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Communicated by T. Sugawa

Abstract. The object of this paper is to investigate some inclusion rela-
tionships and a number of other useful properties among certain subclasses
of analytic and p-valent functions, which are defined here by certain integral
operator.

1. Introduction and preliminaries

Let A(p) denote the class of functions of the form

f(z) = zp +
∞∑

n=p+1

anz
n, (p, n ∈ N = {1, 2, . . . }) , (1.1)

which are analytic and p–valent in the unit disc U = {z ∈ C : |z| < 1}. If f and
g are analytic in U, we say that f is subordinate to g, written symbolically as
follows:

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1, z ∈ U, such that f(z) = g(w(z)), z ∈ U. In particular,
if the function g is univalent in U, then we have the following equivalency (cf.,
e.g. [4]; see also [6, p. 4]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).
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For the functions f ∈ A(p) given by (1.1) and g ∈ A(p) defined by

g(z) = zp +
∞∑

n=p+1

bnz
n,

the Hadamard (or convolution) product of f and g is given by

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnz
n = (g ∗ f)(z).

Motivated essentially by Jung et al. [2], Shams et al. [10] introduced the
operator Iαp : A(p)→ A(p) as follows:

Iαp f(z) = zp +
∞∑
k=1

(
p+ 1

k + p+ 1

)α
ak+pz

k+p, α ∈ R.

Using the above definition relation, it is easy verify that the operator becomes
an integral operator

Iαp f(z) =
(p+ 1)α

zΓ(α)

z∫
0

(
log

z

t

)α−1
f(t) dt, for α > 0,

I0p f(z) = f(z), for α = 0,

and, moreover

z
(
Iαp f(z)

)′
= (p+ 1) Iα−1p f(z)− Iαp f(z), for α ∈ R. (1.2)

We mention that the one-parameter family of integral operator Iα ≡ Iα1 was
defined by Jung et al. [2].

Definition 1.1. For fixed parameters A and B (−1 ≤ B < A ≤ 1) and β ∈ [0, p),
we say that a function f ∈ A(p) is in the class Sαp (β;A,B) if it satisfies the
following subordination condition:

1

p− β

(
z(Iαp f(z))′

Iαp f(z)
− β

)
≺ 1 + Az

1 +Bz
.

In particular, for A = 1 and B = −1 we write Sαp (β; 1,−1) = Sαp (β), where

Sαp (β) =

{
f ∈ A(p) : Re

z
(
Iαp f(z)

)′
Iαp f(z)

> β, z ∈ U

}
.

2. Preliminaries

We begin by recalling each of the following lemmas which will be required in
our present investigation.

Lemma 2.1. [5],[6] Let a function h be analytic and convex (univalent) in U,
with h(0) = 1. Suppose also that the function ϕ given by

ϕ(z) = 1 + b1z + b2z
2 + . . . . (2.1)
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is analytic in U. If

ϕ(z) +
zϕ′(z)

c
≺ h(z) (c 6= 0, Re c ≥ 0), (2.2)

then

ϕ(z) ≺ Ψ(z) =
c

zc

z∫
0

tc−1h(t) dt ≺ h(z),

and Ψ is the best dominant of (2.2).

Lemma 2.2. [6] Suppose that the function Ψ : C2×U→ C satisfies the following
condition

Re Ψ(ix, y; z) ≤ ε,

for all x ∈ R and y ≤ −1

2
(1 + x2), and for all z ∈ U. If the function ϕ of the

form (2.1) is analytic in U and

Re Ψ(ϕ(z), zϕ′(z); z) > ε, z ∈ U,

then

Reϕ(z) > 0, z ∈ U.

Note that a more general form of this Lemma is given by the first part of
Theorem 2.3i [6, p. 35].

Lemma 2.3. [3] Let λ 6= 0 be a real number,
a

λ
> 0 and 0 ≤ β < 1. Suppose

also that the function Ψ(z) = 1 + cnz
n + cn+1z

n+1 + . . . is analytic in U and that

Ψ(z) ≺ 1 +
aM

nλ+ a
z, (n ∈ N),

where

M =

(1− β) |λ|
(

1 +
nλ

a

)
|1− λ+ λβ|+

√
1 +

(
1 +

nλ

a

)2
.

