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Abstract. Multipliers have recently been introduced as operators for Bessel
sequences and frames in Hilbert spaces. In this paper, we define the concept
of (Xd, X

∗
d ) and (l∞, Xd, X

∗
d )-Bessel multipliers in Banach spaces and inves-

tigate the compactness of these multipliers. Also, we study the possibility of
invertibility of (l∞, Xd, X

∗
d )-Bessel multiplier depending on the properties of

its corresponding sequences and its symbol. Furthermore, we prove that every
(Xd, X

∗
d )-Bessel multiplier is a λ-nuclear operator.

1. Introduction and preliminaries

In 1991 Gröchenig [11] generalized frames to Banach spaces and called them
atomic decompositions. He also defined a more general notion for Banach spaces
called a Banach frame. Further work on atomic decompositions via group rep-
resentations appeared in 1996 by Christensen [7], and perturbation theory for
atomic decompositions was presented by Christensen and Heil [8]. For further
studies on Banach frames and atomic decompositions, we refer to [5, 6, 12, 14,
26, 27, 28, 30].
In [21], Schatten provided a detailed study of ideals of compact operators of
the form

∑
mkφk ⊗ ψk, where {φk} and {ψk} are orthonormal families, Balazs

replaced these orthonormal families with Bessel sequences to define Bessel mul-
tipliers for Hilbert spaces [2, 3, 4]. For Bessel sequences, the investigation of the
operator M =

∑
mkφk ⊗ ψk is very natural and useful and there are numerous
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applications of this kind of operators. In [22, 23, 24, 25], Stoeva and Balazs in-
vestigated the unconditional convergence of Bessel multipliers and characterized
a complete set of conditions for the invertibility of them. Bessel multipliers for
p-Bessel sequences in Banach spaces and for g-Bessel sequences in Hilbert spaces
were introduced in [16] and [17], respectively. In this paper, we introduce Bessel
multipliers for Xd-Bessel sequences in Banach spaces.
This paper is organized as follows: In Section 1, we present properties of α-dual
(Köthe-dual) and β-dual of a BK-space and recall some basic properties of Xd-
frames in Banach spaces. In Section 2, we define the concept of (Xd, X

∗
d) and

(l∞, Xd, X
∗
d)-Bessel multipliers in Banach spaces and show that as operators, they

are well defined and bounded. In Section 3, we investigate the compactness of
these multipliers and study the invertibility of (l∞, Xd, X

∗
d)-Bessel multiplier. The

dependency of the multipliers on their parameters is investigated in Section 4.
Finally, in Section 5, we prove that every (Xd, X

∗
d)-Bessel multiplier is a λ-nuclear

operator.
Throughout this paper, X is a Banach space, B(X) is the space of bounded linear
operators from X into X and Xd is a complex sequence space; that is, a vector
space whose elements are sequences of complex numbers. All sequence spaces will
be assumed to include φ, the set of finitely nonzero sequences [13]. A sequence
space Xd is called a BK-space, if it is a Banach space and all of the coordinate
functionals {ak} → ak are continuous. A sequence space Xd is called solid if when-
ever {ak} and {bk} are sequences with {bk} ∈ Xd and |ak| ≤ |bk|, for each k ∈ N,
then it follows that {ak} ∈ Xd and ‖{ak}‖Xd ≤ ‖{bk}‖Xd . A sequence space Xd

is called an AK-space if it is a topological vector space and {ak} = limn pn({ak})
for each {ak} ∈ Xd, where pn({ak}) = {a1, a2, · · · , an, 0, · · · }.
In [13], Köthe has assigned for each sequence space Xd two sequence spaces Xα

d ,
α-dual (Köthe-dual) of Xd, with the following definition:

Xα
d =

{
{ak} :

∞∑
k=1

|akbk| <∞, ∀{bk} ∈ Xd

}
,

and Xβ
d , β-dual of Xd, with this definition:

Xβ
d =

{
{ak} :

∞∑
k=1

akbk converges, ∀{bk} ∈ Xd

}
.

It is evident that Xα
d ⊆ Xβ

d . We note that α-dual and β-dual of a BK-space Xd

are BK-spaces with respect to the norms

‖{ak}‖α = sup
‖{bk}‖Xd≤1

∞∑
k=1

|akbk|, (1.1)

and

‖{ak}‖β = sup
‖{bk}‖Xd≤1

|
∞∑
k=1

akbk|, (1.2)

respectively. Also if Xd is a solid BK-space, then Xα
d = Xβ

d [15, 29].
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Remark 1.1. We note that if Xd is a solid BK-space, the norms defined in (1.1)
and (1.2) are equivalent by the open mapping theorem.

It is proved in [15, 29], that the spaces X∗d and Xβ
d are isometrically isomorphic

with the norm defined in (1.2), when Xd is a BK-AK-space. So by Remark 1.1,
we deduce that if Xd is a solid BK-AK-space, then the spaces X∗d and Xα

d are
isomorphic with the norm defined in (1.1) and there exist K,K ′ > 0 such that

K ′‖{ak}‖X∗d ≤ ‖{ak}‖α ≤ K‖{ak}‖X∗d , {ak} ∈ X
∗
d ' Xα

d , (1.3)

where K ′ can be set to 1.

