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Abstract. Higher rank semigraph algebras are introduced by mixing con-
cepts of ultragraph algebras and higher rank graph algebras. This yields a
kind of higher rank generalisation of ultragraph algebras. We prove Cuntz–
Krieger uniqueness theorems for cancelling semigraph algebras and aperiodic
saturated semigraph algebras.

1. Introduction

Tomforde’s ultragraph algebras [16] and Bates and Pask’s C∗-algebras of la-
belled graphs [1] are C∗-algebras which generalise graph algebras [12] by introduc-
ing - beside a directed graph - a further projection set which allows higher flexibil-
ity to design the C∗-algebra. For instance, Exel–Laca algebras [9] are ultragraph
algebras according to Tomforde [16], but are only proved to be Morita equivalent
to graph algebras [10]. In another direction, graph algebras by Enomoto and
Watatani [7] and Kumjian, Pask, Raeburn and Renault [12] were generalised to
higher rank graph algebras by Kumjian and Pask in [11] and Raeburn, Sims and
Yeend in [14]. A central result for Cuntz–Krieger algebras [6], ultragraph algebras
and labelled graph C∗-algebras is the existence of a Cuntz–Krieger uniqueness
theorem, firstly proved for the Cuntz–algebras [5].

In this work we extend Tomforde’s concept [16] of allowing an extra projection
set in the construction of the algebra to higher rank graphs. Such a graph algebra
will be called a higher rank semigraph algebra, see Definition 5.1. We do not use
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a strict concept by decorating the graph, but use a slightly more flexible concept
by allowing the algebra to be generated by partial isometries coming from a
higher rank semigraph (Definition 3.1) and a projection set, and mix it with
relations which are reminiscent of the relations of higher rank graph algebras
[11]. Then ultragraph algebras, C∗-algebras of labelled graphs and higher rank
Exel–Laca algebras [3] are higher rank semigraph algebras. We prove a Cuntz–
Krieger uniqueness theorem for cancelling semigraphs (Definition 7.2) in Theorem
7.3.

A side benefit of higher rank semigraph algebras is that they are stable under
quotients (provided the quotient allows a gauge action), see Lemma 8.1, and so
are predestinated for studying quotients (see also [4]). In the theory of graph
algebras one has to go over to relative graph algebras as studied by Sims [15]
when dealing with quotients. (Note, however, that saturated semigraph algebras
are also not stable under quotients as was also pointed out by the referee.)

In Section 9 we associate to every semigraph algebra another semigraph al-
gebra, called the saturated semigraph algebra, by adding relations which are
analogs to Cuntz’ relation s1s

∗
1 + s2s

∗
2 = 1 in the Cuntz algebra O2. The main

result of this section is that an aperiodic saturated semigraph algebra (Defini-
tion 9.5) is cancelling, see Proposition 9.6, and so statisfies the Cuntz–Krieger
uniqueness theorem according to Theorem 7.3. Our aperiodicity condition may
be compared with Cuntz and Krieger’s aperiodicity condition in [6] or Lewin and
Sims’ aperiodicity condition in [13] for higher rank graph algebras.

We give a brief overview of this paper. In Sections 2-3 we introduce the notion
of a finitely aligned k-semigraph. In Sections 3-6 we define higher rank semigraph
algebras and make sufficient analysis (in particular of the core) to be prepared for
the proof of the Cuntz–Krieger uniqueness theorem, Theorem 7.3, for cancelling
semigraph algebras in Section 7. In Section 8 we state stability under quotients,
and in Section 9 we discuss saturated semigraph algebras.

2. Semimultiplicative sets

In higher rank graph C∗-algebra theory [11] a graph is a small category. We
are going to introduce higher rank semigraph C∗-algebras which are relying on a
similar but more general structure called a semimultiplicative set.

Definition 2.1. A semimultiplicative set T is a set equipped with a subset T (2) ⊆
T and a multiplication

T (2) −→ T : (s, t) 7→ st,

which is associative, that is, for all s, t, u ∈ T , (st)u is defined if and only if s(tu)
is defined, and both expressions are equal if they are defined.

When we say (st)u is defined then we mean (s, t) ∈ T (2) and (st, u) ∈ T (2).
An example which is relevant for us is the semimultiplicative set Λ which is a
graph [11]. Then the product λµ of two elements of Λ is defined if and only
if s(λ) = r(µ). A graph is even a semi-groupoid [8]. A semi-groupoid is a
semimultiplicative set with the property that (st)u is defined if and only if both
st and tu are defined. The second example - and this comes closer to what we do
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here in this paper - is to think of a semimultiplicative set as a graph Λ without
the projections, so the set T = Λ\Λ(0).

3. Semigraphs

We define N0 = {0, 1, 2, . . .} and denote by T the unit circle. In this paper
k denotes an index set. If k is infinite then Zk denotes the set of functions
f : k → Z with finite support f−1(Z\{0}) (and similarly Nk

0 and Tk denote the
set of functions with finite support).

Definition 3.1. Let k be an index set (which may be regarded as a natural
number if k is finite). A k-semigraph T is a semimultiplicative set T equipped
with a map d : T −→ Nk

0 satisfying the unique factorisation property which
consists of the following two conditions:

(1) For all x, y ∈ T for which the product xy is defined one has

d(xy) = d(x) + d(y).

(2) For all x ∈ T and all n1, n2 ∈ Nk
0 with d(x) = n1 + n2 there exist unique

x1, x2 ∈ T with x = x1x2 satisfying d(x1) = n1 and d(x2) = n2.
The map d is called the degree map.

Often we shall call a k-semigraph T just a semigraph when k is unimportant or
clear from the context. We shall occasionally denote the degree d(t) of an element
t in a k-semigraph also by |t|. We denote the set of all elements of T with degree n
by T (n) (n ∈ Nk

0). The cut-down k-semigraph T (≤n) is the k-semigraph consisting
of all elements of T with degree less or equal to n.

Definition 3.2. If x ∈ T and 0 ≤ n1 ≤ n2 ≤ d(x) then there are unique
x1, x2, x3 ∈ T such that x = x1x2x3, d(x1) = n1, d(x2) = n2 − n1 and d(x3) =
d(x)− n2. x2 will be denoted by x(n1, n2).

Definition 3.3. A k-semigraph T is called finitely aligned if for all x, y ∈ T the
minimal common extension of x and y, which is the set

T (min)(x, y) = {(α, β) ∈ T × T |xα and yβ are defined,

xα = yβ, d(xα) = d(x) ∨ d(y)},

is finite.

The last definition is a straight generalisation of finitely alignment in graphs
([14]).

