x, y, z ≥ 0},
Ω2 = {(x, y,−z) ∈ R3 : x, y, z ≥ 0},
Ω3 = {(x,−y,−z) ∈ R3 : x, y, z ≥ 0},
Ω4 = {(x,−y, z) ∈ R3 : x, y, z ≥ 0}.

The following is an analog of Lemma 3.4 for regular norms.

Theorem 3.6. A normalized norm ‖ · ‖ on Rn is regular if and only if it is
semi-monotone, that is,

‖(a1, a2, . . . , an)‖ ≤ ‖(b1, b2, . . . , bn)‖,
whenever (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Ωi for some i and |ak| ≤ |bk| for all
k = 1, 2, . . . , n, or equivalently, whenever (a1, a2, . . . , an), (b1, b2, . . . , bn) satisfies
akbk ≥ 0 and |ak| ≤ |bk| for all k = 1, 2, . . . , n.

Proof. If ‖ · ‖ is semi-monotone, it is clearly regular.
For the converse, suppose that ‖ · ‖ is regular. Then

‖(a1, a2, . . . , an)‖ ≥ max
1≤k≤n

‖(a1, . . . , ak−1, 0, ak+1, . . . , an)‖

for all (a1, a2, . . . , an) ∈ Rn. Let k be a positive integer such that 1 ≤ k ≤ n, let
(a1, a2, . . . , an) ∈ Rn, and let t ≥ 1. Then we have

‖(a1, a2, . . . , an)‖
≤ (1− t−1)‖(a1, . . . , ak−1, 0, ak+1, . . . , an)‖

+ t−1‖(a1, . . . , ak−1, tak, ak+1, . . . , an)‖
≤ (1− t−1)‖(a1, . . . , ak−1, tak, ak+1, . . . , an)‖

+ t−1‖(a1, . . . , ak−1, tak, ak+1, . . . , an)‖
= ‖(a1, . . . , ak−1, tak, ak+1, . . . , an)‖.
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Now, let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be elements of Rn such that |ai| ≤ |bi|
and aibi ≥ 0 for all i = 1, 2, . . . , n. Then we obtain

‖(a1, a2, . . . , an)‖ ≤ ‖(b1, a2, . . . , an)‖
≤ ‖(b1, b2, a3, . . . , an)‖
...

≤ ‖(b1, b2, . . . , bn)‖

Thus, the norm ‖ · ‖ is semi-monotone. �

Therefore, the regularity of norms can be viewed as monotonicity in each quad-
rants. We now characterize the existence of B2-orthonormal bases in terms of
regular norm.

Theorem 3.7. Let X be an n-dimensional normed linear space. Then, X has a
B2-orthonormal basis if and only if it is isometrically isomorphic to the space Rn

endowed with a regular norm.

Proof. Assume that X has a B2-orthonormal basis {e1, e2, . . . , en}. Then, X is
identified with the space (Rn, ‖ · ‖0) under the identification

X 3
n∑

k=1

αkek ←→ (a1, a2, . . . , an) ∈ Rn,

where the norm ‖ · ‖0 is given by

‖(a1, a2, . . . , an)‖0 =

∥∥∥∥∥
n∑

k=1

akek

∥∥∥∥∥
for all (a1, a2, . . . , an) ∈ Rn. Moreover, one can obtain that ‖ · ‖0 ∈ RNn since
{e1, e2, . . . , en} is B2-orthonormal.

For the converse, suppose that X is isometrically isomorphic to the space Rn

endowed with a regular norm ‖ · ‖0. Let T be an isometric isomorphism from X
onto (Rn, ‖ · ‖0). For each i = 1, 2, . . . , n, let ei be the element of X such that

Tei = (0, . . . , 0,
(i)

1 , 0, . . . , 0).

Then, it follows that ∥∥∥∥∥
n∑

k=1

αkek

∥∥∥∥∥ = ‖(α1, α2, . . . , αn)‖0
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for all (α1, α2, . . . , αn) ∈ Rn. Thus,∥∥∥∥∥
n∑

k=1

αkek

∥∥∥∥∥ = ‖(α1, α2, . . . , αn)‖0

≥ max
1≤k≤n

‖(a1, . . . , ak−1, 0, ak+1, . . . , an)‖0

= max
1≤k≤n

∥∥∥∥∥∑
i6=k

aiei

∥∥∥∥∥
holds for all (a1, a2, . . . , an) ∈ Rn, which shows that {e1, e2, . . . , en} satisfies (B2)
by Proposition 2.1. The proof is complete. �

Remark 3.8. A normal basis {e1, e2, . . . , en} for an n-dimensional normed linear
space X is said to be R-orthonormal if it satisfies the following condition:

(R) ek ⊥R Mk for all k = 1, 2, . . . , n.

Then, it is easy to check that an n-dimensional normed linear space X has an
R-orthonormal basis if and only if it is isometrically isomorphic to the space Rn

endowed with an absolute normalized norm. Thus, we finally have the following
relationship.

(R) ⇒ (B2) ⇒ (B1)
l l l

ANn ⊂ RNn ⊂ NNn
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