If the function θ(z) = 1 + enz
n + en+1z

n+1 + . . . is analytic in U and satisfies the
following subordination condition:

Ψ(z)
{

1− λ+ λ [(1− β)θ(z) + β]
}
≺ 1 +Mz,

then

Re θ(z) > 0, z ∈ U.

With a view to stating a well-known result (Lemma 2.4 below), we denote by
P (γ) the class of function ϕ given by (2.1) which are analytic in U and satisfy
the inequality

Reϕ(z) > γ, z ∈ U (γ < 1).
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Lemma 2.4. [8] Let the function ϕ given by (2.1) be in the class P (γ). Then

Reϕ(z) ≥ 2γ − 1 +
2(1− γ)

1 + |z|
, z ∈ U (γ < 1).

Lemma 2.5. [11] For 0 ≤ γ1 < γ2 < 1,

P (γ1) ∗ P (γ2) ⊂ P (γ3), where γ3 = 1− 2(1− γ1)(1− γ2).
The result is the best possible.

For any complex numbers α1, α2, β1 (β1 /∈ Z−0 ), the Gauss hypergeometric func-
tion is defined by

2F1(α1, α2; β1; z) = 1 +
α1α2

β1

z

1!
+
α1(α1 + 1)α2(α2 + 1)

β1(β1 + 1)

z2

2!
+ . . . .

The above series converges absolutely for all z ∈ U, and hence represents an
analytic function in the unit disc U (see, for details, [12, Chapter 14]).

Each of the identities asserted by Lemma below is well-known (cf., e.g. [12,
Chapter 14]).

Lemma 2.6. [12] For any complex parameters α1, α2, β1 (β1 /∈ Z−0 ), the next
equalities hold:

1∫
0

tα2−1(1− t)β1−α2−1(1− zt)−α1dt

=
Γ(α2)Γ(β1 − α2)

Γ(β1)
2F1(α1, α2; β1; z), Re β1 > Reα2 > 0;

(2.3)

2F1(α1, α2; β1; z) = 2F1(α2, α1; β1; z); (2.4)

2F1(α1, α2; β1; z) = (1− z)−α1
2F1

(
α1, β1 − α2; β1;

z

z − 1

)
. (2.5)

3. Properties involving the operator Iαp

Unless otherwise mentioned, we assume throughout this paper that −1 ≤ B <
A ≤ 1, λ > 0 and p ∈ N. By using the above lemmas, first we will prove the next
result:

Theorem 3.1. Let λ > 0, α ∈ R and −1 ≤ Bj < Aj ≤ 1, j = 1, 2. If the
functions fj ∈ A(p) satisfy the following subordination condition:

(1− λ)
Iαp fj(z)

zp
+ λ

Iα−1p fj(z)

zp
≺ 1 + Ajz

1 +Bjz
, j = 1, 2, (3.1)

then

(1− λ)
Iαp F (z)

zp
+ λ

Iα−1p F (z)

zp
≺ 1 + (1− 2η0)z

1− z
,

where
F = Iαp (f1 ∗ f2)
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and

η0 = 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− 1

2
2F1

(
1, 1;

p+ 1

λ
+ 1;

1

2

)]
. (3.2)

The result is the best possible when B1 = B2 = −1.

Proof. Suppose that the functions fj ∈ A(p), j = 1, 2, satisfy the condition (3.1).
Setting

ϕj(z) = (1− λ)
Iαp fj(z)

zp
+ λ

Iα−1p fj(z)

zp
, j = 1, 2, (3.3)

we see that

ϕj ∈ P (γj), where γj =
1− Aj
1−Bj

, j = 1, 2.

Thus, by making use of the identity (1.2) and (3.3), we obtain

Iαp fj(z) =
p+ 1

λ
zp−

p+1
λ

z∫
0

t
p+1
λ
−1ϕj(t) dt, j = 1, 2. (3.4)

Now, if we let

F (z) = Iαp (f1 ∗ f2)(z),

then, by using (3.4) and the fact that

Iαp F (z) = Iαp
(
Iαp (f1 ∗ f2) (z)

)
= Iαp (f1)(z) ∗ Iαp (f2)(z),

a simple computation shows that

Iαp F (z) =
p+ 1

λ
zp−

p+1
λ

z∫
0

t
p+1
λ
−1ϕ0(t) dt,

where

ϕ0(z) = (1− λ)
Iαp F (z)

zp
+ λ

Iα−1p F (z)

zp

=
p+ 1

λ
z−

p+1
λ

z∫
0

t
p+1
λ
−1(ϕ1 ∗ ϕ2)(t) dt. (3.5)