Lemma 3.4. Let Λ be a finitely aligned semigraph. For every finite subsets E
of Λ there exists a finite subset F of Λ containing E such that the following
implication holds.(

x1, x2, y1, y2 ∈ F, d(x1) = d(x2), d(y1) = d(y2), (α, β) ∈ Λ(min)(x1, y1)
)

=⇒
(
x2α ∈ F if x2α is defined, y2β ∈ F if y2β is defined

)
(3.1)
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Proof. If Λ is a graph then this lemma is a restatement of [14, Lemma 3.2]. If Λ
is a graph Γ without the idempotent set Γ(0), so Λ = Γ\Γ(0), then the assertion of
this lemma follows also directly from [14, Lemma 3.2] by applying it to the graph
Γ. If Λ is none of these cases then this lemma may be proved along the lines of
[14, Lemma 3.2] with obvious adaption: one always takes into account whether a
given product in Λ is defined and restricts to the defined products. For example,
instead of the definition of the set Ei given in the proof of [14, Lemma 3.2], one
uses

Ei = {x = λ1(0, d(λ1)) . . . λj(d(λj−1), d(λj)) |λl ∈ ∨Ei,
x exists, d(λl) ≤ d(λl+1) for 1 ≤ l ≤ j }

�

Definition 3.5. T is called a non-unital k-semigraph if there exists a k-semigraph
T1 which has a unit 1 ∈ T1 such that T = T1\{1}.

Suppose that T is a non-unital k-semigraph. Then d(1) = 0 in T1 since we
have d(1) = d(11) = d(1) + d(1). Moreover, by the unique factorisation property
in T1 the identity t = 1t = t1 yields that 1 is the only element in T1 which has
degree zero. Consequently we have d(t) > 0 for all t ∈ T .

4. The degree of a word

The setting of this section is as follows. P is a set and T is a k-semigraph or
a non-unital k-semigraph.

F denotes the free non-unital ∗-algebra generated by the letter set T ∪ P . In
other words, F is the vector space over the complex numbers with base being
all non-empty formal words aε11 . . . a

εn
n (n ≥ 1) in the letters ai ∈ T ∪ P . Here

εi ∈ {1, ∗}. Multiplication and taking adjoints within F is done formally.

Definition 4.1. The degree d(x) of a word x = x1 . . . xn in F (n ≥ 1, xi ∈
P ∪ T ∪ P∗ ∪ T ∗) is defined to be

d(x) = d(x1) + . . .+ d(xn),

where d(xi) is to be the semigraph-degree d(xi) when xi ∈ T , d(xi) = 0 if xi ∈ P ,
and d(x∗i ) = −d(xi) for any xi ∈ T ∪ P .

Since this degree map extends the degree map for T , we use the same notation
d. Note that the last definition is unambiguous: by the unique factorisation
property in T we have

d(x) = d(st) = d(s) + d(t)

for any decomposition x = st of x, s, t ∈ T in T , and this is all we had to check.
The degree map satisfies the following formulas:

d(wv) = d(w) + d(v) and d(w∗) = −d(w)

for all nonzero words w and v with wv 6= 0 in the first identity. In general we may
call such a map a degree map, even without the special form given in Definition
4.1. Note also that in order that Definition 4.1 is without contradiction we need
to have that the intersection P ∩ T , if non-empty, is a subset of T (0).
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In this chapter we shall write Wn for the words with degree n ∈ Z. Having the
degree map d, we may write F as a direct sum of fibers, where a fiber Fn is the
linear span of all words with degree n, i.e. we may write

F ∼=
⊕
n∈Zk

Fn =
⊕
n∈Zk

span(Wn). (4.1)

Definition 4.2. We call the set F =
⋃
n∈Zk Fn =

⋃
n∈Zk span(Wn) the fiber space

of F.

Consider a quotient X = F/I of F. A word w ∈ F will also be called a word in
the quotient X, so w + I is called a word in X when w is a word in F. Assume
that we are given a two-sided self-adjoint ideal I of F which is generated by some
subset of the fiber space. Then the quotient F/I inherits the degree map from F
as we are going to prove:

Lemma 4.3. The degree map d for words in F induces a well defined degree map
for the nonzero words in X when X is a quotient of F by a subset of the fiber
space. (Formula: d(x+ I) = d(x).)

Proof. For two nonzero words v+ I = w+ I in X, where v and w are words in F,
we need to show that d(v + I) := d(v) = d(w) =: d(w + I). We have v − w ∈ I.
Thus there are scalars αi ∈ C, words ai, bi ∈ F, and elements xi ∈ Fji ∩ I such
that

v − w =
n∑
i=1

αiaixibi, (4.2)

where each summand αiaixibi is obviously in the fiber Fji+d(a)+d(b). Since v and
w are words, and thus elements of single fibers, say v ∈ Fm1 and y ∈ Fm2 , a
comparison of fibers in (4.2) and using the direct sum representation (4.1) shows
that either d(w) = d(v) (what we wanted to prove) or both v and w are elments
in I, which means that v + I is zero in X (the case we exclude). �

Definition 4.4. The fiber space of X is the image of the fiber space of F under
the quotient map F −→ X.

Definition 4.5. Let σ : Tk −→ Aut(F) be the gauge action defined by

σλ(p) = p and σλ(t) = λd(t)t (4.3)

for all p ∈ P , t ∈ T and λ ∈ Tk.

The gauge action carries over to a canonically in the same way defined gauge
action σ′ : Tk −→ Aut(X). Indeed, since X = F/〈Y 〉 is the quotient of F by a
subset Y of the fiber space, and each element r ∈ Fm of the fiber space satisfies
σλ(r) = λmr, one has σλ(〈Y 〉) ⊆ 〈Y 〉. Hence σλ induces σ′λ : F/〈Y 〉 −→ F/〈Y 〉.
Note also that σ−1λ = σλ−1 and similarly so for σ′λ. For simplicity we shall denote
the gauge action on X also by σ if there is no danger of confusion.

Definition 4.6. Let σ : Tk −→ Aut(X) denote the gauge action onX determined
by the formulas (4.3).
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Lemma 4.7. X is the ∗-algebraic quotient of F by a subset of the fiber space if
and only if there is a gauge action on X as defined in Definition 4.6.

Proof. One direction we have proved. For the reverse direction assume that X
has a gauge action. Write X = F/I canonically for a two-sided self-adjoint ideal
I in F. Let x be an arbitrary element of I. We may write x =

∑
xn for xn in the

fiber Fn for all n ∈ Zk. We have, in X,

0 = σλ(x+ I) =
∑
n∈Zk

λnxn + I

for all λ ∈ Tk. Multiplying both sides of this equation with λ−m and integrating
it with

∫
Tk dλ yields xm ∈ I for all m ∈ Zk, and so xm ∈ I ∩ Fm. Since x was

arbitrary, I is the linear span of
⋃
n∈Zk(I ∩ Fn). So X is the quotient of a subset

of the fiber space. �

Since it is somewhat shorter, we shall occasionally write |x| for the degree d(x).

