MATRIX TRANSFORMATIONS AND SEQUENCE SPACES EQUATIONS

BRUNO DE MALAFOSSE ${ }^{1}$ AND VLADIMIR RAKOČEVIĆ ${ }^{2 *}$
Communicated by M. A. Ragusa

Abstract

In this paper we study sequence spaces equations (SSE) with operators, which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where f maps U^{+} to itself, χ is either of the symbols s, s^{0}, or $s^{(c)}$. Then we solve five (SSE) of the form $\chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime}$, where χ, χ^{\prime} are either $s^{0}, s^{(c)}$, or s. We apply the previous results to the solvability of the systems $s_{a}^{0}+s_{x}(\Delta)=s_{b}, s_{x} \supset s_{b}$ and $s_{a}+s_{x}^{(c)}(\Delta)=s_{b}^{(c)}, s_{x}^{(c)} \supset s_{b}^{(c)}$. Finally we solve the (SSE) with operators defined by $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{(c)}\left(C(\mu) D_{\tau}\right)=s_{b}^{(c)}$ where χ is either s^{0}, or s.

1. Introduction

In the book entitled Summability through Functional Analysis [16] Wilansky introduced sets of the form $a^{-1} * E$ where E is a BK space, and $a=\left(a_{n}\right)_{n \geq 1}$ is a nonzero sequence. Recall that $\xi=\left(\xi_{n}\right)_{n \geq 1}$ belongs to $a^{-1} * E$ if $a \xi \in E$. In [5], the sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ were defined for positive sequences a by $(1 / a)^{-1} * \chi$ and $\chi=\ell_{\infty}, c_{0}, c$, respectively. In $[6,10]$ the sum $\chi_{a}+\chi_{b}^{\prime}$ and the product $\chi_{a} * \chi_{b}^{\prime}$ were defined where χ, χ^{\prime} are any of the symbols s, s^{0}, or $s^{(c)}$, among other things characterizations of matrix transformations mapping in the sets $s_{a}+s_{b}^{0}\left(\Delta^{q}\right)$ and $s_{a}+s_{b}^{(c)}\left(\Delta^{q}\right)$ were given, where Δ is the operator of the first difference. In [11] de Malafosse and Malkowsky gave among other things properties of the

[^0]matrix of weighted means considered as an operator in the set s_{a}. In [12] the characterizations of the sets $\left(s_{a}\left(\Delta^{q}\right), F\right)$ can be found where F is any of the sets c_{0}, c and ℓ_{∞}. We also cite Hardy's results [2] extended by Móricz and Rhoades [14, 15], de Malafosse and Rakočević [9] and formulated as follows, in [2] it is said that a series $\sum_{m=1}^{\infty} y_{m}$ is summable $(C, 1)$ if $\varkappa_{n}=n^{-1} \sum_{m=1}^{n} s_{m} \rightarrow l$, where $s_{m}=\sum_{k=1}^{m} y_{k}$, it was shown by Hardy that if a series $\sum_{m=1}^{\infty} y_{m}$ is summable $(C, 1)$ then $\sum_{m=1}^{\infty}\left(\sum_{i=m}^{\infty} y_{i} / i\right)$ is convergent. On the other hand Hardy's Tauberian theorem for Cesàro means states that if $\left(y_{n}\right)_{n} \in s_{(1 / n)}(\Delta)$, then $n^{-1} s_{n} \rightarrow l$ implies $y_{n} \rightarrow l$ for some $l \in \mathbb{C}$. This problem is a consequence of the following one: What are the sequences x such that $c\left(C_{1}\right) \cap s_{x}(\Delta) \subset c$ where C_{1} is the Cesàro operator?

In this paper we extend some results given in [1, 8, 7]. In [1] were given solvability of the equations $s_{a}+s_{x}=s_{b}$ and $s_{\varphi(x)}=s_{b}$ where φ maps U^{+}to itself. In [8] it is shown that the solutions of the equations $\chi_{a}+s_{x}^{0}=s_{b}^{0}$ where χ is any of the symbols s, or $s^{(c)}$ if $a / b \in c_{0}$ are given by $s_{x}=s_{b}$ and if $a / b \notin c_{0}$ each of these equations has no solution. In this paper for given sequences a and b, we determine the set of all sequences $x \in U^{+}$such that for every sequence y, we have $y_{n} / b_{n} \rightarrow l$ if and only if there are sequences u and v such that $y=u+v$ and $u_{n} / a_{n} \rightarrow 0, v_{n} / x_{n} \rightarrow l^{\prime}$ as n tends to infinity for some scalars l, l^{\prime}. This statement means $s_{a}^{0}+s_{x}^{(c)}=s_{b}^{(c)}$. So we are led to deal with special sequence spaces inclusion equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined by an inclusion, (resp. identity), where each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where f maps U^{+}to itself, χ is any of the symbols s, s^{0}, or $s^{(c)}, x$ is the unknown and T is a triangle. For instance the solutions of the elementary (SSE) defined by $s_{x}=s_{a}$ with $a \in U^{+}$are given by $K_{1} a_{n} \leq x_{n} \leq K_{2} a_{n}$ for some $K_{1}, K_{2}>0$ and for all n. In [1] we dealt with the equation $s_{a}+s_{x}=s_{b}$ whose the solutions are given by $s_{x}=s_{b}$ if $a / b \in c_{0}$, if $s_{a}=s_{b}$ the solutions of this equation are given by $x \in s_{a}$ and if $a / b \notin \ell_{\infty}$ this one has no solution. Except for these cases until now we don't know the behaviour of this equation. In [7] are determined the solutions of (SSE) with operators of the form $\left(\chi_{a} * \chi_{x}+\chi_{b}\right)(\Delta)=\chi_{\eta}$ and $\left[\chi_{a} *\left(\chi_{x}\right)^{2}+\chi_{b} * \chi_{x}\right](\Delta)=\chi_{\eta}$. and $\chi_{a}+\chi_{x}(\Delta)=\chi_{x}$ where χ is any of the symbols s, or s^{0}.

This paper is organized as follows. In Section 2 we recall some definitions and results on sequence spaces and matrix transformations. In Section 3 we recall some properties of the multiplier of two sequence spaces. Then we state some results on the sum and the product of sequence spaces. In section 4 we deal with the solvability of the five (SSE) $s_{a}^{0}+s_{x}=s_{b}, s_{a}^{(c)}+s_{x}^{0}=s_{b}^{0}, s_{a}+s_{x}^{0}=s_{b}^{0}$, $s_{a}+s_{x}^{(c)}=s_{b}^{(c)}$ and $s_{a}^{0}+s_{x}^{(c)}=s_{b}^{(c)}$. In Section 5 we deal with the solvability of the system constituted with an (SSE) and an (SSIE) defined by $s_{a}^{0}+s_{x}(\Delta)=s_{b}$ and $s_{x} \supset s_{b}$. Finally we solve the (SSE) with operators defined by $\chi_{a}\left(C(\lambda) D_{\tau}\right)+$ $s_{x}^{(c)}\left(C(\mu) D_{\tau}\right)=s_{b}^{(c)}$ where χ is either s^{0}, or s. These results extend some recent results of Farés and de Malafosse [1] and de Malafosse [6, 10, 7, 8].

2. Notations and preliminary results.

For a given infinite matrix $\Lambda=\left(\lambda_{n m}\right)_{n, m \geq 1}$ we define the operators Λ_{n} for any integer $n \geq 1$, by

$$
\Lambda_{n}(\xi)=\sum_{m=1}^{\infty} \lambda_{n m} \xi_{m}
$$

where $\xi=\left(\xi_{m}\right)_{m \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator A defined by $\Lambda \xi=\left(\Lambda_{n}(\xi)\right)_{n \geq 1}$ mapping between sequence spaces.