Since ϕj ∈ P (γj), j = 1, 2, it follows from Lemma 2.5 that

ϕ1 ∗ ϕ2 ∈ P (γ3), with γ3 = 1− 2(1− γ1)n(1− γ2),
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and the bound γ3 is the best possible. Hence, by using Lemma 2.4 in (3.5), we
deduce that

Reϕ0(z) =
p+ 1

λ

1∫
0

u
p+1
λ
−1 Re(p1 ∗ p2)(uz) du

≥ p+ 1

λ

1∫
0

u
p+1
λ
−1
(

2γ3 − 1 +
2(1− γ3)
1 + u |z|

)
du

>
p+ 1

λ

1∫
0

u
p+1
λ
−1
(

2γ3 − 1 +
2(1− γ3)

1 + u

)
du

= 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

1− p+ 1

λ

1∫
0

u
p+1
λ
−1

1 + u
du

 = η0, z ∈ U,

where η0 is given by (3.2).
When B1 = B2 = −1, we consider the functions fj ∈ A(p) which satisfy the

hypothesis (3.1) and are given by

Iαp fj(z) =
p+ 1

λ
zp−

p+1
λ

z∫
0

t
p+1
λ
−1
(

1 + Ajt

1− t

)
dt, j = 1, 2.

Then it follows from (3.5) and Lemma 2.4 that

ϕ0(z) =
p+ 1

λ

1∫
0

u
p+1
λ
−1
(

1− (1 + A1)(1 + A2) +
(1 + A1)(1 + A2)

1− uz

)
du

= 1− (1 + A1)(1 + A2) + (1 + A1)(1 + A2)(1− z)−1 2F1

(
1, 1;

p+ 1

λ
+ 1;

z

z − 1

)
→ 1− (1 + A1)(1 + A2) +

1

2
(1 + A1)(1 + A2) 2F1

(
1, 1;

p+ 1

λ
+ 1;

1

2

)
,

as z → −1, which completes the proof of Theorem 3.1. �

Putting Aj = 1 − 2ηj, Bj = −1 (0 ≤ ηj < 1, j = 1, 2) and α = 1 in Theorem
3.1, we obtain the following result.

Corollary 3.2. Let λ > 0 and let the functions fj ∈ A(p), j = 1, 2, satisfy the
following inequality:

Re

[
(1− λ)

p+ 1

zp+1

∫ z

0

fj(t) dt+ λ
fj(z)

zp

]
> ηj, z ∈ U (0 ≤ ηj < 1).

Then

Re

[
(1− λ)

p+ 1

zp+1

∫ z

0

(f1 ∗ f2)(t) dt+ λ
(f1 ∗ f2)(z)

zp

]
> η∗0, z ∈ U,
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where

η∗0 = 1− 4(1− η1)(1− η2)
[
1− 1

2
2F1

(
1, 1;

p+ 1

λ
+ 1;

1

2

)]
,

and the result is the best possible.

Putting Aj = 1 − 2ηj, Bj = −1 (0 ≤ ηj < 1, j = 1, 2), and α = λ = 1 in
Theorem 3.1, we obtain the following result.

Corollary 3.3. If the functions fj ∈ A(p), j = 1, 2, satisfy the following inequal-
ity:

Re
fj(z)

zp
> ηj, z ∈ U (0 ≤ ηj < 1),

then

Re

p+ 1

zp+1

z∫
0

(f1 ∗ f2)(t) dt


> 1− 4(1− η1)(1− η2)

[
1− 1

2
2F1

(
1, 1; p+ 2;

1

2

)]
, z ∈ U,

and the result is the best possible.

Remark 3.4. (i) We note that this result was also obtained by Patel et al. [9,
Corollary 5].

(ii) It is easy to see that F̃ (p) := 2F1

(
1, 1; p+ 2; 1

2

)
is a decreasing function

in p, and 1 < F̃ (p) ≤ F̃ (1) = 4(1 − log 2) = 1.2274 . . . . Moreover, F̃ (p)
can be computed explicitly for each p ∈ N, that is

F̃ (p) = 2(p+ 1)

∫ 1

0

up

1 + u
du = 2(p+ 1)

∫ 2

1

(x− 1)p

x
dx

= 2(p+ 1)

[
p∑

k=1

(
p

k

)
(−1)p−k

k

(
2k − 1

)
+ (−1)p log 2

]
.