Lemma 1.1. [10] Let {ek} be a Schauder basis of a normed space X. The canon-
ical projections Pn : X → X, where Pn(

∑∞
i=1 aiei) =

∑n
i=1 aiei, satisfy:

(i) dim (Pn(X)) = n;
(ii) PnPm = PmPn = Pmin(m,n);
(iii) limn→∞ Pn(x) = x, for every x ∈ X.

We note that sequence {mk} is called semi-normalized, if

0 < inf
k
|mk| ≤ sup

k
|mk| <∞.

A sequence {φk} ⊆ X is called norm bounded above, in short NBA (resp. norm
bounded below, in short NBB), if supk ‖φk‖ <∞ (resp. infk ‖φk‖ > 0).

Definition 1.2. Let X be a Banach space and Xd be a BK-space. A countable
sequence {gk}∞k=1 in the dual X∗ is called an Xd-frame for X if
(i) {gk(f)} ∈ Xd, f ∈ X;
(ii) the norms ‖f‖X and ‖{gk(f)}‖Xd are equivalent i.e., there exist constants
A,B > 0 such that

A‖f‖X ≤ ‖{gk(f)}‖Xd ≤ B‖f‖X , f ∈ X. (1.4)

The constants A and B are called lower and upper Xd-frame bounds, respectively.
If (i) and the upper condition in (1.4), are satisfied, then {gk} is called an Xd-
Bessel sequence for X with bound B. We call {gk} a tight Xd-frame if A = B
and a Parseval Xd-frame if A = B = 1.

Definition 1.3. [1] Let {gk} be a sequence of elements in X∗ and {mk} ⊆ C.
We call {gk} a weighted Xd-frame for X, if the sequence {mkgk} is an Xd-frame
for X.

Proposition 1.4. [5] Suppose that Xd is a BK-space for which the canonical unit
vectors {ek} form a Schauder basis. Then {gk} ⊆ X∗ is an X∗d -Bessel sequence
for X with bound B if and only if the operator

T : {dk} →
∞∑
k=1

dkgk,

is well defined (hence bounded) from Xd into X∗ and ‖T‖ ≤ B.
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Definition 1.5. A sequence {fk} ⊆ X is called an Xd-Riesz basis for X, if it is
complete in X and there exist constants A,B > 0 such that

A‖{ck}‖Xd ≤ ‖
∞∑
k=1

ckfk‖ ≤ B‖{ck}‖Xd , {ck} ∈ Xd. (1.5)

The constants A and B are called lower and upper Xd-Riesz basis bounds, respec-
tively. If {fk} is an Xd-Riesz basis for spank{fk}, then {fk} is called an Xd-Riesz
sequence.

Proposition 1.6. [28] Suppose that Xd is a reflexive BK-space for which the
canonical unit vectors {ek} form a Schauder basis. Assume that {ψk} ⊆ X∗ is an
X∗d -Riesz basis for X∗ with lower bound A and upper bound B. Then there exists

a unique sequence {ψ̃k} ⊆ X, which is an Xd-Riesz basis for X with lower bound
1
B

and upper bound 1
A
, such that

f =
∞∑
k=1

ψk(f)ψ̃k, f ∈ X,

g =
∞∑
k=1

g(ψ̃k)ψk, g ∈ X∗.

This sequence {ψ̃k} is unique and biorthogonal to {ψk}.

Throughout the following sections, since we use many results of [28, 29], we
need to assume that X is a reflexive Banach space and Xd is a solid, reflexive,
BK-space such that the canonical unit vectors {ek} form a Schauder basis.

2. multipliers for Xd-Bessel sequences

Motivated by the multipliers for p-Bessel sequences [16], in this section, we will
extend multipliers in more general cases, i.e., for Xd-Bessel sequences.

Lemma 2.1. Suppose that {φk} ⊆ X is an X∗d -Bessel sequence for X∗ with bound
B′. Then the following statements hold:
(i) Let {ψk} ⊆ X∗. Suppose that there exists P > 0 such that ‖ψk‖ ≤ P for each
k ∈ N, and m = {mk} ∈ Xd. Then the operator M = Mm,(φk),(ψk) : X → X
defined by:

Mm,(φk),(ψk)(f) =
∞∑
k=1

mkψk(f)φk, f ∈ X,

is well defined and bounded with ‖M‖ ≤ KPB′‖{mk}‖Xd .
(ii) Let {ψk} ⊆ X∗ be an Xd-Bessel sequence for X with bound B, and m =
{mk} ∈ l∞. Then the operator M ′ = M ′

m,(φk),(ψk)
: X → X defined by:

M ′
m,(φk),(ψk)

(f) =
∞∑
k=1

mkψk(f)φk, f ∈ X,

is well defined and bounded with ‖M ′‖ ≤ KBB′‖{mk}‖∞.
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Proof. (i) First, we prove that {
∑j

k=1mkψk(f)φk}∞j=1 is Cauchy in X. Consider
i, j ∈ N, i > j. Then we have

‖
i∑

k=j+1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|
i∑

k=j+1

mkψk(f)φk(g)|

≤ P‖f‖ sup
g∈X∗,‖g‖≤1

∞∑
k=j+1

|mkφk(g)|. (2.1)