A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a $B K$ space if each projection $P_{n}: E \rightarrow \mathbb{C}$ with $P_{n} \xi=\xi_{n}$ is continuous. A BK space E is said to have $A K$ if every sequence $\xi=\left(\xi_{m}\right)_{m \geq 1} \in E$ has a unique representation $\xi=\sum_{n=1}^{\infty} \xi_{n} e^{(n)}$ where $e^{(n)}$ is the sequence with 1 in the n-th position and 0 otherwise.

We will denote by $s, c_{0}, c, \ell_{\infty}$ the sets of all sequences, the sets of sequences that converge to zero, that are convergent and that are bounded, respectively. If ξ and η are sequences and E and F are two subsets of s, then we write $\xi \eta=\left(\xi_{n} \eta_{n}\right)_{n}$ and

$$
M(E, F)=\left\{\xi=\left(\xi_{n}\right)_{n \geq 1}: \xi \eta \in F \text { for all } \eta \in E\right\}
$$

$M(E, F)$ is called the multiplier space of E and F. We shall use the set $U^{+}=$ $\left\{\left(u_{n}\right)_{n \geq 1} \in s: u_{n}>0\right.$ for all $\left.n\right\}$. Using Wilansky's notations [16], we define for any sequence $a=\left(a_{n}\right)_{n \geq 1} \in U^{+}$and for any set of sequences E, the set $(1 / a)^{-1} *$ $E=\left\{\left(\xi_{n}\right)_{n \geq 1} \in s:\left(\xi_{n} / a_{n}\right)_{n} \in E\right\}$. To simplify, we use the diagonal matrix D_{a} defined by $\left[D_{a}\right]_{n n}=a_{n}$ for all n and write $D_{a} * E=(1 / a)^{-1} * E$ and define $s_{a}=D_{a} * \ell_{\infty}, s_{a}^{0}=D_{a} * c_{0}$ and $s_{a}^{(c)}=D_{a} * c$, see for instance [4, 6, 5, 13]. Each of the spaces $D_{\alpha} * \chi$, where $\chi \in\left\{\ell_{\infty}, c_{0}, c\right\}$, is a BK space normed by $\|\xi\|_{s_{a}}=\sup _{n \geq 1}\left(\left|\xi_{n}\right| / a_{n}\right)$ and s_{a}^{0} has AK.

Now let $a=\left(a_{n}\right)_{n \geq 1}, b=\left(b_{n}\right)_{n \geq 1} \in U^{+}$. By $S_{a, b}$ we denote the set of infinite matrices $\Lambda=\left(\lambda_{n m}\right)_{n, m \geq 1}$ such that $\|\Lambda\|_{S_{a, b}}=\sup _{n \geq 1}\left[\left(1 / b_{n}\right) \sum_{m=1}^{\infty}\left|\lambda_{n m}\right| a_{m}\right]<$ ∞. The set $S_{a, b}$ is a Banach space with the norm $\left\|\|_{S_{a, b}}\right.$. Let E and F be any subsets of s. When Λ maps E into F we write $\Lambda \in(E, F)$, see [3]. So we have $\Lambda \xi \in F$ for all $\xi \in E,(\Lambda \xi \in F$ means that for each $n \geq 1$ the series $\Lambda_{n}(\xi)=\sum_{m=1}^{\infty} \lambda_{n m} \xi_{m}$ is convergent and $\left.\left(\Lambda_{n}(\xi)\right)_{n \geq 1} \in F\right)$. It was proved in [11] that $A \in\left(s_{a}, s_{b}\right)$ if and only if $\Lambda \in S_{a, b}$. So we can write that $\left(s_{a}, s_{b}\right)=S_{a, b}$.

When $s_{a}=s_{b}$ we obtain the Banach algebra with identity $S_{a, b}=S_{a}$ normed by $\|\Lambda\|_{S_{a}}=\|\Lambda\|_{S_{a, a}}$, see [5]. We also have $\Lambda \in\left(s_{a}, s_{a}\right)$ if and only if $\Lambda \in S_{a}$.

If $a=\left(r^{n}\right)_{n \geq 1}$, the sets S_{a}, s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ are denoted by S_{r}, s_{r}, s_{r}^{0} and $s_{r}^{(c)}$, respectively; see [4]. When $r=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$, and putting $e=(1,1, \cdots)$ we have $S_{1}=S_{e}$. It is well known, see [3] that $\left(s_{1}, s_{1}\right)=\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=S_{1}$. We also have $\Lambda \in\left(c_{0}, c_{0}\right)$ if and only if $\Lambda \in S_{1}$ and $\lim _{n \rightarrow \infty} \lambda_{n m}=0$ for all $m \geq 1$.

In the sequel we will frequently use the fact that $\Lambda \in\left(\chi_{a}, \chi_{b}^{\prime}\right)$ if and only if $D_{1 / b} \Lambda D_{a} \in\left(\chi_{e}, \chi_{e}^{\prime}\right)$ where χ, χ^{\prime} are any of the symbols $s^{0}, s^{(c)}$, or s; see [11].

For any subset E of s, we put $\Lambda E=\{\eta \in s: \eta=\Lambda \xi$ for some $\xi \in E\}$. If F is a subset of s, we write $F(\Lambda)=F_{\Lambda}=\{\xi \in s: \Lambda \xi \in F\}$.

3. The multiplier, The sum and the product of certain sets of SEQUENCES

3.1. The multiplier of certain sets of sequences. First we need to recall some well known results. By [6, Lemma 3.1, p. 648] and [6, Example 1.28, p. 157], we obtain the next result.

Lemma 3.1. We have
i) $M\left(c, c_{0}\right)=M\left(\ell_{\infty}, c\right)=M\left(\ell_{\infty}, c_{0}\right)=c_{0}$ and $M(c, c)=c$;
ii) $M\left(\chi, \ell_{\infty}\right)=M\left(c_{0}, \chi^{\prime}\right)=\ell_{\infty}$ for $\chi, \chi^{\prime}=c_{0}$, c, or ℓ_{∞}.

We deduce from the preceding the next corollary.
Corollary 3.2. (i) $M\left(s_{a}^{0}, \chi_{b}^{\prime}\right)=s_{b / a}$ where χ^{\prime} is any of the symbols s^{0}, $s^{(c)}$, or s;
(ii) $M\left(\chi_{a}, s_{b}\right)=s_{b / a}$ where χ is any of the symbols $s^{(c)}$, or s;
(iii) $M\left(s_{a}, s_{b}^{(c)}\right)=s_{b / a}^{0}$ and $M\left(s_{a}^{(c)}, s_{b}^{(c)}\right)=s_{b / a}^{(c)}$.

In the sequel we will use the next lemma.
Lemma 3.3. Let $a, b \in U^{+}$. Then

$$
a / b \in M\left(\chi_{1}, \chi_{1}^{\prime}\right) \text { if and only if } \chi_{a} \subset \chi_{b}^{\prime} \text {, }
$$

where χ, χ^{\prime} are any of the symbols $s^{0}, s^{(c)}$, or s.
Proof. The proof comes from the fact that $a / b \in M\left(\chi_{1}, \chi_{1}^{\prime}\right)$ is equivalent to $D_{a / b} \in\left(\chi_{1}, \chi_{1}^{\prime}\right)$ and to $I \in\left(D_{a} * \chi_{1}, D_{b} * \chi_{1}^{\prime}\right)=\left(\chi_{a}, \chi_{b}^{\prime}\right)$.
3.2. Sum and product of sets of the form χ_{a}, where χ is any of the symbols $s^{0}, s^{(c)}$, or s. In this section we recall some properties of the sum $\chi_{a}+\chi_{b}^{\prime}$ where χ and χ^{\prime} are any of the symbols $s^{0}, s^{(c)}$, or s.
3.2.1. Sum $E+F$ of sets of sequences.. We can state some results concerning the sum of particular interesting sequence spaces.