5. Semigraph algebras

We shall use the following notions when we speak about algebras. A ∗-algebra
means an algebra over C endowed with an involution. An element s in a ∗-
algebra is called a partial isometry if ss∗s = s, and a projection p is an element
with p = p2 = p∗. If I is a subset of a ∗-algebra then 〈I〉 denotes the self-adjoint
two-sided ideal generated by I in this ∗-algebra.

Definition 5.1 (Semigraph algebra). A k-semigraph algebra X is a ∗-algebra
which is generated by disjoint subsets P and T of X, where

(i) P is a set of commuting projections closed under taking multiplications,
(ii) T is a set of nonzero partial isometries closed under nonzero products,

(iii) T is a non-unital finitely aligned k-semigraph,
(iv) for all x ∈ T and all p ∈ P there is a q ∈ P such that px = xq,
(v) for all x, y ∈ T there exist qx,y,α,β ∈ P such that

x∗y =
∑

(α,β)∈T (min)
1 (x,y)

αqx,y,α,ββ
∗, and (5.1)

(vi) X is canoncially isomorphic to the quotient of F by a subset of the fiber
space (Definition 4.2).

We denote the unitization of the non-unital semigraph T by T1 (T1 appears
in identity (5.1)). Note that T1 := T t {1} is a finitely aligned k-semigraph by
Definition 5.1 (iii). It is understood in (5.1) that the unit 1 of T1 is also a unit
for X. So we may assume that 1 is the unit of the unitization of X, which is
X̃ = X ⊕ C1. The only reason why we use non-unital k-semigraphs instead of
k-semigraphs is that we wanted to avoid forcing a semigraph algebra to be unital.

Note that the product of two elements s and t of T stays in T (so is composable
in T ) if and only if st 6= 0. This is a somewhat subtle implication of Definition 5.1
(ii). In general, such a construction is a typical example of a semimultiplicative
set; for instance if R is a ring, then R\{0} is a semimultiplicative set under
multiplication.
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We shall occasionally write line (5.1) as

x∗y =
∑
xα=yβ

αqx,y,α,ββ
∗. (5.2)

Note that in the last identity d(xα) = d(x) +d(α) = d(yβ) = d(y) +d(β), so that
in formula (5.2) we have

d(x∗y) = −d(x) + d(y) = d(α)− d(β) = d(αqx,y,α,ββ
∗).

This shows that formula (5.2) is a relation in the fiber space.
The precise meaning of point (vi) of Definition 5.1 is that the kernel of the

canoncial epimorphism F −→ X is an ideal which is generated by a certain
subset of the fiber space. In other words, X can be regarded as the free ∗-algebra
F generated by T and P divided by a family of equations xi = 0, where xi is a
linear combination of words w with common degree d(w) (depending only on i).
Equivalently, there is a gauge action on X (Lemma 4.7).

Lemma 5.2. There is a degree map on the set of nonzero words of X which
extends the degree map on T (see Definition 4.1).

Proof. This is Lemma 4.3 in combination with Definition 5.1 (vi). �

Lemma 5.3. Let X be a semigraph algebra. Then
(i) d(1) = 0, (ii) d(t) > 0 for all t ∈ T , (iii) t∗t ∈ P for all t ∈ T , and (iv)

s∗t = δtss
∗s for all s, t ∈ T with d(s) = d(t).

Proof. (i) and (ii) were proved in Section 3.
(iii)-(iv) If d(s) = d(t) then s∗s = 1qs,t,1,11 ∈ P and s∗t = 0 for s 6= t by

(5.1). �

Definition 5.4. The enveloping C∗-algebra C∗(X) of X is called the semigraph
C∗-algebra associated to X.

Lemma 5.5. Points (ii), (iv) and (v) of Definition 5.1 also hold for x, y ∈ T1.

Proof. (iv) Of course, p1 = 1p. (v) Say x = 1. Then (y, 1) is the only element in

T (min)
1 (1, y) and one has formula (5.1), namely 1∗y = y(y∗y)1 with q1,y,y,1 = y∗y ∈
P (Lemma 5.3 (iii)). �

Definition 5.6. We shall use the following notations:

T1P = { sp ∈ X | s ∈ T1, p ∈ P },
T1PT ∗1 = { spt∗ ∈ X | s, t ∈ T1, p ∈ P }.

Definition 5.7. We shall use the following vocabulary for better readability of
this paper:

We call an element of T1PT ∗1 a standard word (of the semigraph algebra X).
We call an element of T1P a half-standard word.

So an element w of a semigraph algebra is a standard word if it allows a
representation w = spt∗ for some s, t ∈ T1 and p ∈ P . In particular, p, sp and pt∗

are also standard words (since 1 ∈ T1). A half-standard word is a standard word.
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The first important observation we shall make is that the word set of a sem-
igraph algebra is an inverse semigroup. Note in particular that this also means
that the range and source projections of all words commute among each other
(also between different words). It is however not true that the standard words
form an inverse semigroup. They do not form a stable set under multiplication.

Lemma 5.8. (a) The word set of X is an inverse semigroup of partial isome-
tries.

(b) For each word w there are half-standard words ai, bi and ci such that

ww∗ =
n∑
i=1

aia
∗
i and w =

m∑
j=1

bjc
∗
j (5.3)

with d(w) = d(bjc
∗
j) for all 1 ≤ j ≤ m.

Proof. We are going to show that range projections of half-standard words com-
mute. Let a and b be half-standard words. Then we may choose x, y ∈ T1 and
p, q ∈ P such that a = xp and b = yq. We have

aa∗bb∗ = xp(x∗y)qy∗ =
∑

(α,β)∈T (min)
1 (x,y)

xpαqx,y,α,ββ
∗qy∗

=
∑

xαpαqx,y,α,βqββ
∗y∗ =

∑
yβpαqx,y,α,βqββ

∗y∗

for certain pα, qβ ∈ P such that pα = αpα, qβ = βqβ by Definitions 5.1 (iv) and
(v), and since xα = yβ. We see by the above identity that aa∗bb∗ is self-adjoint
(since P is a commuting set, Definition 5.1 (i)). Thus aa∗ and bb∗ commute.