Since X∗d and Xα
d are isomorphic, {φk(g)}∞k=j+1 ∈ Xα

d . By (1.1) and (2.1), we
have

‖
i∑

k=j+1

mkψk(f)φk‖ ≤ P‖f‖‖{mk} − pj({mk})‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}∞k=j+1‖α

≤ P‖f‖‖{mk} − pj({mk})‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}∞k=1‖α,

hence by (1.3), there exists K > 0 such that

‖
i∑

k=j+1

mkψk(f)φk‖ ≤ KP‖f‖‖{mk} − pj({mk})‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}∞k=1‖X∗d

≤ KPB′‖f‖‖{mk} − pj({mk})‖Xd .

Since the canonical unit vectors {ek} form a Schauder basis for Xd, by Lemma

1.1, limj ‖{mk} − pj({mk})‖Xd = 0. Therefore {
∑j

k=1mkψk(f)φk}∞j=1 is Cauchy
in X and so M is well defined.
Now we show that M is bounded. For this we have

‖M(f)‖ = ‖
∞∑
k=1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|
∞∑
k=1

mkψk(f)φk(g)|

≤ P‖f‖ sup
g∈X∗,‖g‖≤1

∞∑
k=1

|mkφk(g)|, f ∈ X,

hence by (1.1) and (1.3), we have

‖M(f)‖ ≤ P‖f‖‖{mk}‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}‖α

≤ KPB′‖f‖‖{mk}‖Xd , f ∈ X.

So, ‖M‖ ≤ KPB′‖{mk}‖Xd .
(ii) Since {mk} ∈ l∞, we have

|mkψk(f)| ≤ ‖{mk}‖∞|ψk(f)|, k ∈ N,

since {ψk(f)} ∈ Xd and Xd is a solid BK-space, { mkψk(f)‖{mk}‖∞
} ∈ Xd and we have

‖{mkψk(f)}‖Xd ≤ ‖{mk}‖∞‖{ψk(f)}‖Xd . (2.2)
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Now we prove that {
∑j

k=1mkψk(f)φk}∞j=1 is Cauchy in X. Consider i, j ∈ N,
i > j. Since {mkψk(f)}∞k=j+1 ∈ Xd and {φk(g)}∞k=j+1 ∈ Xα

d , by (1.1), we have

‖
i∑

k=j+1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|
i∑

k=j+1

mkψk(f)φk(g)|

≤ ‖{mkψk(f)} − pj({mkψk(f)})‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}‖α.

Similar to the proof of (i), we can deduce that {
∑j

k=1mkψk(f)φk}∞j=1 is Cauchy
in X. Therefore, M ′ is well defined.
Now we show that M ′ is bounded. For this by (1.1), we have

‖M ′f‖ = ‖
∞∑
k=1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|
∞∑
k=1

mkψk(f)φk(g)|

≤ ‖{mkψk(f)}‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}‖α,

hence by (2.2) and (1.3), we have

‖M ′f‖ ≤ ‖{mk}‖∞‖{ψk(f)}‖XdKB′

≤ KBB′‖{mk}‖∞‖f‖.

So ‖M ′‖ ≤ KBB′‖{mk}‖∞. �

Remark 2.2. Suppose that the unit vectors {Ek}, the sequence of coefficient func-
tionals associated to the canonical basis {ek} of Xd, forms a basis for X∗d . Then
by [5, Corollary 3.3], the mapping M in part (i) of Lemma 2.1, is also well defined
and bounded, if the {ψk} is assumed to be an Xd-Bessel sequence for X.

Definition 2.3. Let {φk} ⊆ X be an X∗d -Bessel sequence for X∗ with bound B′.
Suppose that {ψk} ⊆ X∗ and ‖ψk‖ ≤ P , for each k ∈ N and m = {mk} ∈ Xd.
The operator M = Mm,(φk),(ψk) : X → X defined by:

Mm,(φk),(ψk)(f) =
∞∑
k=1

mkψk(f)φk,

is called an (Xd, X
∗
d)-Bessel multiplier for sequences {ψk} and {φk}. The sequence

m is called the symbol of M and {ψk} and {φk} are called its corresponding
sequences.

Example 2.4. Let X = Xd = lp, 1 < p < ∞. Suppose that {Ek} is the
sequence of coefficient functionals associated to the canonical basis {ek} of Xd.
Denote {ψk} = {1

2
E1, E2,

1
22
E1, E3,

1
23
E1, · · · }, {φk} = {e1, e2, e3, e4, e5, · · · } and

{mk} = {1, 1
2
, 1
3
, 1
4
, 1
5
, · · · }. Then ‖ψk‖ ≤ 1, for each k ∈ N, {φk} ⊆ lp is a

Parseval lq-frame for lq and {mk} ∈ lp. Therefore, Mm,(φk),(ψk) is a (lp, lq)-Bessel
multiplier.