Let $E, F \subset s$ be two linear spaces. The set $E+F$ is defined by

$$
E+F=\{\xi \in s: \xi=u+v \text { for some } u \in E \text { and } v \in F\} .
$$

It can easily be seen that $E+F=F$ if and only if $E \subset F$. This permits us to show some of the next results that extend some results given in [6].

Theorem 3.4. Let $a, b \in U^{+}$.
(i) a) $s_{a} \subset s_{b}$ if and only if $a / b \in \ell_{\infty}$;
b) $s_{a}=s_{b}$ if and only if there are $K_{1}, K_{2}>0$ such that $K_{1} \leq b_{n} / a_{n} \leq K_{2}$ for all n;
c) $s_{a}+s_{b}=s_{a+b}=s_{\max (a, b)}$, where $[\max (a, b)]_{n}=\max \left(a_{n}, b_{n}\right)$;
d) $s_{a}+s_{b}=s_{a}$ if and only if $b / a \in \ell_{\infty}$.
(ii) a) $s_{a}^{0} \subset s_{b}^{0}$ if and only if $a / b \in \ell_{\infty}$;
b) $s_{a}^{0}=s_{b}^{0}$ if and only if $s_{a}=s_{b}$;
c) $s_{a}^{0}+s_{b}^{0}=s_{a+b}^{0}$;
d) $s_{a}^{0}+s_{b}^{0}=s_{a}^{0}$ if and only if $b / a \in l_{\infty}$;
e) $s_{a}^{(c)} \subset s_{b}^{(c)}$ if and only if $a / b \in c$.
f) The condition $a_{n} / b_{n} \rightarrow l \neq 0$ for some scalar l, is equivalent to $s_{a}^{(c)}=s_{b}^{(c)}$; and if $a_{n} / b_{n} \rightarrow l \neq 0$, then $s_{a}=s_{b}, s_{a}^{0}=s_{b}^{0}$ and $s_{a}^{(c)}=s_{b}^{(c)}$.
(iii) a) $s_{a+b}^{(c)} \subset s_{a}^{(c)}+s_{b}^{(c)}$.
b) The conditions $a_{n} / b_{n} \rightarrow L \in \mathbb{R}^{+} \cup\{\infty\}$ is equivalent to

$$
\begin{equation*}
s_{a}^{(c)}+s_{b}^{(c)}=s_{a+b}^{(c)} . \tag{3.1}
\end{equation*}
$$

c) The condition $b / a \in c$ is equivalent to $s_{a}^{(c)}+s_{b}^{(c)}=s_{a+b}^{(c)}=s_{a}^{(c)}$.

Proof. The proof of this theorem was given in [6, 10] except for iii) b). Proof of iii) b). First show $a_{n} / b_{n} \rightarrow L \in \mathbb{R}^{+} \cup\{\infty\}$ implies (3.1). Let $y \in s_{a}^{(c)}+s_{b}^{(c)}$. Then there are φ and $\psi \in c$ such that $y=a \varphi+b \psi$. Then

$$
\frac{y}{a+b}=\frac{a}{a+b} \varphi+\frac{b}{a+b} \psi=\frac{\frac{a}{b}}{1+\frac{a}{b}} \varphi+\frac{1}{1+\frac{a}{b}} \psi
$$

We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{a_{n}}{b_{n}}}{1+\frac{a_{n}}{b_{n}}}= \begin{cases}\frac{L}{1+L} & \text { if } L<\infty \\ 1 & \text { if } L=\infty\end{cases}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{1+\frac{a_{n}}{b_{n}}}= \begin{cases}\frac{1}{1+L} & \text { if } L<\infty \\ 0 & \text { if } L=\infty\end{cases}
$$

We conclude $s_{a}^{(c)}+s_{b}^{(c)} \subset s_{a+b}^{(c)}$.
Now let $y \in s_{a+b}^{(c)}$. Then there is $\zeta \in c$ such that $y /(a+b)=\zeta, y=a \zeta+b \zeta$ and $y \in s_{a}^{(c)}+s_{b}^{(c)}$. This shows $s_{a+b}^{(c)} \subset s_{a}^{(c)}+s_{b}^{(c)}$. We conclude that $a_{n} / b_{n} \rightarrow L \in$ $\mathbb{R}^{+} \cup\{\infty\}$ implies (3.1).

Conversely, show (3.1) implies $a_{n} / b_{n} \rightarrow L(n \rightarrow \infty)$ for some $L \in \mathbb{R}^{+} \cup\{\infty\}$. Put $\nu=a / b$. Since trivially we have $a \in s_{a}^{(c)}+s_{b}^{(c)}=s_{a+b}^{(c)}$, then

$$
\frac{a}{a+b}=\frac{\nu}{1+\nu}=\tau \in c .
$$

Put $L^{\prime}=\lim _{n \rightarrow \infty} \tau_{n}$. We then have $\nu=\tau(1+\nu), \nu=\tau /(1-\tau)$ and

$$
\lim _{n \rightarrow \infty} \nu_{n}=\left\{\begin{array}{c}
\frac{L^{\prime}}{1-L^{\prime}} \text { if } L^{\prime} \neq 1 \\
\infty \quad \text { if } L^{\prime}=1
\end{array}\right.
$$

So we have shown $a_{n} / b_{n} \rightarrow L^{\prime} \in \mathbb{R}^{+} \cup\{\infty\}(n \rightarrow \infty)$. This concludes the proof.
3.2.2. Product of sets of the form χ_{ξ} where χ is any of the symbols $s^{0}, s^{(c)}$, or s. In this part we recall some properties of the product $E * F$ of particular subsets E and F of s. These results can be found in [4, 6, 12].

For any given sets of sequences E and F, we write

$$
E * F=\bigcup_{\xi \in E} D_{\xi} * F=\{\xi \eta \in s: \xi \in E \text { and } \eta \in F\}
$$

We immediately have the following results,
Proposition 3.5. Let $a, b, \gamma \in U^{+}$. Then
(i) $s_{a} * s_{b}=s_{a} * s_{b}^{(c)}=s_{a}^{(c)} * s_{b}=s_{a b}$,
(ii) $s_{a} * s_{b}^{0}=s_{a}^{0} * s_{b}^{0}=s_{a}^{(c)} * s_{b}^{0}=s_{a b}^{0}$,
(iii) $s_{a}^{(c)} * s_{b}^{(c)}=s_{a b}^{(c)}$,
(iv) Let χ be any of the symbols $s^{0}, s^{(c)}$, or s. Then the solutions of the (SSE) $\chi_{a} * s_{x}^{0}=s_{\gamma}^{0}$ are determined by $K_{1} \gamma_{n} / a_{n} \leq x_{n} \leq K_{2} \gamma_{n} / a_{n}$ for all n and for some $K_{1}, K_{2}>0$.