We are going to show the first identity in (5.3). We shall prove it by induction
on the length of the word w. Assume that ww∗ =

∑
i aia

∗
i =

∑
i xiqix

∗
i is proved

(for xi ∈ T1 and qi ∈ P with ai = xiqi). If t ∈ T then tww∗t∗ =
∑

i txiqix
∗
i t
∗ and

we are done with this inductive step. If p is in P then

pww∗p∗ =
∑
i

pxiqix
∗
i p
∗ =

∑
i

xip
′
iqp
′
ix
∗
i

for the p′i ∈ P of Definition 5.1 (iv) satisfying pxi = xip
′
i, and so we are also done

with this inductive step. If t ∈ T then

t∗ww∗t =
∑
i

t∗xiqix
∗
i t =

∑
i

(t∗xi)qi(t
∗xi)

∗

=
∑
i

∑
tαi=xiβi

αiqt,xi,αi,βiβ
∗
i qi

∑
tα′i=xiβ

′
i

β′iqt,xi,α′i,β′iα
′
i
∗

=
∑
i

∑
tαi=xiβi

αqt,xi,α,ββ
∗βqi,βqt,xi,α,βα

∗

by Definition 5.1 (v) in the second line, and Definition 5.1 (iv) (qiβ
′
i = β′qi,β′i)

and Lemma 5.3 (iv) in the third line. Note here also that α′ = α since necessarily
β′ = β, and one β′ allows only one solution α′ in the equation tα′ = xiβi by the
unique factorisation property (Definition 3.1). This proves the inductive step also
in this case.

The proof of the second sum in (5.3) is very similar.
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By the first formula of (5.3) and the fact that the aia
∗
i ’s commute (as we have

proved at the beginning of this lemma) it is evident that ww∗ and vv∗ commute
for all words w and v. Now P and T consist of partial isometries. Hence also
their compositions are partial isometries since their source and range projections
commute. And so further we see by induction that words of any length are partial
isometries. This proves point (a). �

Corollary 5.9. A semigraph algebra is spanned by its standard words.
The range projection of a word is a sum of range projections of half-standard

words.

Proof. This is a restatement of Lemma 5.8 (b). �

Corollary 5.10. A semigraph algebra is generated by the inverse semigroup of
all its words.

Proof. The semigraph algebra is the linear span of its words, and the word set is
an inverse semigroup by Lemma 5.8. �

Lemma 5.11. If v1, . . . , vn are half-standard words then there are half-standard
words w1 . . . , wm such that

Pv1Pv2 . . . Pvn = Pw1 + . . .+ Pwm , (5.4)

where the Pwk ’s are mutually orthogonal and the wk’s have common degree, i.e.
d(wk) = d(wi) for all 1 ≤ k, i ≤ m.

Proof. By induction hypothesis assume that (5.4) is already proved. We may
write vn+1 = sp and wk = tkqk for some s, tk ∈ T1 and p, pk ∈ P . Assume that
d(tk) = d(ti) for all k and i and that the tk’s are mutually distinct. By Definition
5.1 (iv) and (v) we have

Pvn+1

m∑
k=1

Pwk =
m∑
k=1

(sps∗)(tkqkt
∗
k)

=
n∑
k=1

sp
∑

sαk=tkβk

αkqk,s,tk,αk,βkβ
∗
kqkt

∗
k

=
n∑
k=1

∑
sαk=tkβk

sαkpk,αkqk,s,tk,αk,βkq
′
k,βk

β∗kt
∗
k

=
n∑
k=1

∑
sαk=tkβk

Ptkβkpk,αkqk,s,tk,αk,βkq
′
k,βk

,

where pk,αk , q
′
k,βk
∈ P such that pαk = αkpk,αk and qkβk = βkq

′
k,βk

. This proves
the claim since the tkβk’s are mutually distinct. �

Lemma 5.12. The source projection of a half-standard word is in P.

Proof. Let αp (α ∈ T1, p ∈ P) be a half-standard word. Then pα∗αp ∈ P by
Lemma 5.3 (iv) and Definition 5.1 (i). �
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The idempotent elements of the inverse semigroup of words in a semigraph
algebra are the range projections of words. By Lemma 5.8 the range projection,
and thus also the source projection, of any word is the orthogonal sum of range
projections of half-standard words. It is thus natural to consider common re-
finements of such range projections in the further analysis, and this is what the
next definitions are all about. These common refinements will be called standard
projections. They will be useful in the further analysis of semigraph algebras.

Definition 5.13. For an element x of a ∗-algebra X we put Px = xx∗ and
Qx = x∗x. For a subset Z of a ∗-algebra X we set

P(Z) = {Px(1− Py1) . . . (1− Pym) ∈ X | x, yi ∈ Z, m ≥ 0 }.

Definition 5.14. For better readability we introduce the following vocabulary.
We call an element of P(T1P) a standard projection (of the semigraph algebra

X).
We call an element of P(P) an elementary standard projection.

For instance, xpx∗(1 − yqy∗) is a standard projection given x, y ∈ T1 and
p, q ∈ P .

6. The core

Definition 6.1. The core of a semigraph algebra X is the 0-fiber X0, that is, the
linear span of all words with degree zero.

Since we have d(vw) = d(v) + d(w) and d(v∗) = −d(v) for words v and w in
X, the core is even a ∗-subalgebra of X. The next proposition is the basic tool
for the analysis of the core.

Proposition 6.2. (i) Suppose X is a ∗-algebra and G = {s1, . . . , sn} a finite, self-
adjoint subset of partial isometries of X with commuting range projections. Let
{p1, . . . , pN} be the collection of all minimal projections of the finite dimensional
commutative subalgebra Z of X generated by the range projections {Psi}ni=1 of the
elements of G.

Assume that for all 1 ≤ i, j ≤ n there exist nonnegative reals λ1, . . . , λn ≥ 0
such that

sisj =
n∑
k=1

λksk. (6.1)

Assume that for all 1 ≤ i, j ≤ n

siPsjs
∗
i ∈ Z. (6.2)

Then for all 1 ≤ x, y ≤ N and all 1 ≤ i ≤ n one has

pxsipy 6= 0 =⇒ pxsipy = pxsi = sipy. (6.3)

(ii) Assume further that for all 1 ≤ x, y ≤ N and all 1 ≤ i, j ≤ n one has

pxsipy 6= 0 and pxsjpy 6= 0 =⇒ pxsisjpx is a projection. (6.4)

Then the linear span M of G is a finite dimensional C∗-algebra with generating
canonical matrix units (ex,y)1≤x,y≤N , where ex,y = pxsipy when there is some
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1 ≤ i ≤ n such that pxsipy 6= 0, and ex,y = 0 otherwise. Actually, ex,y does not
depend on i. If ex,x 6= 0 then ex,x = px.

Note that by formula (6.1) and the fact that G is self-adjoint and finite, M
of the last proposition is surely a finite dimensional ∗-algebra. The point is that
M is even a C∗-algebra together with the relatively explicit computation of the
matrix units. Note also that the minimal projections px are just the common
refinements of the projections Psi .