Definition 2.5. Let {φk} ⊆ X be an X∗d -Bessel sequence for X∗ with bound
B′. Suppose that {ψk} ⊆ X∗ is an Xd-Bessel sequence for X with bound B and
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m = {mk} ∈ l∞. The operator M ′ = M ′
m,(φk),(ψk)

: X → X defined by:

M ′
m,(φk),(ψk)

(f) =
∞∑
k=1

mkψk(f)φk,

is called a (l∞, Xd, X
∗
d)-Bessel multiplier for sequences {ψk} and {φk}. The se-

quence m is called the symbol of M ′ and {ψk} and {φk} are called its correspond-
ing sequences.
We shall denote Mm,(φk),(ψk) by M and M ′

m,(φk),(ψk)
by M ′.

Remark 2.6. We note that since X and Xd are reflexive spaces, the definition of
(Xd, X

∗
d)-Bessel multiplier can be expressed by:

M = TφkDmU,

where Tφk from X∗∗d ' Xd into X∗∗ ' X, is the synthesis operator of X∗d -Bessel
sequence {φk}. The mappings Dm : l∞ → Xd, Dm({ck}) = {mkck} and U : X →
l∞, U(f) = {ψk(f)}, are well defined operators. Also, by Definition 2.5, M ′ can
be shown by:

M ′ = TφkDmUψk ,

where Tφk from X∗∗d ' Xd into X∗∗ ' X, is the synthesis operator of X∗d -Bessel
sequence {φk}. The mapping Dm : Xd → Xd, Dm({ck}) = {mkck} is a well
defined operator and Uψk from X into Xd, is the analysis operator of the Xd-
Bessel sequence {ψk}. In this case, M ′ can also be written by:

M ′ = TφkUmkψk ,

where Tφk is the synthesis operator of X∗d -Bessel sequence {φk}, and Umkψk is
the analysis operator of the weighted Xd-Bessel sequence {ψk}, where {mk} is a
sequence of weights.

Proposition 2.7. Suppose that M is an (Xd, X
∗
d)-Bessel multiplier. Let ψk 6= 0,

for each k ∈ N and {φk} ⊆ X be an Xd-Riesz sequence. Then the mapping

m→Mm,(φk),(ψk),

is injective from Xd into B(X).

Proof. Suppose that Mm,(φk),(ψk) = Mm′,(φk),(ψk), where m′ = {m′k} ∈ Xd. Then∑∞
k=1mkψk(f)φk =

∑∞
k=1m

′
kψk(f)φk, for each f ∈ X. Since {φk} is an Xd-Riesz

sequence, by [28, Theorem 4.8], mkψk(f) = m′kψk(f), for all f ∈ X and k ∈ N.
Since for each k ∈ N, there exists f ∈ X such that ψk(f) 6= 0, mk = m′k. �

Corollary 2.8. Suppose that M ′ is a (l∞, Xd, X
∗
d)-Bessel multiplier. Let ψk 6= 0,

for each k ∈ N and {φk} ⊆ X be an Xd-Riesz sequence. Then the mapping

m→M ′
m,(φk),(ψk)

,

is injective from Xd into B(X).

Proposition 2.9. Assume that M ′ is a (l∞, Xd, X
∗
d)-Bessel multiplier for X∗d -

Riesz basis {ψk} ⊆ X∗ with bounds A and B and for Xd-Riesz basis {φk} ⊆ X
with bounds A′ and B′. Then

AA′‖{mk}‖∞ ≤ ‖M ′‖ ≤ KBB′‖{mk}‖∞.
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Proof. Part (ii) of Lemma 2.1, gives the upper bound. By Proposition 1.6, {ψk}
has a biorthogonal sequence {ψ̃k} ⊆ X, such that {ψ̃k} is an Xd-Riesz basis with

bounds 1
B

and 1
A

and ψk(ψ̃i) = δk,i, for all k, i ∈ N. Therefore, we have

‖M ′‖ = sup
f∈X

‖M ′f‖
‖f‖

≥ sup
i∈N

‖M ′ψ̃i‖
‖ψ̃i‖

= sup
i∈N

‖
∑∞

k=1mkψk(ψ̃i)φk‖
‖ψ̃i‖

= sup
i∈N

‖miφi‖
‖ψ̃i‖

= sup
i∈N
|mi|
‖φi‖
‖ψ̃i‖

. (2.3)

Since {φk} is an Xd-Riesz basis for X with lower bound A′ and the canonical unit
vectors {ek} form a basis for Xd, by (1.5), we have

‖φi‖ ≥ A′, i ∈ N. (2.4)

Also, since {ψ̃k} is an Xd-Riesz basis for X with upper bound 1
A

and the canonical
unit vectors {ek} form a basis for Xd, by (1.5), we have

‖ψ̃i‖ ≤
1

A
, i ∈ N. (2.5)

Now by (2.4) and (2.5), we have

sup
i∈N
|mi|
‖φi‖
‖ψ̃i‖

≥ AA′‖{mk}‖∞.

Therefore by (2.3), ‖M ′‖ ≥ AA′‖{mk}‖∞. �

3. Compactness and invertibility of multipliers

The compactness of Bessel multipliers are investigated by Balazs in [2]. Also,
in [22, 23, 24, 25], Stoeva and Balazs characterized a complete set of conditions
for the invertibility of multipliers.