4. Solvability of five (SSE)

In [1] we saw that we don't know the solvability of $s_{a}+s_{x}=s_{b}$, when $a / b \in$ $\ell_{\infty} \backslash c_{0}$ and $s_{a} \neq s_{b}$. In this section we consider (SSE) of the form $\chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime}$ where χ, χ^{\prime} are distinct and are either $s^{0}, s^{(c)}$, or s. We show that the next five equations $s_{a}^{0}+s_{x}=s_{b}, s_{a}^{(c)}+s_{x}^{0}=s_{b}^{0}, s_{a}+s_{x}^{0}=s_{b}^{0}, s_{a}+s_{x}^{(c)}=s_{b}^{(c)}$ and $s_{a}^{0}+s_{x}^{(c)}=s_{b}^{(c)}$ can be totally solved. It remains the (SSE) $s_{a}^{(c)}+s_{x}=s_{b}$, that is not solved until now for $a / b \in \ell_{\infty} \backslash c_{0}$.
4.1. Solvability of five (SSE) of the form $\chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime}$ where χ, χ^{\prime} are any of the symbols $s^{0}, s^{(c)}$, or s. The solvability of the equation $s_{a}+s_{x}^{(c)}=s_{b}^{(c)}$ for $a, b \in U^{+}$consists in determining the set of all $x \in U^{+}$such that for every $y \in s$ we have $y_{n} / b_{n} \rightarrow l(n \rightarrow \infty)$ if and only if there are two sequences u, v such that $y=u+v$ and

$$
\frac{u_{n}}{a_{n}}=O(1) \text { and } \frac{v_{n}}{x_{n}} \rightarrow l^{\prime} \quad(n \rightarrow \infty)
$$

For $\chi, \chi^{\prime} \in\left\{s^{0}, s^{(c)}, s\right\}$ we put

$$
\begin{aligned}
& \mathcal{I}\left(\chi, \chi^{\prime}\right)=\left\{x \in U^{+}: \chi_{b}^{\prime} \subset \chi_{a}+\chi_{x}^{\prime}\right\} \\
& \mathcal{I}^{\prime}\left(\chi, \chi^{\prime}\right)=\left\{x \in U^{+}: \chi_{a}+\chi_{x}^{\prime} \subset \chi_{b}^{\prime}\right\}
\end{aligned}
$$

and

$$
\mathcal{S}\left(\chi, \chi^{\prime}\right)=\left\{x \in U^{+}: \chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime}\right\} .
$$

In the following we consider the equivalence relation on U^{+}defined by $x \mathcal{R} y$ if $s_{x}=s_{y}$ and we denote by $c l(b)$ the equivalence class of $b \in U^{+}$. Similarly let $c l^{(c)}(b)$ be the equivalence class of b for the equivalence relation \mathcal{R}_{c} defined on U^{+}by $x \mathcal{R}_{c} y$ if $s_{x}^{(c)}=s_{y}^{(c)}$. By Theorem 3.4 ii) f) we have

$$
c l^{(c)}(b)=\left\{x \in U^{+}: x_{n} \sim k b_{n} \quad(n \rightarrow \infty) \text { for some } k>0\right\} .
$$

In the following we will use the next elementary result, if E, F and G are linear subspaces of s, then $E+F \subset G$ if and only if $E \subset G$ and $F \subset G$. Now state the following.
Theorem 4.1. [8] Suppose $a / b \in c_{0}$. Then the solutions of the equation

$$
\chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime}
$$

where χ is any of the symbols $s^{0}, s^{(c)}$, or s, and χ^{\prime} is any of the symbols s^{0}, or s are given by $x \in \operatorname{cl}(b)$.

Corollary 4.2. If $a / b \in c_{0}$, then $\mathcal{S}_{1}(\chi, s)=\mathcal{S}_{1}\left(\chi, s^{0}\right)=c l(b)$ where χ is any of the symbols s^{0}, $s^{(c)}$, or s.
Proposition 4.3. [8] Let $\chi, \chi^{\prime}, \chi^{\prime \prime}$ be any of the symbols s^{0}, $s^{(c)}$, or s. If $a / b \notin M\left(\chi_{1}, \chi_{1}^{\prime \prime}\right)$, then the equation

$$
\chi_{a}+\chi_{x}^{\prime}=\chi_{b}^{\prime \prime}
$$

has no solution.
Now put

$$
s_{b}^{*}=\left\{x \in U^{+}: x_{n} \geq K b_{n} \text { for some } K>0 \text { and for all } n\right\},
$$

and

$$
\left.\left.s_{b}^{*(c)}=\left\{x \in U^{+}: \lim _{n \rightarrow \infty} \frac{x_{n}}{b_{n}}=l \text { for some } l \in\right] 0,+\infty\right]\right\}
$$

Notice that $c l^{(c)}(b)=s_{b}^{(c)} \backslash s_{b}^{0}$. It can easily be seen that

$$
s_{b}^{*(c)}=\left\{x \in U^{+}: s_{b}^{(c)} \subset s_{x}^{(c)}\right\} .
$$

Indeed $\left.\left.\lim _{n \rightarrow \infty} x_{n} / b_{n}=l \in\right] 0,+\infty\right]$ means that $\lim _{n \rightarrow \infty} b_{n} / x_{n}=1 / l \in[0,+\infty[$ and $b \in s_{x}^{(c)}$. Since $b / x \in M(c, c)=c$ we have $s_{b}^{(c)} \subset s_{x}^{(c)}$.

State the next results.
Theorem 4.4. Let $a, b \in U^{+}$. Then
i) a) We have

$$
\mathcal{S}\left(s^{0}, s\right)=\left\{\begin{array}{cc}
c l(b) & \text { if } a / b \in \ell_{\infty} \\
\varnothing & \text { if } a / b \notin \ell_{\infty}
\end{array}\right.
$$

b) $\mathcal{S}\left(s^{(c)}, s^{0}\right)=\mathcal{S}\left(s, s^{0}\right)$ and

$$
\mathcal{S}\left(s, s^{0}\right)=\left\{\begin{array}{cc}
c l(b) & \text { if } a / b \in c_{0} \\
\varnothing & \text { if } a / b \notin c_{0}
\end{array}\right.
$$

ii) a)

$$
\mathcal{S}\left(s^{0}, s^{(c)}\right)= \begin{cases}c l^{(c)}(b) & \text { if } a / b \in \ell_{\infty} \\ \varnothing & \text { if } a / b \notin \ell_{\infty}\end{cases}
$$

b)

$$
\mathcal{S}\left(s, s^{(c)}\right)=\left\{\begin{array}{cc}
c l^{(c)}(b) & \text { if } a / b \in c_{0} \\
\varnothing & \text { if } a / b \notin c_{0}
\end{array}\right.
$$

Proof. i) a) Show $\mathcal{I}\left(s^{0}, s\right)=s_{b}^{*}$ if $a / b \in \ell_{\infty}$. Let $x \in \mathcal{I}\left(s^{0}, s\right)$. Since $s_{b} \subset s_{a}^{0}+s_{x}$ and $b \in s_{b}$, there are $\varepsilon \in c_{0}$ and $h \in \ell_{\infty}$ such that $b=a \varepsilon+x h$. We then have $1=(a / b) \varepsilon+(x / b) h$ and since $a / b \in \ell_{\infty}$ we deduce $\varepsilon^{\prime}=(a / b) \varepsilon \in c_{0}$. Since $1-\varepsilon_{n}^{\prime} \rightarrow 1(n \rightarrow \infty)$ we conclude

$$
\frac{b}{x}=\frac{h}{1-\varepsilon^{\prime}} \in \ell_{\infty}
$$

and $\mathcal{I}\left(s^{0}, s\right) \subset s_{b}^{*}$ if $a / b \in \ell_{\infty}$.
Conversely let $x \in s_{b}^{*}$. We then have $s_{b} \subset s_{x}$ and trivially $s_{b} \subset s_{x} \subset s_{a}^{0}+s_{x}$, for all $x \in U^{+}$. So we have shown that if $a / b \in \ell_{\infty}$, then $\mathcal{I}\left(s^{0}, s\right)=s_{b}^{*}$.