Proof. Since G is self-adjoint (that is, G∗ ⊆ G) Z contains also the source pro-
jection of every element of G. We have siZs

∗
i ⊆ Z by (6.2) for every si ∈ G. This

also implies s∗iZsi ⊆ Z as s∗i ∈ G too. In particular, sipxs
∗
i ∈ Z for all 1 ≤ x ≤ N

and 1 ≤ i ≤ n. Thus we have

pxsipyp
∗
ys
∗
i p
∗
x ∈ pxsiZs∗i px ⊆ pxZpx ⊆ Z

for all 1 ≤ x ≤ N and all 1 ≤ i ≤ n. Since px and si are partial isometries with
commuting source projection px and range projection sis

∗
i , pxsi is also a partial

isometrie. By such considerations we check that

si, pxsi, sisj, pxsipy

are partial isometries with source and range projections living in the commutative
algebra Z. The partial isometry

eixy := pxsipy

is either zero or has source projection py and range projection px by minimality
of the pz’s. Hence, the composition eixye

i′

x′y′ is a partial isometry again for all

1 ≤ x, y, x′, y′ ≤ N and all 1 ≤ i, i′ ≤ n. If eixy 6= 0 then, since Z is a commutative
algebra,

eixy = pxsipypys
∗
i sipy = px(sipys

∗
i )si = pxsi, (6.5)

as the minimal projection px absorbs the projection sipys
∗
i ∈ Z. This proves

claim (6.3).
Hence, if eixy 6= 0 and ejxy 6= 0, then

eixy(e
j
xy)
∗ = pxsis

∗
jpx.

By assumption (6.4) (also recall that s∗j ∈ G), this is a projection. Since, as noted

above, eixy and ejxy have common source projection py and range projection px,

this is only possible when eixy = ejxy. This proves that exy := eixy, if nonzero, does
not depend on i.
M is a finite dimensional ∗-algebra by assumption (6.1). Since

∑N
i=1 pi is

a unit of M , the collection of all exy’s span M . We have to show that the
linear map ϕ : M → MN(C) determined by ϕ(eij) = êij for eij 6= 0, where
êij denote the canonical matrix units of MN(C), is a ∗-homomorphism. It will
then automatically follow that ϕ is injective. That the nonzero exy’s are linearly
independent, follows from a standard proof exploiting the above mentioned fact
that the source and range projections of exy are py and px, respectively. Suppose
that exy and eyz are nonzero. Then

0 6= e∗xy = pys
∗
i px = eyx
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by the above proved uniqueness of eyx. Thus ϕ(e∗xy) = ϕ(exy)
∗. Now we have

exyeyz = pxsisjpz =
n∑
k=1

λkpxskpz = λexz

for certain λk ≥ 0 and λ ≥ 0 by (6.5), by assumption (6.1), and by the above
proved uniqueness of the ekxz’s. Since both exyeyz and exz are nonzero partial
isometries (as mentioned above), |λ|2 = 1, and so λ = 1 as λ > 0. Hence we have
exyeyz = exz, and so

ϕ(exyeyz) = ϕ(exz) = êxz = êxyêyz = ϕ(exy)ϕ(eyz).

�

For the remainder of this section assume that we are given a semigraph algebra
X.

Lemma 6.3. For every finite set D of half-standard words there exists a finite
set H of half-standard words containing D such that

G = {xy∗ ∈ X | x, y ∈ H, d(x) = d(y) } (6.6)

satisfies all assumptions stated in Proposition 6.2.

Proof. Let D be a finite set of half-standard words. There are x1, . . . , xn ∈ T1 and
l1, . . . , ln ∈ P such that D = {x1l1, . . . , xnln}. By Lemma 3.4 there exists a finite
subset F which contains E = {x1, . . . , xn} and satisfies the stability condition
(3.1). By Definition 5.1 (v), for every x, y ∈ F we may choose qx,y,α,β ∈ P such
that

x∗y =
∑

(α,β)∈T (min)
1 (x,y)

αqx,y,α,ββ
∗.

Write L for the finite collection of these qx,y,α,β’s. Set A =
⋃
i∈k T (ei). Define the

following finite letter set A,

A = { a ∈ A | ∃α, β ∈ T1 such that αaβ ∈ F }.
In other words, A is the collection of those letters which are part of a word in F .
Consequently, for every x ∈ F there are aj ∈ A such that x = a1 . . . ai. For every
q ∈ P and every a ∈ A choose a projection Q(a, q) in P such that qa = aQ(a, q)
according to Definition 5.1 (iv). Successively applying the last identity we get

qa1 . . . ai = a1Q(a1, q)a2 . . . ai

= a1 . . . aiQ(ai, Q(ai−1, . . . Q(a2, Q(a1, q)) . . .)). (6.7)

Define L0 to be the finite set

L0 = {1, l1, . . . , ln} ∪ L.
For n ∈ Nk

0 set

Ln = L0 ∪ {Q(ai, Q(ai−1, . . . Q(a2, Q(a1, q)) . . .)) ∈ P |
i ∈ N, a1, . . . , ai ∈ A, |a1|+ . . .+ |ai| ≤ n, q ∈ L0 }.

Define Πn to be the set of all finite products of elements of Ln. That is, an element
of Πn is a finite product of projections originating from L0 and “permuted” with
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at most n letters of A (which is the letter set for the words in F ) according to
identity (6.7). Notice that since L0 is a finite set, Ln is a finite set. Thus, since P
is a commuting set, Πn is a finite set. Note also that (Rn)n and (Πn)n are families
of sets which increase in size. Now define

H = {αq ∈ T1P | α ∈ F, q ∈ Π|α| }\{1}.

Then H is a finite set. It contains the set D as xi ∈ E ⊆ F and li ∈ L0 ⊆ Π|xi|
for every 1 ≤ i ≤ n. This is the desired H which appears in (6.6). Define G as in
(6.6).

We aim to check that the requirements stated in Proposition 6.2 for a set G
there hold also for this G. Let us be given

g = α1q1q2α
∗
2 ∈ G and h = α3q3q4α

∗
4 ∈ G,

where α1q1, . . . , α4q4 ∈ H with α1, . . . , α4 ∈ F , |α1| = |α2|, |α3| = |α4|, q1, q2 ∈
Π|α1| and q3, q4 ∈ Π|α3|. Then

gh = (α1q1q2α
∗
2)(α3q3q4α

∗
4)

=
∑

(x,y)∈T (min)
1 (α2,α3)

α1q1q2xqα2,α3,x,yy
∗q3q4α

∗
4

=
∑

(x,y)∈T (min)
1 (α2,α3)

α1xq
(x)
1 q

(y)
3 y∗α∗4 (6.8)

where q1q2x = xq̃1 for some q̃1 ∈ Π|α1|+|x| by (6.7) (because q1q2 is a product of
projections originating from L0 and “permuted” with at most |α1| letters of A
according to identity (6.7), so q̃1 is another such product of projections originating
from L0 and “permuted” with at most |α1|+ |x| letters of A), and where we have

put q
(x)
1 = q̃1qα2,α3,x,y ∈ Π|α1|+|x|. Similarly we have q3q4y = yq

(y)
3 for some

q
(y)
3 ∈ Π|α3|+|y| by (6.7).