Theorem 3.5. Let λ > 0, α ∈ R, −1 ≤ B ≤ 1 and B < A. If f ∈ A(p) satisfy
the following subordination condition:

(1− λ)
Iαp f(z)

zp
+ λ

Iα−1p f(z)

zp
≺ 1 + Az

1 +Bz
, (3.6)

then

Re
Iαp f(z)

zp
> ζ, z ∈ U, (3.7)

where

ζ =


A

B
+

(
1− A

B

)
(1−B)−1 2F1

(
1, 1;

p+ 1

λ
+ 1;

B

B − 1

)
, if B 6= 0

1− p+ 1

p+ 1 + λ
A, if B = 0.

The result is the best possible.
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Proof. If we let

ϕ(z) =
Iαp f(z)

zp
, (3.8)

then ϕ is of the form (2.1) and is analytic in U. Differentiating (3.8) with respect
to z and using the identity (1.2), we obtain

Iα−1p f(z)

zp
= ϕ(z) +

zϕ′(z)

p+ 1
. (3.9)

From (3.6), (3.8) and (3.9), we get

ϕ(z) +
λ

p+ 1
zϕ′(z) ≺ 1 + Az

1 +Bz
.

Now, by applying Lemma 2.1, we get

ϕ(z) ≺ Q(z) =
p+ 1

λ
z−

p+1
λ

z∫
0

t
p+1
λ
−1 1 + At

1 +Bt
dt

=


A

B
+

(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1;

p+ 1

λ
+ 1;

Bz

Bz + 1

)
, if B 6= 0

1 +
p+ 1

p+ 1 + λ
Az, if B = 0,

where we have also made a change of variables followed by the use of the identities
(2.3), (2.4) and (2.5). Next we will show that

inf
{

ReQ(z) : |z| < 1
}

= Q(−1). (3.10)

We have

Re
1 + Az

1 +Bz
≥ 1− Ar

1−Br
, |z| = r < 1,

and setting

g(s, z) =
1 + Azs

1 +Bzs
(0 ≤ s ≤ 1) and dv(s) =

(p+ 1)s
p+1
λ

λ
ds,

which is a positive measure on the closed interval [0, 1], we get

Q(z) =

1∫
0

g(s, z) dv(s),

so that

ReQ(z) ≥
1∫

0

1− Asr
1−Bsr

dv(s) = Q(−r), |z| = r < 1.

Upon letting r → 1− in the above inequality, we obtain the assertion (3.10). Now,
the estimation (3.7) follows directly from (3.10).
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In order to show that the estimate (3.7) is the best possible, we consider the
function f ∈ A(p) defined by

Iαp f(z)

zp
=
p+ 1

λ

1∫
0

u
p+1
λ
−1 1 + Auz

1 +Buz
du,

from which it is easily seen that

(1− λ)
Iαp f(z)

zp
+ λ

Iα−1p f(z)

zp
=

1 + Az

1 +Bz

and that

Iαp f(z)

zp
→ p+ 1

λ

1∫
0

u
p+1
λ
−1 1− Au

1−Bu
du

=


A

B
+

(
1− A

B

)
(1−B)−1 2F1

(
1, 1;

p+ 1

λ
+ 1;

B

B − 1

)
, if B 6= 0

1− p+ 1

p+ 1 + λ
A, if B = 0,

as z → −1, and the proof of Theorem 3.5 is thus completed. �

Remark 3.6. With the aid of the elementary inequality

Rewγ ≥ (Rew)γ, (Rew > 0, 0 < γ ≤ 1),

we could similarly prove that the assumptions of the above theorem implies

Re

(
Iαp f(z)

zp

)γ
> ζγ, z ∈ U (0 < γ ≤ 1),

whenever ζ ≥ 0.

Putting A = 1− 2η (η < 1), B = −1 and α = 1 in Theorem 3.5, we obtain the
following result.

Corollary 3.7. Let λ > 0 and let a function f ∈ A(p) satisfy the following
inequality:

Re

[
(1− λ)

p+ 1

zp+1

∫ z

0

f(t) dt+ λ
f(z)

zp

]
> η, z ∈ U (η < 1).