Now determine $\mathcal{I}^{\prime}\left(s^{0}, s\right)$. We see that $x \in \mathcal{I}^{\prime}\left(s^{0}, s\right)$ is equivalent to $s_{a}^{0} \subset s_{b}$ and $s_{x} \subset s_{b}$. We then have $a / b \in M\left(c_{0}, \ell_{\infty}\right)=\ell_{\infty}$ and $x / b \in M\left(\ell_{\infty}, \ell_{\infty}\right)=\ell_{\infty}$. So

$$
\mathcal{I}^{\prime}\left(s^{0}, s\right)=\left\{\begin{aligned}
s_{b} & \text { if } a / b \in \ell_{\infty} \\
\varnothing & \text { if } a / b \notin \ell_{\infty}
\end{aligned}\right.
$$

We conclude $\mathcal{S}\left(s^{0}, s\right)=\mathcal{I}\left(s^{0}, s\right) \cap \mathcal{I}^{\prime}\left(s^{0}, s\right)=s_{b} \cap s_{b}^{*}=c l(b)$ if $a / b \in \ell_{\infty}$ and $\mathcal{S}\left(s^{0}, s\right)=\varnothing$ if $a / b \notin \ell_{\infty}$. So we have shown i) a).
i) b) Let χ be any of the symbols s^{0}, or $s^{(c)}$. By Theorem 4.1, we have $\mathcal{S}\left(\chi, s^{0}\right)=\operatorname{cl}(b)$ if $a / b \in c_{0}$. Then by Proposition 4.3 since we have

$$
M\left(s_{1}^{(c)}, s_{1}^{0}\right)=M\left(c, c_{0}\right)=c_{0} \text { and } M\left(s_{1}, s_{1}^{0}\right)=M\left(\ell_{\infty}, c_{0}\right)=c_{0}
$$

we deduce that if $a / b \notin c_{0}$, then $\mathcal{S}\left(\chi, s^{0}\right)=\varnothing$. This concludes the proof of i).
ii) a) Show $\mathcal{I}\left(s^{0}, s^{(c)}\right)=s_{b}^{*(c)}$ if $a / b \in \ell_{\infty}$. Let $x \in \mathcal{I}\left(s^{0}, s^{(c)}\right)$. Since $s_{b}^{(c)} \subset$ $s_{a}^{0}+s_{x}^{(c)}$ and $b \in s_{b}^{(c)}$ there are $\varepsilon \in c_{0}$ and $\varphi \in c$ such that $b=a \varepsilon+x \varphi$. Then we have $1=(a / b) \varepsilon+(x / b) \varphi$ and since $a / b \in \ell_{\infty}$ we deduce $\varepsilon^{\prime}=(a / b) \varepsilon \in c_{0}$. Since $1-\varepsilon_{n}^{\prime} \rightarrow 1(n \rightarrow \infty)$ we conclude $b / x=\varphi /\left(1-\varepsilon^{\prime}\right) \in c$. Thus we have proved $\mathcal{I}\left(s^{0}, s^{(c)}\right) \subset s_{b}^{*(c)}$ if $a / b \in \ell_{\infty}$.

Conversely let $x \in s_{b}^{*(c)}$. We then have $s_{b}^{(c)} \subset s_{x}^{(c)}$ and trivially $s_{b}^{(c)} \subset s_{x}^{(c)} \subset$ $s_{a}^{0}+s_{x}^{(c)}$, for all $x \in U^{+}$. So we have shown $s_{b}^{*(c)} \subset \mathcal{I}\left(s^{0}, s^{(c)}\right)$ and we conclude that $\mathcal{I}\left(s^{0}, s^{(c)}\right)=s_{b}^{*(c)}$ for $a / b \in \ell_{\infty}$.

Now determine the set $\mathcal{I}^{\prime}\left(s^{0}, s^{(c)}\right)$. We see again that $x \in \mathcal{I}^{\prime}\left(s^{0}, s^{(c)}\right)$ is equivalent to $s_{a}^{0} \subset s_{b}^{(c)}$ and $s_{x}^{(c)} \subset s_{b}^{(c)}$, this means that $a / b \in M\left(c_{0}, c\right)=\ell_{\infty}$ and $x / b \in M(c, c)=c$. So

$$
\mathcal{I}^{\prime}\left(s^{0}, s^{(c)}\right)=\left\{\begin{array}{cc}
s_{b}^{(c)} & \text { if } a / b \in \ell_{\infty} \\
\varnothing & \text { if } a / b \notin \ell_{\infty}
\end{array}\right.
$$

We conclude $\mathcal{S}\left(s^{0}, s^{(c)}\right)=s_{b}^{*(c)} \cap s_{b}^{(c)}=c l^{(c)}(b)$ if $a / b \in \ell_{\infty}$ and $\mathcal{S}\left(s^{0}, s^{(c)}\right)=\varnothing$ if $a / b \notin \ell_{\infty}$.
ii) b) Show $\mathcal{I}\left(s, s^{(c)}\right)=s_{b}^{*(c)}$ if $a / b \in c_{0}$. Let $x \in \mathcal{I}\left(s, s^{(c)}\right)$. Since $s_{b} \subset s_{a}+s_{x}^{(c)}$ and $b \in s_{b}^{(c)}$ there are $h \in \ell_{\infty}$ and $\varphi \in c$ such that $b=a h+x \varphi$. We then have $1=(a / b) h+(x / b) \varphi$ and since $a / b \in c_{0}$ we deduce $\varepsilon=(a / b) h \in c_{0}$. Since $1-\varepsilon_{n} \rightarrow 1(n \rightarrow \infty)$ we conclude

$$
\frac{b}{x}=\frac{\varphi}{1-\varepsilon} \in c .
$$

This means that $b_{n} / x_{n} \rightarrow L$ for some $L \geq 0$ and $\left.\left.x_{n} / b_{n} \rightarrow 1 / L \in\right] 0,+\infty\right]$. Thus we have proved that if $a / b \in c_{0}$, then $\mathcal{I}\left(s, s^{(c)}\right) \subset s_{b}^{*(c)}$.

Conversely let $x \in s_{b}^{*(c)}$. We then have $s_{b}^{(c)} \subset s_{x}^{(c)}$ and trivially $s_{b}^{(c)} \subset s_{x}^{(c)} \subset$ $s_{a}^{0}+s_{x}^{(c)}$, for all $x \in U^{+}$. So we have $s_{b}^{*(c)} \subset \mathcal{I}\left(s, s^{(c)}\right)$ and we conclude that $\mathcal{I}\left(s, s^{(c)}\right)=s_{b}^{*(c)}$ if $a / b \in c_{0}$.

Now we need to determine $\mathcal{I}^{\prime}\left(s, s^{(c)}\right)$. We see that $x \in \mathcal{I}^{\prime}\left(s, s^{(c)}\right)$ if and only if $s_{a} \subset s_{b}^{(c)}$ and $s_{x}^{(c)} \subset s_{b}^{(c)}$, which is equivalent to $a / b \in M\left(\ell_{\infty}, c\right)=c_{0}$ and $x / b \in M(c, c)=c$. So

$$
\mathcal{I}^{\prime}\left(s, s^{(c)}\right)=\left\{\begin{array}{cc}
s_{b}^{(c)} & \text { if } a / b \in c_{0} \\
\varnothing & \text { if } a / b \notin c_{0}
\end{array}\right.
$$

We conclude $\mathcal{S}\left(s, s^{(c)}\right)=s_{b}^{*(c)} \cap s_{b}^{(c)}=c l^{(c)}(b)$ if $a / b \in c_{0}$.
We immediately deduce the next corollary.
Corollary 4.5. Let $a, b \in U^{+}$. Then
i) a) $\mathcal{S}\left(s^{0}, s\right)=\mathcal{S}\left(s^{(c)}, s^{0}\right)=\mathcal{S}\left(s, s^{0}\right)=c l(b)$ for $a / b \in c_{0}$;
b) $\mathcal{S}\left(s^{0}, s\right)=\mathcal{S}\left(s^{(c)}, s^{0}\right)=\mathcal{S}\left(s, s^{0}\right)=\varnothing$ if $a / b \notin \ell_{\infty}$;
ii) a) $\mathcal{S}\left(s, s^{(c)}\right)=\mathcal{S}\left(s^{0}, s^{(c)}\right)=c l^{(c)}(b)$ for $a / b \in c_{0}$;
b) $\mathcal{S}\left(s, s^{(c)}\right)=\mathcal{S}\left(s^{0}, s^{(c)}\right)=\varnothing$ if $a / b \notin \ell_{\infty}$.