By condition (3.1) of Lemma 3.4 we have

α1x 6= 0, α4y 6= 0 =⇒ α1x, α4y ∈ F =⇒ α1xq
(x)
1 , α4yq

(y)
3 ∈ H. (6.9)

We have seen that G is a finite, self-adjoint set such that for all g, h ∈ G, gh is
the sum of certain elements in G as we can see from expression (6.8). This fact
proves the requirement (6.1) in Proposition 6.2.

By (6.8) we have

(gh)(gh)∗ =
∑

(x′,y′),(x,y)∈T (min)
1 (α2,α3)

α1xq
(x)
1 q

(y)
3 y∗α∗4α4y

′q
(y′)
3 q

(x′)
1 x′α1

=
m∑
i=1

gig
∗
i

for some gi ∈ G as y∗y′ = δy
′
y Qy in the above sum. This exactly proves (6.2) of

Proposition 6.2.
To prove (6.4) of Proposition 6.2, we have to show that if p, q are minimal

projections in Z (the commutative algebra generated by the range projections of
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the elements of G), and g, h ∈ G satisfy pgq 6= 0 and phq 6= 0, then pghp is a
projection.

We may assume pghp 6= 0. We may write g = α1q1q2α
∗
2 and h = α3q3q4α

∗
4

as above. Then gh equals (6.8). To analyse the sum (6.8), we consider (x, y) ∈
T (min)
1 (α2, α3). Set px = α1xq

(x)
1 q

(x)
1 x∗α∗1. If px 6= 0 then α1x 6= 0 and so px ∈ G

by conclusion (6.9). Thus px = pxp
∗
x is an element of Z. Note that the px’s are

mutually orthogonal for different x’s. Since p is a minimal projection of Z, there
is at most one x0 such that p = ppx0 6= 0. Comsequently, by (6.8) we have

0 6= pghp = ppx0ghpx0p = ppx0α1x0q
(x0)
1 q

(y0)
3 y0

∗α∗4px0p

= ppx0α1x0q
(x0)
1 q

(x0)
3 x0

∗α∗1px0p = ppx0px0px0p = p

for (x0, y0) ∈ T (min)
1 (α2, α3), and where the facts y0

∗α∗4px0 6= 0 and |α1x0| = |α4y0|
forces the conclusion α4y0 = α1x0. This shows that pghp is a projection. We
have proved that G satisfies all the requirements stated in Proposition 6.2, and
this was the claim. �

The next corollary is the main result of this section. The core is locally matrical
(i.e. the algebraic direct limit of finite dimensional C∗-algebras).

Corollary 6.4. The core is the union of a net of finite dimensional C∗-algebras,
each one allowing a matrix representation where each projection on the diagonal
is a finite sum of mutually orthogonal standard projections. A C∗-representation
of X is injective on the core if and only if it is non-vanishing on nonzero standard
projections.

Proof. The core is the linear span of words with degree zero. Thus, by Lemma
5.8, the core is the linear span of words xy∗ where x, y are half-standard words
with degree d(x) = d(y). Let f = {x1y∗1, . . . , xny∗n} be a finite subset of the core
with d(xi) = d(yi). Set D = {x1, . . . , xn, y1, . . . , yn}. Choose G for D according to
Lemma 6.3. Then f ⊆ G. The linear span of G is a finite dimensional C∗-algebra
by Proposition 6.2. This finite dimensional C∗-algebra may be represented by
a direct sum of matrices with diagonal entries ex,x = px, where px is a minimal
projection of the commutative algebra generated by the range projections Pg’s
(g ∈ G). Thus px is a common refinement of such Pg’s, that means,

px = Pg1 . . . Pgm(1− Ph1) . . . (1− Phl) (6.10)

for some gi, hi ∈ G. Now an element of G is of the form xy∗ (x, y half-standard
words), and so Pxy∗ = xQyx

∗ = Pz for the half-standard word z = xQy. Hence,
if we expand Pg1 . . . Pgm in (6.10) according to Lemma 5.11, we see that px is
the orthogonal sum of standard projections. This proves the first claim of the
corollary. The second claim is now clear, as a homomorphism defined on the
core is injective if it is non-vanishing on the nonzero standard projections (thus
non-vanishing on the matrix diagonal entries). �
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7. The Cuntz–Krieger uniqueness theorem

In this section we are going to prove a Cuntz–Krieger uniqueness theorem for
a semigraph algebra. To this end we shall apply theorems of our paper [2].

Let us recall what we need. In [2] we consider a ∗-algebra X which is generated
as a ∗-algebra by a subset A. One has given an amenable group G. One is
equipped with a degree map d assigning to each nonzero word in the letters
of A an element in G, such that d(vw) = d(v)d(w) and d(v∗) = d(v)−1 when
w, v, wv 6= 0. The ∗-algebra X together with these data A, d and G is called a
balance system.

Let us anticipate that we shall apply this setting to a semigraph algebra X.
We define G to be Zk, A the standard words, and d the degree map.

In [2], a criterion (C)∗ is given (explained below) which characterizes special
balance systems, which are then called cancelling systems. If we have a cancelling
system, and the word set is an inverse semigroup of partial isometries then the
cancelling system is even a so-called amenable cancelling system ([2], Corollary
1). Such a system satisfies the following uniqueness theorem ([2], Theorem 2.1).

Theorem 7.1 ([2], Theorem 2.1). If X is an amenable cancelling system then
the universal C∗-representation π : X → C∗(X) (so C∗(X) is the enveloping
C∗-algebra) is injective on the core, and actually this is the only existing C∗-
representation which is injective on the core (up to isomorphism).

If we can verify the condition (C)∗ for a semigraph algebra then it is a cancelling
system. It is then automatically an amenable system as the word set forms an
inverse semigroup of partial isometries (Lemma 5.8). Then the above theorem
applies.

The criterion (C)∗ can now be formulated as follows:
There exists a subset P of the core consisting of nonzero projections such that

for any nonzero projection q in the core there is a projection p in P satisfying
p - q (Murray–Von Neumann order). There exists a subset B of the algebra X
such that any word with nonzero degree can be expressed as a linear combination
of elements of B. For every x ∈ B and every p ∈ P there is a q ∈ P such that
q ≤ p and qxq = 0.

We are going to introduce a definition which is designed to guarantee the
validity of (C)∗.

Definition 7.2. A semigraph algebra X is called cancelling if for every standard
word w with nonzero degree and every nonzero standard projection p there is a
nonzero standard projection q such that q ≤ p and qwq = 0.