Then

Re

[
p+ 1

zp+1

∫ z

0

f(t) dt

]
> η + (1− η)

[
2F1

(
1, 1;

p+ 1

λ
+ 1;

1

2

)
− 1

]
, z ∈ U,

and the result is the best possible.

Putting λ = γ = 1 in Theorem 3.5, for the special case A = 1 − 2γ (γ < 1),
and B = −1 we obtain the following result.
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Corollary 3.8. If f ∈ A(p) satisfies the following condition:

Re
Iα−1p f(z)

zp
> γ, z ∈ U (γ < 1, α ∈ R),

then

Re
Iαp f(z)

zp
> γ + (1− γ)

[
2F1

(
1, 1; p+ 2;

1

2

)
− 1

]
, z ∈ U.

The result is the best possible.

For a function f ∈ A(p), the integral operator Fµ,p : A(p)→ A(p) is defined by
(cf., e.g. [1])

Fµ,p(f)(z) =
µ+ p

zµ

z∫
0

tµ−1f(t) dt =

(
zp +

∞∑
k=p+1

µ+ p

µ+ k
zp+k

)
∗ f(z)

= zp 2F1(1, µ+ p;µ+ p+ 1; z) ∗ f(z), z ∈ U (µ > −p). (3.11)

Theorem 3.9. Let λ > 0, α ∈ R, −1 ≤ B ≤ 1, B < A and µ > −p. Suppose
that f ∈ A(p) and Fµ,p(f) is given by (3.11). If

(1− λ)
Iαp Fµ,p(f)(z)

zp
+ λ

Iαp f(z)

zp
≺ 1 + Az

1 +Bz
, (3.12)

then

Re
Iαp Fµ,p(f)(z)

zp
> ρ0, z ∈ U,

where

ρ0 =


A

B
+

(
1− A

B

)
(1−B)−1 2F1

(
1, 1;

µ+ p

λ
+ 1;

B

B − 1

)
, if B 6= 0

1− µ+ p

µ+ p+ λ
A, if B = 0.

The result is the best possible.

Proof. It follows from the definition (3.11) that

z
(
Iαp Fµ,p(f)(z)

)′
= (µ+ p) Iαp f(z)− µ Iαp Fµ,p(f)(z). (3.13)

If we let

G(z) =
Iαp Fµ,p(f)(z)

zp
, (3.14)

then the hypothesis (3.12) in conjunction with (3.13) and (3.14) would yield

(1− λ)
Iαp Fµ,p(f)(z)

zp
+ λ

Iαp f(z)

zp
= G(z) +

λ

µ+ p
zG′(z) ≺ 1 + Az

1 +Bz
.

The remaining part of the proof of Theorem 3.9 is similar to that of Theorem 3.5
and we omit the details. �
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Theorem 3.10. Let λ > 0, α ∈ R, 0 ≤ β < p and p ∈ N, and let a function
f ∈ A(p) satisfy the following subordination condition:

(1− λ)
Iαp f(z)

zp
+ λ

Iα−1p f(z)

zp
≺ 1 +M1z, (3.15)

where

M1 =
ηξ

|η − 1|+
√

1 + ξ2
, (3.16)

with η =
λ(p− β)

p+ 1
and ξ =

p+ 1 + λ

p+ 1
= 1 +

η

p− β
. Then f ∈ Sαp (β).

Proof. Putting

ϕ(z) =
Iαp f(z)

zp
, (3.17)

then ϕ is of the form (2.1) and is analytic in U. From Theorem 3.5 with A = M1,
B = 0 and m = 1, we have

ϕ(z) ≺ 1 +
p+ 1

p+ 1 + λ
M1z,

which is equivalent to

|ϕ(z)− 1| < M1

ξ
= N < 1, z ∈ U. (3.18)

If we set

P (z) =
1

p− β

(
z
(
Iαp f(z)

)′
Iαp f(z)

− β

)
(0 ≤ β < p), (3.19)

then, by using the identity (1.2) followed by (3.17), we obtain

Iα−1p f(z)

zp
=

[
1− p− β

p+ 1
+
p− β
p+ 1

P (z)

]
ϕ(z). (3.20)

In view of (3.20), the assumption (3.15) can be written as follows:

|(1− η)ϕ(z) + ηP (z)ϕ(z)− 1| < M1 = ξN, z ∈ U. (3.21)

We need to show that (3.21) yields

ReP (z) > 0, z ∈ U. (3.22)

If we suppose that ReP (z) 6> 0, z ∈ U, then there exists a point z0 ∈ U such
that P (z0) = ix for some x ∈ R. To prove (3.22), it is sufficient to obtain a
contradiction from the following inequality:

W = |(1− η)ϕ(z0) + ηP (z0)ϕ(z0)− 1| ≥M1.