Lemma 3.1. With the notations of Definitions 2.3 and 2.5, the following asser-
tions are true:
(i) If M is an (Xd, X

∗
d)-Bessel multiplier, then M is a compact operator.

(ii) If M ′ is a (l∞, Xd, X
∗
d)-Bessel multiplier and m = {mk} ∈ c0, then M ′ is a

compact operator.

Proof. (i) We define the finite rank operator

MK(f) =
K∑
k=1

mkψk(f)φk,

where {mk}, {φk} and {ψk} are same as Definition 2.3. Then we have

‖M −MK‖ = sup
f∈X,‖f‖≤1

sup
g∈X∗,‖g‖≤1

|
∞∑

k=K+1

mkψk(f)φk(g)|

≤ sup
f∈X,‖f‖≤1

sup
g∈X∗,‖g‖≤1

∞∑
k=K+1

|mkψk(f)φk(g)|, (3.1)
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since {mk}∞k=K+1 ∈ Xd and {φk(g)}∞k=K+1 ∈ Xα
d , by (3.1), (1.1) and (1.3), we

have

‖M −MK‖ ≤ sup
f∈X,‖f‖≤1

P‖f‖‖{mk} − pK({mk})‖Xd sup
g∈X∗,‖g‖≤1

‖{φk(g)}‖α

≤ KPB′‖{mk} − pK({mk})‖Xd .
Since the canonical unit vectors {ek} form a Schauder basis for Xd, by Lemma
1.1, limK ‖{mk} − pK({mk})‖ = 0 and so M is a compact operator.
(ii) For a given m ∈ co, let m(l) = (m1,m2, · · · ,ml, 0, 0, · · · ). Then by part (ii) of
Lemma 2.1, we have

‖M ′
m,(φk),(ψk)

−M ′
m(l),(φk),(ψk)

‖ = ‖M ′
m−m(l),(φk),(ψk)

‖

≤ ‖m−m(l)‖∞KBB′.

Since m ∈ c0, liml ‖m−m(l)‖∞ = 0, and the proof is evident. �

Here is an example which shows that a (l∞, Xd, X
∗
d)-Bessel multiplier may not

be a compact operator, if m = {mk} /∈ c0.

Example 3.2. Let X = Xd = lp, 1 < p < ∞. Suppose that {Ek} is the
sequence of coefficient functionals associated to the canonical basis {ek} of Xd.
Denote {ψk} = {Ek} and {φk} = {ek}. Then M ′

1,(φk),(ψk)
is an (l∞, lp, lq)-Bessel

multiplier but it is not a compact operator, if X is infinite dimensional.

Proposition 3.3. Suppose that M ′ is a (l∞, Xd, X
∗
d)-Bessel multiplier and m =

{mk} is semi-normalized. Then the following assertions hold:
(i) If {φk} is an Xd-Riesz basis for X and {ψk} is an Xd-frame for X, then M ′

is injective.
(ii) If {ψk} is an X∗d -Riesz basis for X∗ and {φk} is an X∗d -frame for X∗, then
M ′ is surjective.

Proof. The proof is evident by Remark 2.6 and [28, Propositions 3.4, 4.5]. �

In the following theorem, we investigate the invertibility of M ′ and determine
the formula for (M ′)−1.

Theorem 3.4. Suppose that M ′ is a (l∞, Xd, X
∗
d)-Bessel multiplier and m =

{mk} is semi-normalized. Then the following statements hold:
(i) If {ψk} ⊆ X∗ is an X∗d -Riesz basis for X∗ and {φk} ⊆ X is an X∗d -Bessel
sequence for X∗. Then M ′ is invertible on X if and only if {φk} is an Xd-Riesz
basis for X.
(ii) If {φk} ⊆ X is an Xd-Riesz basis for X and {ψk} ⊆ X∗ is an Xd-Bessel
sequence for X. Then M ′ is invertible on X if and only if {ψk} is an X∗d -Riesz
basis for X∗.
In the case that M ′ is invertible, (M ′)−1 = M ′

( 1
mk

),(ψ̃k),(φ̃k)
, where {ψ̃k} ⊆ X and

{φ̃k} ⊆ X∗ are Xd-Riesz basis for X and X∗d -Riesz basis for X∗, respectively.

Proof. (i) By Remark 2.6, M ′ = TφkDmUψk . Suppose that {ψk} and {φk} are
X∗d -Riesz basis for X∗ and Xd-Riesz basis for X, respectively. Then by [28,
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Propositions 3.4, 4.5], Tφk and Uψk are invertible and also Dm, since m is semi-
normalized. Therefore M ′ is an invertible operator. By Proposition 1.6, there
exist a unique Xd-Riesz basis {ψ̃k} ⊆ X and a unique X∗d -Riesz basis {φ̃k} ⊆
X∗, which are biorthogonal to {ψk} and {φk}, respectively. Since m is semi-
normalized, 1

m
= { 1

mk
} ∈ l∞ and we have

M ′
( 1
m
),(ψ̃k),(φ̃k)

◦M ′(f) = M ′
( 1
m
),(ψ̃k),(φ̃k)

(
∞∑
k=1

mkψk(f)φk)

=
∞∑
i=1

1

mi

φ̃i(
∞∑
k=1

mkψk(f)φk)ψ̃i

=
∞∑
i=1

1

mi

∞∑
k=1

mkψk(f)φ̃i(φk)ψ̃i

=
∞∑
i=1

ψi(f)ψ̃i

= f, f ∈ X.