Remark 4.6. It can easily be seen that each of the equations $s_{a}^{0}+s_{x}=s_{b}$, or $s_{a}^{0}+s_{x}^{(c)}=s_{b}^{(c)}$ has a solution if and only if $a / b \in \ell_{\infty}$, and each of the equations $s_{a}^{(c)}+s_{x}^{0}=s_{b}^{0}, s_{a}+s_{x}^{0}=s_{b}^{0}$, or $s_{a}+s_{x}^{(c)}=s_{b}^{(c)}$ has a solution if and only if $a / b \in c_{0}$.
Remark 4.7. If anyone of the five equations has a solution, then $a / b \in \ell_{\infty}$.
Illustrate the previous results with the next example, where we put $\operatorname{cl}\left(r_{2}\right)=$ $c l\left(\left(r_{2}^{n}\right)_{n}\right)$ and $c l^{(c)}\left(r_{2}\right)=c l^{(c)}\left(\left(r_{2}^{n}\right)_{n}\right)$.
Example 4.8. Let $r_{1}, r_{2}>0$ and consider the next two statements
P_{1} : For every $y, z \in s$ the conditions $y_{n} / r_{1}^{n} \rightarrow l_{1}$ and $z_{n} / x_{n} \rightarrow l_{2}$ imply together $\left(y_{n}+z_{n}\right) / r_{2}^{n} \rightarrow l_{3}(n \rightarrow \infty)$ for some scalars l_{1}, l_{2} and l_{3};
P_{2} : For every $t \in s$ we have $t_{n} / r_{2}^{n} \rightarrow 0(n \rightarrow \infty)$ if and only if there are u and $v \in s$ such that $t=u+v$ and $u_{n} / r_{1}^{n} \rightarrow L$ and $v_{n} / x_{n} \rightarrow 0(n \rightarrow \infty)$ for some scalar L.

The set S_{1} of all $x \in U^{+}$such that P_{1} and P_{2} hold is determined by the next system

$$
\begin{equation*}
s_{r_{1}}^{(c)}+s_{x}^{(c)} \subset s_{r_{2}}^{(c)} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{r_{1}}^{(c)}+s_{x}^{0}=s_{r_{2}}^{0} . \tag{4.2}
\end{equation*}
$$

It can easily be seen that (4.1) is equivalent to $r_{1} \leq r_{2}$ and $x \in s_{r_{2}}^{(c)}$ and by Theorem 4.1 i) b) (SSE) (4.2) is equivalent to $x \in \operatorname{cl}\left(r_{2}\right)$ if $\left(r_{1} / r_{2}\right)^{n} \rightarrow 0(n \rightarrow \infty)$, that is for $r_{1}<r_{2}$. We conclude that if $r_{1}<r_{2}$, then the set S_{1} is equal to $s_{r_{2}}^{(c)} \cap c l\left(r_{2}\right)=c l^{(c)}\left(r_{2}\right)$, so $x \in S_{1}$ if and only if $x_{n} \sim k r_{2}^{n}$ with $k>0$. If $r_{1} \geq r_{2}$, then $S_{1}=\varnothing$.

5. Application to special (SSE) with operators

In this section we consider two systems of (SSE) with operators defined by $s_{a}^{0}+s_{x}(\Delta)=s_{b}, s_{x} \supset s_{b}$ and $s_{a}+s_{x}^{(c)}(\Delta)=s_{b}^{(c)}, s_{x}^{(c)} \supset s_{b}^{(c)}$. Then we solve the (SSE) defined by $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{(c)}\left(C(\mu) D_{\tau}\right)=s_{b}^{(c)}$ where χ is either s^{0}, or s.
5.1. The sets \widehat{C} and $\widehat{C_{1}}$. In the following we need the next definitions and results. First recall that for any nonzero sequence $\eta=\left(\eta_{n}\right)_{n \geq 1}$, the triangle $C(\eta)$ is defined by

$$
[C(\eta)]_{n m}=\left\{\begin{array}{rc}
\frac{1}{\eta_{n}} & \text { if } m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

It can be shown that the matrix $\Delta(\eta)$ defined by

$$
[\Delta(\eta)]_{n m}= \begin{cases}\eta_{n} & \text { if } m=n \\ -\eta_{n-1} & \text { if } m=n-1 \text { and } n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\eta)$, that is $C(\eta)(\Delta(\eta) \xi)=\Delta(\eta)(C(\eta) \xi)$ for all $\xi \in s$. It is well known that $\Delta=\Delta(e) \in(s, s)$ is the operator of first-difference and we have $\Delta \xi_{n}=\xi_{n}-\xi_{n-1}$ for all $n \geq 1$ with $\xi_{0}=0$. The inverse $\Delta^{-1}=\Sigma$ is defined by $\Sigma_{n m}=1$ for $m \leq n$. We also use the sets

$$
\widehat{C_{1}}=\left\{a \in U^{+}: C(a) a \in \ell_{\infty}\right\} \text { and } \widehat{C}=\left\{a \in U^{+}: C(a) a \in c\right\}
$$

Note that if $a, b \in \widehat{C_{1}}$ then the sum $a+b$ and the product $a b$ are in $\widehat{C_{1}}$. It can easily be seen that any sequence of the form $\left(R^{n}\right)_{n}$ with $R>1$ belongs to $\widehat{C_{1}}$. It is known that \widehat{C} which is equal to the set $\widehat{\Gamma}$ of all $x \in U^{+}$such that $\lim _{n \rightarrow \infty}\left(x_{n-1} / x_{n}\right)<1$. Here we use the next lemmas which are consequences of [5, Proposition 2.1, p. 1786], and [6] and of the fact that $s_{a}(\Delta) \subset s_{a}$ is equivalent to $\Sigma \in\left(s_{a}, s_{a}\right)$ and $D_{1 / a} \Sigma D_{a} \in S_{1}$, which in turn is $a \in \widehat{C_{1}}$.

Lemma 5.1. Let $a \in U^{+}$. Then
i) The following statements are equivalent
a) $a \in \widehat{C_{1}}$,
b) $s_{a}(\Delta) \subset s_{a}$,
c) $s_{a}(\Delta)=s_{a}$.
ii) $s_{a}^{(c)}(\Delta)=s_{a}^{(c)}$ if and only if $a \in \widehat{\Gamma}$.

We also have the next elementary result.
Lemma 5.2. Let $a, b \in U^{+}$and assume $s_{a}=s_{b}$. Then $a \in \widehat{C_{1}}$ if and only if $b \in \widehat{C_{1}}$.