Letting ϕ(z0) = u + iv, then, by using (3.18) and the triangle inequality, we
obtain that

W 2 = |(1− η)ϕ(z0) + ηP (z0)ϕ(z0)− 1|2

= (u2 + v2)η2x2 + 2ηvx+ |(1− η)ϕ(z0)− 1|2

≥ (u2 + v2)η2x2 + 2ηvx+ (η − |1− η|N)2 ,
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and thus

W 2 −M2
1 ≥

(
u2 + v2

)
η2x2 + 2ηvx+ (η − |1− η|N)2 − ξ2N2.

Setting

Ψ(x) =
(
u2 + v2

)
η2x2 + 2ηvx+ (η − |1− η|N)2 − ξ2N2,

we note that (3.21) holds true if Ψ(x) ≥ 0 for any x ∈ R. Since(
u2 + v2

)
η2 > 0,

the inequality Ψ(x) ≥ 0 holds true if the discriminant ∆ ≤ 0, that is

∆ = 4

{
η2v2 − η2

(
u2 + v2

) [(
η − |1− η|N

)2 − ξ2N2
]}
≤ 0,

which is equivalent to

v2
[
1− (η − |1− η|N)2 + ξ2N2

]
≤ u2

[
(η − |1− η|N)2 − ξ2N2

]
.

Putting ϕ(z0)− 1 = ρeiθ for some real θ ∈ R, we get

v2

u2
=

ρ2 sin2 θ

(1 + ρ cos θ)2
.

Since the above expression attains its maximum value at cos θ = −ρ, by using
(3.18), we obtain

v2

u2
≤ ρ2

1− ρ2
≤ N2

1−N2
=

(η − |1− η|N)2 − ξ2N2

1− (η − |1− η|N)2 + ξ2N2
,

which yields ∆ ≤ 0. Therefore, W ≥ M1, which contradicts (3.12), hence
ReP (z) > 0, z ∈ U. This proves that f ∈ Sαp (β), which completes the proof
of Theorem 3.10. �

Taking α = 1 in Theorem 3.10, we obtain:

Corollary 3.11. Let λ > 0 and suppose that f ∈ A(p) satisfies the following
differential subordination

(1− λ)
p+ 1

zp+1

∫ z

0

f(t) dt+ λ
f(z)

zp
≺ 1 +M1z,

where M1 is given by (3.16). Then f ∈ S∗p(β), 0 ≤ β < p.

Theorem 3.12. Let λ > 0, 0 ≤ β < p, p ∈ N and µ ≥ 0. If f ∈ A(p) such that

Iαp f(z)

zp
6= 0, z ∈ U,

and satisfies the following differential subordination:

(1− λ)

(
Iαp f(z)

zp

)µ
+ λ

(
Iαp f(z)

)′
pzp−1

(
Iαp f(z)

zp

)µ−1
≺ 1 +M2z, (3.23)
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where the powers are understood as the principal value, and

M2 =



(p− β)λ

(
1 +

λ

µp

)
|p− (p− β)λ|+

√
p2 +

(
p+

λ

µ

)2
, if µ > 0

p− β
p

λ, if µ = 0,

then f ∈ Sαp (β).

Proof. If µ = 0, then the condition (3.23) is equivalent to∣∣∣∣∣z
(
Iαp f(z)

)′
Iαp f(z)

− p

∣∣∣∣∣ < p− β, z ∈ U,

which, in turn, implies that f ∈ Sαp (β).
If we consider µ > 0, let denotes

ϕ(z) =

(
Iαp f(z)

zp

)µ
. (3.24)

Choosing the principal value in (3.24), we note that ϕ is of the form (2.1) and is
analytic in U. Differentiating (3.24) with respect to z, we obtain

(1− λ)

(
Iαp f(z)

zp

)µ
+ λ

(
Iαp f(z)

)′
pzp−1

(
Iαp f(z)

zp

)µ−1
= ϕ(z) +

λ

µp
zϕ′(z),

which, in view of Lemma 2.1 (with c =
µp

λ
), yields

ϕ(z) ≺ 1 +
µp

µp+ λ
M2z.