Conversely, suppose that M ′ is an invertible operator. Since {ψk} is an X∗d -
Riesz basis for X∗, by [28, Propositions 3.4, 4.5], Uψk and so Tφk are invertible.
Therefore {φk} is an X∗d -Riesz basis by [28, Proposition 3.4].
(ii) The proof is similar to the first part. �

Theorem 3.5. Let M ′ be an invertible operator on X. Suppose that {mk} =
m ∈ l∞. Then the following statements hold:
(i) If {ψk} ⊆ X∗ (resp. {mkψk}) is an Xd-Bessel sequence for X with bound B
and {φk} ⊆ X is an X∗d -Bessel sequence for X∗, then {φk} is an X∗d -frame for
X∗.
(ii) If {φk} ⊆ X∗ is an X∗d -Bessel sequence for X∗ and {ψk} ⊆ X∗ is an Xd-
Bessel sequence for X, then {ψk} (resp. {mkψk}) is an Xd-frame for X.

Proof. (i) By assumption it is enough to find a lower frame bound for {φk}. Let
g ∈ X∗. For g = 0, the lower bound condition is trivially fulfilled. Now let g 6= 0.
Since M ′ is invertible, by (1.1) and (1.3), we have

‖g‖ = ‖(M ′∗)−1M ′∗g‖ ≤ ‖M ′−1‖‖M ′∗g‖

= ‖M ′−1‖ sup
f∈X,‖f‖≤1

|〈f,M ′∗g〉| = ‖M ′−1‖ sup
f∈X,‖f‖≤1

|
∞∑
k=1

mkψk(f)φk(g)|

≤ ‖M ′−1‖ sup
f∈X,‖f‖≤1

‖{mkψk(f)}‖Xd‖{φk(g)}‖α

≤ ‖M ′−1‖‖{mk}‖∞ sup
f∈X,‖f‖≤1

‖{ψk(f)}‖Xd‖{φk(g)}‖α

≤ ‖M ′−1‖‖{mk}‖∞BK‖{φk(g)}‖X∗d .

(ii) The proof is similar to the above argument. �
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Theorem 3.6. Suppose that the canonical unit vectors {ek} and {Ek} form bases
for Xd and X∗d , respectively. Let {φk} be an Xd-Riesz basis for X and {ψk} be
an Xd-Bessel sequence for X and non-NBB. Assume that m = {mk} ∈ l∞ and
mk 6= 0, for some k ∈ N. Then M ′ is not invertible on X.

Proof. Suppose that M ′ is an invertible operator on X. By Remark 2.6, M ′ =
TφkUmkψk . Since {φk} is an Xd-Riesz basis, by [28, Propositions 3.4, 4.5], Tφk is
invertible and so {mkψk} is an X∗d -Riesz basis for X∗. Hence, there exists D > 0
such that

D‖{ck}‖ ≤ ‖
∞∑
k=1

ckmkψk‖, {ck} ∈ X∗d . (3.2)

Since the unit vectors {Ek} form a basis for X∗d , by [5, Lemma 3.1] and (3.2), we
have

D = D‖ej‖ ≤ ‖mjψj‖, j ∈ N. (3.3)

Since m ∈ l∞, by (3.3) {ψk} is NBB, which is a contradiction. �

4. Dependency of parameters

In this section, we investigate the behavior of the Bessel multipliers when the
parameters are changing.
We note that X1 and X∗1 denote the closed unit balls of X and X∗, respectively.

Theorem 4.1. Let M be an (Xd, X
∗
d)-Bessel multiplier for sequences {ψk} ⊆ X∗

and {φk} ⊆ X, where B′ is the upper Bessel bound for {φk} and ‖ψk‖ ≤ P , for
each k ∈ N. Then the operator M depends continuously on m, {ψk} and {φk}
in the following sense: Let {ψ(l)

k } ⊆ X∗ and {φ(l)
k } ⊆ X be sequences indexed by

l ∈ N.
(i) Let m(l) → m in Xd. Then for l→∞, ‖Mm(l),(φk),(ψk)

−Mm,(φk),(ψk)‖ → 0.

(ii) Let {ψ(l)
k (f)} converges to {ψk(f)} in l∞, for each f ∈ X1. Then for l→∞,

‖M
m,(φk),(ψ

(l)
k )
−Mm,(φk),(ψk)‖ → 0.

(iii) Let {φ(l)
k (g)} ∈ X∗d , for each g ∈ X∗ and {φ(l)

k (g)} converges to {φk(g)} in
X∗d , for each g ∈ X∗1 . Then for l→∞, ‖M

m,(φ
(l)
k ),(ψk)

−Mm,(φk),(ψk)‖ → 0.

(iv) Let the assumptions in parts (i), (ii) and (iii) hold. Then for l → ∞,
‖M

m(l),(φ
(l)
k ),(ψ

(l)
k )
−Mm,(φk),(ψk)‖ → 0.