If X is a cancelling semigraph algebra then it satisfies (C)∗. Indeed, define
B to be the standard words with nonzero degree, and P the nonzero standard
projections. By Lemma 5.8 a word with nonzero degree may be expressed as a
sum of words of B. By Corollary 6.4, any nonzero projection of the core is larger
or equal in Murray–Von Neumann order than a nonzero standard projection. So
(C)∗ is now evident.

Theorem 7.1 thus yields the following Cuntz–Krieger uniqueness theorem.



SEMIGRAPH C∗-ALGEBRAS 53

Theorem 7.3 (Cuntz–Krieger uniqueness theorem). A cancelling semigraph al-
gebra X satisfies the following uniqueness:

The universal representation X −→ C∗(X) is injective on the core, and so
non-vanishing on the nonzero standard projections, and up to isomorphism this
is the only existing representation of X in a C∗-algebra which is non-vanishing
on nonzero standard projections and has dense image.

We used here also the fact that a representation is injective on the core if and
only if it is non-vanishing on nonzero standard projections (Corollary 6.4).

8. The quotient of a semigraph algebra

The following lemma tells us that a semigraph X divided by a subset of the
fiber space (Definition 4.4) is a semigraph algebra again.

Lemma 8.1. Let X be a semigraph algebra and Y the quotient of X by a subset
of the fiber space of X. Let f : X −→ Y be the quotient map. Then Y is a
semigraph algebra for the new generator sets Pnew = f(P) and Tnew = f(T )\{0}.
The restriction

f |f−1(Tnew) : f−1(Tnew) −→ Tnew (8.1)

is a bijection.

Proof. Since by Definition 5.1 (vi) X is a quotient of F by a subset of the fiber
space of F, and Y is a quotient of a subset of a fiber space of X, Y may also be
realised as a quotient of a subset of the fiber space of F. Hence, by Lemma 4.3,
Y is endowed with a degree map defined on the nonzero words of Y . Since the
gauge actions on X and Y are essentially identical, their degree maps are also
essentially identical.

In particular, Tnew is endowed with a degree map d(f(t)) = d(t) for t ∈ T ,
f(t) 6= 0. To prove that (8.1) is injective (it is surely surjective), suppose that
f(s) = f(t) 6= 0 for s, t ∈ T , and s 6= t. Then s∗t = 0 since d(s) = d(f(s)) =
d(f(t)) = d(t). Hence f(s∗s) = f(s∗t) = 0, and so f(s) = f(ss∗s) = 0, which is a
contradiction. Using this injectivity, it is now easy to check that (Tnew)1, which
is isomorphic to (f−1(Tnew))1 ⊆ T1, is, as T1, a semigraph.

We are going to prove that Y is a semigraph algebra. Definition 5.1 (vi) is
verified for Y . Definitions 5.1 (i)-(iv) are obvious. It remains to check Definition
5.1 (v). Suppose that x, y, α, β ∈ T1 and f(x)f(α) = f(y)f(β) 6= 0. Then
f(xα) = f(yβ) 6= 0. By injectivity of (8.1), xα = yβ. Hence one has

(Tnew)
(min)
1 (f(x), f(y)) = { (f(α), f(β)) | (α, β) ∈ T (min)

1 (x, y), f(x)f(α) 6= 0 }
(8.2)

for x, y ∈ T1 with f(x) 6= 0 and f(y) 6= 0. In particular, (Tnew)1 is finitely aligned.
Applying the map f to identity (5.1) of Definition 5.1 (v) we get

f(x)∗f(y) =
∑

(α,β)∈T (min)
1 (x,y)

f(α)f(qx,y,α,β)f(β)∗. (8.3)

Since the left hand side of (8.3) has the left unit f(x)∗f(x), this must also be a
left unit for the right hand side of (8.3). Putting this unit before the sum in (8.3),
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we see that the summands satisfying f(x)f(α) = 0 vanish. So we drop these α’s
and end up with

f(x)∗f(y) =
∑

(α,β)∈T (min)
1 (x,y), f(x)f(α)6=0

f(α)f(qx,y,α,β)f(β)∗.

By (8.2) this verifies Definition 5.1 (v) for Y . �

9. Saturated semigraph algebras

The aim of this section is to associate to a given semigraph algebra X a further
semigraph algebra X‖ by adding relations to X which are counterparts to the
relation s1s

∗
1 + s2s

∗
2 = 1 in the Cuntz algebra O2.

Definition 9.1. Write T (∞)
1 for the set of all increasing sequences in T1. That

means, an element x ∈ T (∞)
1 is a function x : Nk

0 → T1 such that d(xn) = n and
xn2(0, n1) = xn1 for all n1 ≤ n2 (n1, n2 ∈ Nk

0).

We may interpret an increasing sequence x ∈ T (min)
1 as an infinite path in T1.

Definition 9.2. Define O to be the set of all standard projections p ∈ X for

which for every increasing sequence x ∈ T (∞)
1 one has pxn = 0 eventually for

some n.
Then the saturated semigraph algebra X‖ associated to X is the ∗-algebraic

quotient of X by O.

Since pxn is a partial isometry with norm 1, limn pxn = 0 is equivalent to saying
that pxn = 0 eventually (or to pPxn = 0 eventually).

The idea behind saturation is to add for every coordinate i ∈ k the formal
relation 1 =

∑
a∈T (ei) Pa to the semigraph algebra X. (This is Cuntz’ relation in

the Cuntz algebra [5] that the sum of the range projections of the generators is
the unit.) This may however be an infinite sum, and so the meaning must be
specified. With these relations we get

1 =
∑
|a|=ei

Pa =
∑
|a|=ei

∑
|b|=ej

abb∗a∗ = . . . =
∑

α∈T (n)

Pα.

Thus an element p in X seems to vanish if and only if p1 = 0 if and only if there

is an n ∈ Nn
0 such that pPα = 0 for all α ∈ T (n)

1 . This condition is however
somewhat too strong, and so we heuristically think of the limits of the range

projections Pxn of elements x ∈ T (∞)
1 as the spectrum of a commutative algebra

generated by all range projections Pα (α ∈ T1). Elements x in the spectrum
correspond to limits x = limPxn . So we declare p to be zero if the evaluation on
the spectrum is zero everywhere, that is, if limn pPxn = 0 (equivalently pxn = 0

eventually) for all x ∈ T (∞)
1 . This is what we do in Definition 9.2.

In the next lemma we shall show that the quotient of X by O is indeed a
semigraph algebra and that it is indeed saturated in the sense that we get nothing
new if we consider the saturated semigraph algebra of this quotient again.

Lemma 9.3. (a) X‖ is a semigraph algebra, and (X‖)‖ = X‖ .
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(b) If p is a standard projection in X then p vanishes in X‖ if and only if
p ∈ O.

(c) If t ∈ T then t vanishes in X‖ if and only if Pt ∈ O.