5.2. Solvability of two systems of (SSE) with operators defined by $s_{a}^{0}+$

$s_{x}(\Delta)=s_{b}, s_{x} \supset s_{b}$ and $s_{a}+s_{x}^{(c)}(\Delta)=s_{b}^{(c)}, s_{x}^{(c)} \supset s_{b}^{(c)}$. Now consider the next
statement: what are the sequences $x \in U^{+}$such that for every $y \in s$ we have $y_{n} / b_{n}=O(1)(n \rightarrow \infty)$ if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\frac{u_{n}}{a_{n}} \rightarrow 0, \frac{v_{n}-v_{n-1}}{x_{n}}=O(1) \quad(n \rightarrow \infty) \text { and } x_{n} \geq K b_{n} \text { for all } n ?
$$

This statement is equivalent to the system

$$
\begin{equation*}
s_{a}^{0}+s_{x}(\Delta)=s_{b} \text { and } s_{x} \supset s_{b} . \tag{5.1}
\end{equation*}
$$

We then have the following.
Proposition 5.3. Let \mathcal{S}_{1} be the set of all $x \in U^{+}$such that (5.1) holds. Then
i) if $b \notin \widehat{C}_{1}$ then $\mathcal{S}_{1}=\varnothing$;
ii) if $b \in \widehat{C}_{1}$ then

$$
\mathcal{S}_{1}=\left\{\begin{array}{l}
c l(b) \text { if } a / b \in \ell_{\infty}, \\
\varnothing \text { otherwise }
\end{array}\right.
$$

Proof. i) First show $\mathcal{S}_{1} \neq \varnothing$ implies $b \in \widehat{C}_{1}$. Let $x \in \mathcal{S}_{1}$. Then by (5.1) we have $s_{x}(\Delta) \subset s_{x}$ and $x \in \widehat{C}_{1}$ by Lemma 5.1. Then

$$
s_{x}=s_{x}(\Delta) \subset s_{a}^{0}+s_{x}(\Delta)=s_{b} \subset s_{x}
$$

and $s_{b}=s_{x}$. By Lemma 5.2 we conclude $b \in \widehat{C}_{1}$. So we have shown i).
ii) Let $b \in \widehat{C}_{1}$. Then

$$
s_{x}(\Delta) \subset s_{a}^{0}+s_{x}(\Delta)=s_{b} \subset s_{x}
$$

and as we have just seen this implies $x \in \widehat{C}_{1}$ and $s_{x}=s_{b}$. Then by Lemma 5.1 we have $x \in \mathcal{S}_{1}$ if and only if $s_{a}^{0}+s_{x}=s_{b}$ and we conclude by Theorem 4.4 i) a).

Now consider the next question. What are the sequences $x \in U^{+}$such that for every $y \in s$ we have $y_{n} / b_{n} \rightarrow L(n \rightarrow \infty)$ if and only if there are $u, v \in s$ such that $y=u+v$, and

$$
\left.\left.u_{n} / a_{n}=O(1), \quad\left(v_{n}-v_{n-1}\right) / x_{n} \rightarrow L^{\prime}(n \rightarrow \infty) \text { and } x_{n} / b_{n} \rightarrow L^{\prime \prime} \in\right] 0, \infty\right]
$$

for some scalars L, L^{\prime}, and $L^{\prime \prime}$?
The answer to this question is given by the following proposition, which can be shown as in Proposition 5.3.

Proposition 5.4. Let \mathcal{S} be the set of all $x \in U^{+}$such that

$$
s_{a}+s_{x}^{(c)}(\Delta)=s_{b}^{(c)} \text { and } s_{x}^{(c)} \supset s_{b}^{(c)} .
$$

We have

$$
\mathcal{S}= \begin{cases}c l^{(c)}(b) & \text { if } a / b \in c_{0} \text { and } b \in \widehat{\Gamma} \\ \varnothing & \text { otherwise }\end{cases}
$$

Example 5.5. Let $r_{1}, r_{2}>0$. The system $s_{r_{1}}+s_{x}^{(c)}(\Delta)=s_{r_{2}}^{(c)}$ and $r_{2}^{n} / x_{n} \rightarrow l$ for some scalar l, has solutions if and only if $r_{1}<r_{2}$ and $r_{2}>1$, and they are given by $x_{n} \sim k r_{2}^{n}(n \rightarrow \infty)$ for some $k>0$.
5.3. On the (SSE) with operators $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{(c)}\left(C(\mu) D_{\tau}\right)=s_{b}^{(c)}$ where χ is either s^{0}, or s. Here let $\Phi\left(\chi, s^{(c)}\right)$ be the set of all $x \in U^{+}$such that

$$
\begin{equation*}
\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{(c)}\left(C(\mu) D_{\tau}\right)=s_{b}^{(c)} \text { where } \chi \text { is either } s^{0}, \text { or } s \tag{5.2}
\end{equation*}
$$

For $\chi=s^{0}$ the solvability of (SSE) (5.2) consists in determining all the sequences $x \in U^{+}$such that the condition $y_{n} / b_{n} \rightarrow l(n \rightarrow \infty)$ holds if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\frac{\tau_{1} u_{1}+\cdots+\tau_{n} u_{n}}{\lambda_{n} a_{n}} \rightarrow 0 \text { and } \frac{\tau_{1} v_{1}+\cdots+\tau_{n} v_{n}}{\mu_{n} x_{n}} \rightarrow l^{\prime}(n \rightarrow \infty) \text { for all } y \in s
$$

and for some scalars l, l^{\prime}.
To state the next theorem we need a lemma where we use the set

$$
\mathcal{S}^{\prime}(\chi)=\left\{x \in U^{+}: \chi_{a \lambda}+s_{\mu x}^{(c)}=s_{b \tau}^{(c)}\right\},
$$

where χ is either s^{0} or s. We have the following.
Lemma 5.6. We have

$$
\Phi\left(\chi, s^{(c)}\right)=\left\{\begin{array}{cc}
\mathcal{S}^{\prime}(\chi) & \text { if } b \tau \in \widehat{C}, \\
\varnothing & \text { if } b \tau \notin \widehat{C_{1}} .
\end{array}\right.
$$

where χ is either s^{0}, or s.
Proof. Since $C^{-1}(\nu)=\Delta(\nu)$ for any nonzero sequence ν, we have (5.2) equivalent to

$$
D_{1 / \tau} \Delta(\lambda) \chi_{a}+D_{1 / \tau} \Delta(\mu) s_{x}^{(c)}=D_{1 / \tau} \Delta \chi_{a \lambda}+D_{1 / \tau} \Delta s_{\mu x}^{(c)}=s_{b}^{(c)}
$$

and to

$$
\begin{equation*}
\chi_{a \lambda}+s_{\mu x}^{(c)}=s_{b}^{(c)}\left(D_{1 / \tau} \Delta\right)=s_{b \tau}^{(c)}(\Delta) \tag{5.3}
\end{equation*}
$$

So if $b \tau \in \widehat{C}$, then we have $s_{b \tau}^{(c)}(\Delta)=s_{b \tau}^{(c)}$ and since (5.3) is equivalent to (5.2), we conclude $\Phi\left(\chi, s^{(c)}\right)=\mathcal{S}^{\prime}(\chi)$.