Also, with the aid of (3.24), the subordination (3.23) can be written as follows:

ϕ(z)

{
1− λ+ λ

[(
1− β

p

)
P (z) +

β

p

]}
≺ 1 +M2z,

where P is given by (3.19). Therefore, by Lemma 2.3, we find that

ReP (z) > 0, z ∈ U,

that is

Re
z
(
Iαp f(z)

)′
Iαp f(z)

> β, z ∈ U (0 ≤ β < p),

which completes the proof of Theorem 3.12. �

Putting α = 0 in Theorem 3.12, we obtain the following result.

Corollary 3.13. Let λ > 0, 0 ≤ β < p, p ∈ N and µ ≥ 0. If f ∈ A(p) such that

f(z)

zp
6= 0, z ∈ U,
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and satisfies the following differential subordination:

(1− λ)

(
f(z)

zp

)µ
+ λ

zf ′(z)

pf(z)

(
f(z)

zp

)µ
≺ 1 +M2z,

where the powers are understood as the principal value and M2 is given as in
Theorem 3.12, then f ∈ S∗p(β).

Remark 3.14. (i) We note that this result was also obtained by Patel et al.
[9, Corollary 4];

(ii) Putting p=1 in Corollary 3.13, we obtain the result of Liu [3, Theorem
2.2 with n = 1].

Putting α = 0 and λ = 1 in Theorem 3.12, we obtain the following result.

Corollary 3.15. Let µ ≥ 0, 0 ≤ β < p and p ∈ N. If f ∈ A(p) such that

f(z)

zp
6= 0, z ∈ U,

and satisfies the inequality:∣∣∣∣zf ′(z)

f(z)

(
f(z)

zp

)µ
− p
∣∣∣∣ < (p− β) (pµ+ 1)

µβ +
√
p2µ2 + (pµ+ 1)2

, z ∈ U,

where the powers are understood as the principal value, then f ∈ S∗p(β).

Remark 3.16. (i) Putting p = 1 in Corollary 3.15, we obtain the result of Liu
[3, Corollary 2.1, with n = 1];

(ii) Putting p = µ = 1 in Corollary 3.15, we obtain the result of Mocanu and
Oros [7, Corollary 2.2 with n = 1].

Taking α = 0 and λ =
1

p− β
, 0 ≤ β < p in Theorem 3.12, we obtain the

following result.

Corollary 3.17. Let µ ≥ 0, 0 ≤ β < p and p ∈ N. If f ∈ A(p) such that

f(z)

zp
6= 0, z ∈ U,

and satisfies the inequality:∣∣∣∣(p− β − 1)

(
f(z)

zp

)µ
+
zf ′(z)

pf(z)

(
f(z)

zp

)µ
+ β − p

∣∣∣∣
<

(p− β) [pµ(p− β) + 1]

(p− 1) +
√
p2µ2(p− β)2 + [pµ(p− β) + 1]2

, z ∈ U,

where the powers are understood as the principal value, then f ∈ S∗p(β).

Remark 3.18. (i) Putting p = 1 in Corollary 3.17, we get the result of Liu [3,
Corollary 2.2, with n = 1];

(ii) Putting p = µ = 1 in Corollary 3.17, we obtain the result of Mocanu and
Oros [7, Corollary 2.4 with n = 1].
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Theorem 3.19. If the function g ∈ A(p) satisfies the condition

Re
Iα−1p g(z)

zp
> γ̃(p), z ∈ U (α ∈ R),

then

Re
Iαp g(z)

Iα+1
p g(z)

> 0, z ∈ U,

where

γ̃(p) :=
1− F̃ (p)

2p+ 4− F̃ (p)
and F̃ (p) := 2F1

(
1, 1; p+ 2;

1

2

)
. (3.25)

Proof. According to the Remark 3.4 (ii), it is easy to check the inequalities

1− F̃ (p)

2− F̃ (p)
< γ̃(p) < 0, (3.26)

while a simple computation shows that

Re

[
Iαp g(z)

zp
+

z

p+ 1

(
Iαp g(z)

zp

)′]
= Re

Iα−1p g(z)

zp
> γ̃(p), z ∈ U. (3.27)

If we denote

ϕ(z) =
Iαp g(z)

zp
,

then ϕ is analytic in U with ϕ(0) = 1, and the above inequality is equivalent to

ϕ(z) +
1

p+ 1
zϕ′(z) ≺ 1 + (1− 2γ̃(p))z

1− z
.