Proof. (i) Since m(l) → m in Xd, for each ε > 0 there exists an Nε > 0 such that
for all l ≥ Nε,

‖m(l) −m‖Xd < ε,

hence, by part (i) of Lemma 2.1, we have

‖Mm(l),(φk),(ψk)
−Mm,(φk),(ψk)‖ = ‖Mm(l)−m,(φk),(ψk)‖

≤ ‖m(l) −m‖XdKPB′

≤ εKPB′.

(ii) By assumption, for each ε > 0 there exists an Nε > 0 such that for all l ≥ Nε,

sup
k
|ψk(f)− ψ(l)

k (f)| < ε‖f‖, f ∈ X. (4.1)
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So,

|ψ(l)
k (f)| ≤ ε‖f‖+ |ψk(f)| ≤ (ε+ P )‖f‖, k ∈ N, f ∈ X.

Therefore, ‖ψ(l)
k ‖ ≤ P + ε.

Now by (1.1), (4.1) and (1.3) we have

‖M
m,(φk),(ψ

(l)
k )

(f)−Mm,(φk),(ψk)(f)‖ = ‖
∞∑
k=1

mk(ψ
(l)
k (f)− ψk(f))φk‖

= sup
g∈X∗,‖g‖≤1

|
∞∑
k=1

mk(ψ
(l)
k (f)− ψk(f))φk(g)|

≤ sup
k
|(ψ(l)

k − ψk)(f)| sup
g∈X∗,‖g‖≤1

‖{φk(g)}‖α‖m‖Xd

≤ sup
k
|(ψ(l)

k − ψk)(f)|‖m‖XdKB′

≤ ε‖f‖‖m‖XdKB′, f ∈ X.
So, ‖M

m,(φk),(ψ
(l)
k )
−Mm,(φk),(ψk)‖ ≤ ε‖m‖XdKB′.

(iii) By assumption, for each ε > 0 there exists an Nε > 0 such that for all l ≥ Nε,

‖{φ(l)
k (g)} − {φk(g)}‖X∗d < ε‖g‖, g ∈ X∗. (4.2)

Since {φk} ⊆ X is an X∗d -Bessel sequence with bound B′, by (4.2), we have

‖{φ(l)
k (g)}‖X∗d ≤ ε‖g‖+ ‖{φk(g)}‖X∗d ≤ (ε+B′)‖g‖.

So, {φ(l)
k } is an X∗d -Bessel sequence for X∗ with bound B′ + ε.

Now by (4.2), (1.1) and (1.3), we have

‖M
m,(φ

(l)
k ),(ψk)

(f)−Mm,(φk),(ψk)(f)‖ = ‖
∞∑
k=1

mkψk(f)(φ
(l)
k − φk)‖

= sup
g∈X∗,‖g‖≤1

|
∞∑
k=1

mkψk(f)(φ
(l)
k − φk)(g)|

≤ KP‖f‖‖m‖Xd sup
g∈X∗,‖g‖≤1

‖{φ(l)
k (g)} − {φk(g)}‖X∗d

≤ εK‖m‖XdP‖f‖.
So, ‖M

m,(φ
(l)
k ),(ψk)

−Mm,(φk),(ψk)‖ ≤ εK‖m‖XdP.
(iv) By the above assertions, for l bigger than the maximum N needed for the
convergence conditions we have

‖M
m(l),(φ

(l)
k ),(ψ

(l)
k )
−Mm,(φk),(ψk)‖ ≤ ‖M

m(l),(φ
(l)
k ),(ψ

(l)
k )
−M

m,(φ
(l)
k ),(ψ

(l)
k )
‖

+ ‖M
m,(φ

(l)
k ),(ψ

(l)
k )
−M

m,(φk),(ψ
(l)
k )
‖

+ ‖M
m,(φk),(ψ

(l)
k )
−Mm,(φk),(ψk)‖

≤ εKPB′ + ε‖m‖XdKP + ε‖m‖XdKB′.
�
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Theorem 4.2. Let M ′ be a (l∞, Xd, X
∗
d) Bessel multiplier for Bessel sequences

{ψk} ⊆ X∗ and {φk} ⊆ X, where B and B′ are the upper Bessel bounds for {ψk}
and {φk}, respectively. Then the operator M ′ depends continuously on m, {ψk}
and {φk} in the following sense: Let {ψ(l)

k } ⊆ X∗ and {φ(l)
k } ⊆ X be sequences

indexed by l ∈ N.
(i) Let m(l) → m in l∞. Then for l→∞, ‖M ′

m(l),(φk),(ψk)
−M ′

m,(φk),(ψk)
‖ → 0.

(ii) Let {ψ(l)
k (f)} ∈ Xd, for each f ∈ X and let {ψ(l)

k (f)} converges to {ψk(f)}
in Xd, for each f ∈ X1. Then for l→∞, ‖M ′

m,(φk),(ψ
(l)
k )
−M ′

m,(φk),(ψk)
‖ → 0.

(iii) Let {φ(l)
k (g)} ∈ X∗d , for each g ∈ X∗ and let {φ(l)

k (g)} converges to {φk(g)}
in X∗d , for each g ∈ X∗1 . Then for l→∞, ‖M ′

m,(φ
(l)
k ),(ψk)

−M ′
m,(φk),(ψk)

‖ → 0.