It remains to show that $\Phi\left(\chi, s^{(c)}\right) \neq \varnothing$ implies $b \tau \in \widehat{C_{1}}$. For this let $\xi \in$ $\Phi\left(\chi, s^{(c)}\right)$, that is $\chi_{a \lambda}+s_{\mu \xi}^{(c)}=s_{b \tau}^{(c)}(\Delta)$. First we have $s_{a \lambda}^{0} \subset \chi_{a \lambda} \subset s_{a \lambda}$ and $s_{\mu \xi}^{(c)} \subset s_{\mu \xi}$ which imply together

$$
s_{a \lambda+\mu \xi}^{0}=s_{a \lambda}^{0}+s_{\mu \xi}^{0} \subset \chi_{a \lambda}+s_{\mu \xi}^{(c)} \subset s_{a \lambda}+s_{\mu \xi}=s_{a \lambda+\mu \xi} .
$$

Then

$$
\begin{equation*}
s_{a \lambda+\mu \xi}^{0} \subset s_{b \tau}^{(c)}(\Delta) \subset s_{a \lambda+\mu \xi} \tag{5.4}
\end{equation*}
$$

The first inclusion gives $I \in\left(s_{a \lambda+\mu \xi}^{0}, s_{b \tau}^{(c)}(\Delta)\right)$ and $D_{1 / b \tau} \Delta D_{a \lambda+\mu \xi} \in\left(c_{0}, c\right)$. Since $\left(c_{0}, c\right) \subset\left(c_{0}, s_{1}\right)=S_{1}$ we deduce

$$
\frac{a_{n} \lambda_{n}+\mu_{n} \xi_{n}}{b_{n} \tau_{n}} \leq K \text { for all } n \text { and for some } K>0
$$

The second inclusion of (5.4) yields $\Delta^{-1}=\Sigma \in\left(s_{b \tau}^{(c)}, s_{a \lambda+\mu \xi}\right)$, that is

$$
D_{1 /(a \lambda+\mu \xi)} \Sigma D_{b \tau} \in\left(c, \ell_{\infty}\right)=S_{1}
$$

and

$$
\frac{b_{1} \tau_{1}+\cdots+b_{n} \tau_{n}}{a_{n} \lambda_{n}+\mu_{n} \xi_{n}} \leq K^{\prime} \text { for all } n \text { and for some } K^{\prime}>0
$$

We deduce

$$
\frac{b_{1} \tau_{1}+\cdots+b_{n} \tau_{n}}{b_{n} \tau_{n}}=\frac{b_{1} \tau_{1}+\cdots+b_{n} \tau_{n}}{a_{n} \lambda_{n}+\mu_{n} \xi_{n}} \frac{a_{n} \lambda_{n}+\mu_{n} \xi_{n}}{b_{n} \tau_{n}} \leq K K^{\prime} \text { for all } n .
$$

We conclude $b \tau \in \widehat{C_{1}}$. This concludes the proof.
As a direct consequence of Lemma 5.6 and Theorem 4.4 we obtain the next result.

Theorem 5.7. Let $a, b, \lambda, \mu, \tau \in U^{+}$. Then
i) a) if $b \tau \notin \widehat{C}_{1}$ then $\Phi\left(s^{0}, s^{(c)}\right)=\varnothing$;
b) if $b \tau \in \widehat{C}$ then

$$
\Phi\left(s^{0}, s^{(c)}\right)=\left\{\begin{array}{l}
c l^{(c)}(b \tau / \mu) \text { if } a \lambda / b \tau \in c_{0}, \\
\varnothing \quad \text { otherwise } .
\end{array}\right.
$$

ii) a) if $b \tau \notin \widehat{C}_{1}$ then $\Phi\left(s, s^{(c)}\right)=\varnothing$;
b) if $b \tau \in \widehat{C}$ then

$$
\Phi\left(s, s^{(c)}\right)=\left\{\begin{array}{l}
c l^{(c)}(b \tau / \mu) \text { if } a \lambda / b \tau \in \ell_{\infty}, \\
\varnothing \quad \text { otherwise } .
\end{array}\right.
$$

We are led to state the next corollary where the (SSE) is totally solved.
Corollary 5.8. Let $a, \lambda, \mu \in U^{+}$and $R>0$. Let $\Phi_{R}\left(\chi, s^{(c)}\right)$ be the set of the solutions of the equation

$$
\chi_{a}(C(\lambda))+s_{x}^{(c)}(C(\mu))=s_{R}^{(c)}
$$

where χ is either s^{0}, or s. We have
i) a) if $R \leq 1$ then $\Phi_{R}\left(s^{0}, s^{(c)}\right)=\varnothing$;
b) if $R>1$, then

$$
\Phi_{R}\left(s^{0}, s^{(c)}\right)=\left\{\begin{array}{l}
c l^{(c)}\left(\left(R^{n} / \mu_{n}\right)_{n}\right) \text { if } a_{n} \lambda_{n} / R^{n} \rightarrow 0 \quad(n \rightarrow \infty), \\
\varnothing \quad \text { otherwise. }
\end{array}\right.
$$

ii) a) if $R \leq 1$ then $\Phi_{R}\left(s, s^{(c)}\right)=\varnothing$;
b) if $R>1$, then

$$
\Phi_{R}\left(s, s^{(c)}\right)=\left\{\begin{array}{cc}
& c l^{(c)}\left(\left(R^{n} / \mu_{n}\right)_{n}\right) \text { if }\left(a_{n} \lambda_{n} / R^{n}\right)_{n \geq 1} \in s_{1}, \\
\varnothing & \text { otherwise } .
\end{array}\right.
$$

Proof. The proof is a direct consequence of Theorem 5.7. Indeed, if $R \leq 1$, then $\left(R^{n}\right)_{n \geq 1} \notin \widehat{C_{1}}$. Since $\widehat{C}=\widehat{\Gamma}$ and $\lim _{n \rightarrow \infty}\left(R^{n-1} / R^{n}\right)=1 / R<1$ we deduce that if $R>1$, then $\left(R^{n}\right)_{n \geq 1} \in \widehat{C}$.

Acknowledgement. The work of the second author is supported by Grant No. 174025 of the Ministry of Science, Technology and Development, Republic of Serbia.

References

1. A. Farés and B. de Malafosse, Sequence spaces equations and application to matrix transformationsInt. Math. Forum 3 (2008), no. 17-20, 911-927.
2. G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
3. I.J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
4. B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), 283-299.
5. B. de Malafosse, On some BK space, Int. J. Math. Math. Sci. 2003, no. 28, 1783-1801.
6. B. de Malafosse, Sum of sequence spaces and matrix transformations, Acta Math. Hung. 113 (3) (2006), 289-313.
7. B. de Malafosse, Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 54 (2012), no. 1, 39-52.
8. B. de Malafosse, Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. (to appear).
9. B. de Malafosse and V. Rakočević, A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007), 306-314.
10. B. de Malafosse, Sum of sequence spaces and matrix transformations mapping in $s_{\alpha}^{0}((\Delta-$ $\left.\lambda I)^{h}\right)+s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$, Acta Math. Hung. 122 (2008), 217-230.
11. B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. del Circ. Mat. di Palermo Serie II 51 (2002), 277-294.
12. B. de Malafosse and E. Malkowsky, Sets of difference sequences of order m, Acta Sci. Math. (Szeged) 70 (2004), 659-682.
13. B. de Malafosse and V. Rakočević, Applications of measure of noncompactness in operators on the spaces $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}, l_{\alpha}^{p}$, J. Math. Anal. Appl. 323 (2006), 131-145.
14. F. Móricz and B.E. Rhoades, An equivalent reformulation of summability by weighted mean methods, Linear Algebra Appl. 268 (1998), 171-181.
15. F. Móricz and B.E. Rhoades, An equivalent reformulation of summability by weighted mean methods, revisited, Linear Algebra Appl. 349 (2002), 187-192.
16. A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies $85,1984$.
${ }^{1}$ LMAH Université du Havre, BP 4006 IUT Le Havre, 76610 Le Havre. France. E-mail address: bdemalaf@wanadoo.fr
${ }^{2}$ Department of Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.

E-mail address: vrakoc@ptt.rs

[^0]: Date: Received: 16 October 2012; Accepted: 30 October 2012.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 40H05; Secondary 46A45.
 Key words and phrases. Matrix transformations, BK space, multiplier of sets of sequences, sequence spaces inclusion equations, sequence spaces equations with operator.