Now, according to Lemma 2.1, this subordination implies

ϕ(z) ≺ 1 + (1− 2γ̃(p))z

1− z
, i.e. Re

Iαp g(z)

zp
> γ̃(p), z ∈ U.

By applying Corollary 3.8 together with the relation (3.26), this last inequality
yields

Re
Iα+1
p g(z)

zp
> γ̃(p) + (1− γ̃(p))

[
2F1

(
1, 1; p+ 2;

1

2

)
− 1

]
> 0, z ∈ U, (3.28)

hence, if we let

φ(z) =
Iαp g(z)

Iα+1
p g(z)

, (3.29)

then φ is of the form (2.1), and from (3.28) and (3.29) we have that φ is analytic
in U.

It is easy to show that

Iαp g(z)

zp
+

z

p+ 1

(
Iαp g(z)

zp

)′
=

Iα+1
p g(z)

zp

(
φ2(z) +

zφ′(z)

p+ 1

)
= Ψ(φ(z), zφ′(z); z),

where

Ψ(u, v; z) =
Iα+1
p g(z)

zp

(
u2 +

v

p+ 1

)
,
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then the inequality (3.27) can be written as

Re Ψ(φ(z), zφ′(z); z) > γ̃(p), z ∈ U.

For all real x and y ≤ −1

2
(1 + x2), we have

Re Ψ(ix, y; z) =

(
y

p+ 1
− x2

)
Re

Iα+1
p g(z)

zp

≤ − 1

2(p+ 1)

{
1 + [2(p+ 1) + 1]x2

}
Re

Iα+1
p g(z)

zp
≤ − 1

2(p+ 1)
Re

Iα+1
p g(z)

zp

≤ − 1

2(p+ 1)

[
γ̃(p) + (1− γ̃(p))

[
2F1

(
1, 1; p+ 2;

1

2

)
− 1

]]
= γ̃(p), z ∈ U,

where we used (3.28) and the definition of γ̃(p) from the assumption. By Lemma
2.2 we get Reφ(z) > 0, z ∈ U, which completes the proof of Theorem 3.19. �

Theorem 3.20. Let fj ∈ A(p) (j = 1, 2). If the functions

Iα−1p fj(z)

zp
∈ P (γj), (0 ≤ γj < 1, α ∈ R),

then the function g = Iαp (f1 ∗ f2) satisfies the following inequality:

Re
Iα−1p g(z)

Iαp g(z)
> 0, z ∈ U,

provided that
1− 2(1− γ1)(1− γ2) ≥ γ̃(p), (3.30)

where γ̃(p) is defined by (3.25).

Proof. Denoting g = Iαp f0, where f0 = f1 ∗ f2, by using (1.2) it is easy to show
that

Iα−1p f1(z)

zp
∗

Iα−1p f2(z)

zp
=

1

zp
Iα−1p

(
Iα−1p f0(z)

)
=

1

zp
1

p+ 1

[
Iαp
(
Iα−1p f0(z)

)
+ z

(
Iαp
(
Iα−1p f0(z)

))′]
=

1

zp
1

p+ 1

(
Iα−1p g(z) + z

(
Iα−1p g(z)

)′)
.

Then, by the assumption of Theorem 3.20, it follows from Lemma 2.5 that

Re

(
Iα−1p f1(z)

zp
∗

Iα−1p f2(z)

zp

)
= Re

[
Iα−1p g(z)

zp
+

z

p+ 1

(
Iα−1p g(z)

zp

)′]
> β := 1− 2(1− γ1)(1− γ2), z ∈ U,

which is equivalent to

Re
Iα−2p g(z)

zp
> β, z ∈ U.

Using the assumption (3.30) and applying Theorem 3.19, for the case when the
parameter α is replaced by α− 1, we obtain our result. �
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