(iv) Let the assumptions in parts (i), (ii) and (iii) hold. Then for l → ∞,
‖M ′

m(l),(φ
(l)
k ),(ψ

(l)
k )
−M ′

m,(φk),(ψk)
‖ → 0.

Proof. (i) Since m(l) → m in l∞, for each ε > 0 there exists an Nε > 0 such that
for all l ≥ Nε,

‖m(l) −m‖∞ < ε,

hence, by part (ii) of Lemma 2.1, we have

‖M ′
m(l),(φk),(ψk)

−M ′
m,(φk),(ψk)

‖ = ‖M ′
m(l)−m,(φk),(ψk)‖

≤ ‖m(l) −m‖∞KBB′

≤ εKBB′.

(ii) By the assumption, for each ε > 0 there exists an Nε > 0 such that for all
l ≥ Nε,

‖{ψ(l)
k (f)} − {ψk(f)}‖Xd < ε‖f‖, f ∈ X. (4.3)

Since {ψk} ⊆ X∗ is an Xd-Bessel sequence with bound B, by (4.3), we have

‖{ψ(l)
k (f)}‖Xd ≤ ε‖f‖+ ‖{ψk(f)}‖Xd ≤ (ε+B)‖f‖.

Now by (1.1), (4.3) and (1.3), we have

‖M ′
m,(φk),(ψ

(l)
k )

(f)−M ′
m,(φk),(ψk)

(f)‖ = sup
g∈X∗,‖g‖≤1

|
∞∑
k=1

mk(ψ
(l)
k (f)− ψk(f))φk(g)|

≤ sup
g∈X∗,‖g‖≤1

‖{mk(ψ
(l)
k − ψk)(f)}‖Xd‖{φk(g)}‖Xα

d

≤ εKB′‖m‖∞‖f‖.

So, ‖M ′
m,(φk),(ψ

(l)
k )
−M ′

m,(φk),(ψk)
‖ ≤ ε‖m‖∞KB′.

By a similar argument of part (ii) and Theorem 4.1, we can deduce the rest of
the proof. �
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5. λ-nuclear operators in Banach spaces

The theory of trace-class operators in Hilbert spaces was created in 1936 by
Murray and von Neumann. Ruston [19, 20] extended this concept to operators
acting in Banach spaces. Trace class operators on Banach spaces are called nu-
clear operators. Dubinsky and Ramanujan [9] generalized this idea to λ-nuclear
operators.
Let E and F be normed linear spaces and λ be a BK-space, whose elements are
sequences of complex numbers. Then λ(E) denotes the (vector sequence) space
of all vectors x = (xk), xk ∈ E such that {〈xk, a〉} ∈ λ for each a ∈ E∗. We define

ελ(x) = sup
‖a‖≤1

p({〈xk, a〉}),

where p is a norm on λ.

Definition 5.1. [18] Let T be a linear map on the normed space E into another
space, F . We define T to be a λ-nuclear map if T admits the representation

Tx =
∞∑
k=1

αk〈x, uk〉yk, x ∈ E,

where ‖uk‖ is bounded above for each k ∈ N, α = (αk) ∈ λ, y = (yk) ∈ λ∗(F )
and there exists L > 0 such that ελ∗(y) ≤ L. In this case

Nλ(T ) = inf
α
p(α).

Let Nλ(E,F ) denotes the set of all λ-nuclear maps on E into F .

Theorem 5.2. [18] Let E, F and G be normed linear spaces. Then we have the
following assertions:
(i) If T ∈ Nλ(E,F ) and S ∈ L(F,G), then S ◦ T ∈ Nλ(E,G) and Nλ(S ◦ T ) ≤
‖S‖Nλ(T ).
(ii) If T ∈ L(E,F ) and S ∈ Nλ(F,G), then S ◦ T ∈ Nλ(E,G) and Nλ(S ◦ T ) ≤
Nλ(S)‖T‖.

Theorem 5.3. [18] Let δ = {δk} be a fixed member of λ. Then the map D :
l∞ → λ defined by D(u) = (ukδk) is a λ-nuclear map and Nλ(D) = p(δ).

Theorem 5.4. [18] Let T ∈ L(E,F ). The map T is λ-nuclear if and only if it
can be factorized as follows:

T = Q ◦D ◦ P,
where P and Q are continuous linear maps from E into l∞ and from λ into F ,
respectively, and D is as defined in Theorem 5.3.

Theorem 5.5. Let M be an (Xd, X
∗
d)-Bessel multiplier for sequences {ψk} ⊆ X∗

and {φk} ⊆ X, where B′ is the upper Bessel bound for {φk} and ‖ψk‖ ≤ P , for
each k ∈ N. Then M is a λ-nuclear operator with

Nλ(M) ≤ PB′‖m‖Xd .

Proof. By Remark 2.6, M = TφkDmU. So by Theorems 5.3, 5.4 and 5.2, we deduce
that M is a λ-nuclear operator and Nλ(M) ≤ PB′‖m‖Xd . �
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