Proof. X‖ is a semigraph algebra as it is the quotient of the semigraph algebra
X by a subset of the core, which is in the fiber space (Lemma 8.1). We denote
the equivalence class of x ∈ X in X‖ = X/〈O〉 by [x]. We are going to prove (b).
Suppose that p is a standard projection and [p] = 0. Then there are elements
pi ∈ O, scalars αi ∈ C, and words vi, wi such that

p =
κ∑
i=1

αivipiwi. (9.1)

Since by Lemma 5.8 every word may be written as a sum of standard words, we
may assume that the vi and wi’s are standard words. Say that wi = siqit

∗
i for

si, ti ∈ T1 and qi ∈ P . Let x ∈ T (∞)
1 . If d(xn) ≥ d(ti) then either t∗ixn = 0, or

t∗ixn 6= 0 in which case xn(0, d(ti)) = ti. Hence, wixn = 0 eventually for some n,
or

piwixn = pisiqit
∗
ixn = pisiqix(d(ti), n) = pisix(d(ti), n)qi,n,

which is also vanishing eventually for some n as pi ∈ O (here qi is “permuted”
with x(d(ti), n) according to Definition 5.1 (iv), thereby becoming qi,n ∈ P).
Hence, by (9.1), pxn = 0 eventually. Since x was arbitrary, p ∈ O by Definition
9.2.

We are going to show that (X‖)‖ = X‖. To this end we need to show that

O‖ (i.e. O with respect to X‖) is {0}. Let [p] be a standard projection in
X‖ (p denoting a standard projection in X). Suppose that [p] is in O‖. Then

by Definition 9.2 for every x ∈ T (∞)
1 [p][xn] = 0 eventually for some n. For

simplicity let us assume that p = aqa∗(1− bb∗) for some a, b ∈ T1 and q ∈ P . Let

x ∈ T (∞)
1 . If d(xn) ≥ d(a) then xnx

∗
naqa

∗ = 0, or xnx
∗
naqa

∗ = xnq
′x∗n for some

q′ ∈ P satisfying qxn(0, |a|) = xn(0, |a|)q′. Hence

pxnx
∗
n = xnq

′x∗n(1− bb∗)

is a standard projection for all n ≥ d(a). Thus, since also [pxnx
∗
n] = 0 for almost

all n (as [p] ∈ O‖), by Lemma 9.3 (b), which we have proved, pxnx
∗
n ∈ O for

almost all n. Fix any such an n. Then, pxnx
∗
nxmx

∗
m = 0 = pxmx

∗
m for almost

m ≥ n. Since x was arbitrary, p ∈ O. Thus [p] = 0.
(c) follows from [t] = 0 if and only if [tt∗] = 0 if and only if tt∗ ∈ O by (b). �

Definition 9.4. A semigraph algebra X is called saturated if X = X‖.

We shall introduce a condition for a semigraph algebra called aperiodicity which
implies that the semigraph algebra is cancelling when it is also saturated. The
aperiodicity condition is more or less a condition directly for the underlying sem-
igraph.

Definition 9.5. A semigraph algebra X is called aperiodic if for every elementary
standard projection e, every x ∈ T with xe 6= 0, and all distinct 0 ≤ m,n ≤ d(x),



56 B. BURGSTALLER

there exists a y in T1 such that xey 6= 0 and

T (min)
1

(
(xy)(m, d(xy)), (xy)(n, d(xy))

)
= ∅. (9.2)

Proposition 9.6. An aperiodic saturated semigraph algebra is cancelling.

Proof. We will check that X is cancelling (Definition 7.2). Let w be a standard
word with nonzero degree and p a nonzero standard projection. We need to find
a nonzero standard projection q such that q ≤ p and qwq = 0. We may write w
as w = αQβ for Q ∈ P and α, β ∈ T1 with |α| 6= |β|. We may write

p = t0q0t
∗
0(1− t1q1t∗1) . . . (1− tnqnt∗n) (9.3)

for certain ti ∈ T1 and qi ∈ P . Since X is saturated, p /∈ O. Thus there is an

x ∈ T (∞)
1 such that pxi 6= 0 for all i ∈ Nk

0. Fix any N > max(|α|, |β|, |t0|, . . . , |tn|).
Then pxNx

∗
N 6= 0. Note that for every 0 ≤ i ≤ n, either tiqit

∗
ixNx

∗
N = 0 or

ti = xN(0, |ti|), in which case

tiqit
∗
ixNx

∗
N = xNq

′
ix
∗
N

for some q′i ∈ P by Definition 5.1 (iv) and (v). Thus pxNx
∗
N is something like

xNq
′
0x
∗
N(xNx

∗
N − xNq′1x∗N) . . . (xNx

∗
N − xNq′nx∗N)

= xNq
′
0x
∗
NxN(1− q′1)x∗NxN . . . x∗NxN(1− q′n)x∗N

= xN
(
q′0(1− q′1) . . . (1− q′n)

)
x∗N (9.4)

= xNex
∗
N , (9.5)

where e denotes the elementary standard projection appearing in the middle of
(9.4).

Since xNe 6= 0, we may choose a y ∈ T1 by the aperiodicity condition such that
xNey 6= 0 and

T (min)
1 (z(|α|, |z|), z(|β|, |z|)) = ∅ (9.6)

for z = xNy. Thus 0 6= q := PxNey ≤ PxNe = pxNx
∗
N ≤ p. We may write

q = xNeyy
∗x∗N = xNye

′y∗x∗N = ze′z∗

for some elementary standard projection e′ satisfying ey = ye′ by successive
application of Definition 5.1 (iv). We then have

qwq = ze′z∗αQβ∗ze′z∗

= ze′z(|α|, |z|)∗QαQQβz(|β|, |z|)e′z∗

= ze′z(|α|, |z|)∗z(|β|, |z|)Q′αQ′Q′βe′z∗

= 0

by (9.6), provided that z∗α 6= 0 and β∗z 6= 0 (if not so, we obviously obtain zero
anyway).

�

Lemma 9.7. A representation of a saturated semigraph algebra is injective on
the core if and only if it is non-vanishing on elementary standard projections.
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Proof. Let π be a representation which is non-vanishing on nonzero elementary
standard projections. By Corollary 6.4 we must show that π is non-vanishing
on every nonzero standard projection p. Assume that π(p) = 0. We go into the
proof of Proposition 9.6 again, and assume (9.3). Again, by saturation we have
pxNx

∗
N 6= 0 for a certain xN ∈ T . Then pxNx

∗
N = xNex

∗
N , see (9.5), and thus

x∗NpxN = x∗N(pxNx
∗
N)xN = x∗NxNe is a nonzero elementary standard projection.

Since π(p) = 0, 0 = π(x∗NpxN) = π(x∗NxNe), which contradicts the assumption
that π is non-vanishing on nonzero elementary standard projections. �
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