ON GENERALIZED (M, N, L)-JORDAN CENTRALIZERS OF SOME ALGEBRAS

JIANKUI LI*, QIHUA SHEN AND JIANBIN GUO

Communicated by M. Abel

Abstract

Let \mathcal{A} be a unital algebra over a number field \mathbb{K}. A linear mapping δ from \mathcal{A} into itself is called a generalized (m, n, l)-Jordan centralizer if it satisfies $(m+n+l) \delta\left(A^{2}\right)-m \delta(A) A-n A \delta(A)-l A \delta(I) A \in \mathbb{K} I$ for every $A \in \mathcal{A}$, where $m \geq 0, n \geq 0, l \geq 0$ are fixed integers with $m+n+l \neq 0$. In this paper, we study generalized (m, n, l)-Jordan centralizers on generalized matrix algebras and some reflexive algebras $\operatorname{alg} \mathcal{L}$, where \mathcal{L} is a CSL or satisfies $\vee\{L: L \in \mathcal{J}(\mathcal{L})\}=X$ or $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$, and prove that each generalized (m, n, l)-Jordan centralizer of these algebras is a centralizer when $m+l \geq 1$ and $n+l \geq 1$.

1. Introduction

Let \mathcal{A} be an algebra over a number field \mathbb{K} and \mathcal{M} be an \mathcal{A}-bimodule. An additive (linear) mapping δ from \mathcal{A} to \mathcal{M} is called a left (right) centralizer if $\delta(A B)=\delta(A) B(\delta(A B)=A \delta(B))$ for all $A, B \in \mathcal{A}$; it is called a left (right) Jordan centralizer if $\delta\left(A^{2}\right)=\delta(A) A\left(\delta\left(A^{2}\right)=A \delta(A)\right)$ for every $A \in \mathcal{A}$. We call δ a centralizer if δ is both a left centralizer and a right centralizer. Similarly, we can define a Jordan centralizer. It is clear that every centralizer is a Jordan centralizer, but the converse is not true in general. In [20], Zalar proved that each left Jordan centralizer of a semiprime ring is a left centralizer and each

[^0]Jordan centralizer of a semiprime ring is a centralizer. For some other results, see $[15,16,17,18]$ and references therein.

Recently, Vukman[19] introduced a new type of Jordan centralizers, named (m, n)-Jordan centralizer, that is, an additive mapping δ from a ring \mathcal{R} into itself satisfies

$$
(m+n) \delta\left(A^{2}\right)=m \delta(A) A+n A \delta(A)
$$

for every $A \in \mathcal{R}$, where $m \geq 0, n \geq 0$ are fixed integers with $m+n \neq 0$. Obviously, each (1, 0)-Jordan centralizer is a left Jordan centralizer and each (0,1)-Jordan centralizer is a right Jordan centralizer. Moreover, each Jordan centralizer is an (m, n)-Jordan centralizer and (1, 1)-Jordan centralizer satisfies the relation $2 \delta\left(A^{2}\right)=\delta(A) A+A \delta(A)$ for every $A \in \mathcal{R}$. The natural problem that one considers in this context is whether the converses are true. In [15], Vukman showed that each (1, 1)-Jordan centralizer of a 2 -torsion free semiprime ring \mathcal{R} is a centralizer. In [2], Guo and Li studied (1, 1)-Jordan centralizers of some reflexive algebras. In [19], Vukman investigated (m, n)-Jordan centralizers and proved that for $m \geq 1$ and $n \geq 1$, every (m, n)-Jordan centralizer of a prime ring \mathcal{R} with $\operatorname{char}(\mathcal{R}) \neq 6 m n(m+n)$ is a centralizer. Furthermore, Qi and Hou in [12] showed that for a unital prime algebra \mathcal{A} with center $\mathbb{K} I$, if δ is a linear mapping from \mathcal{A} into itself such that $(m+n) \delta(A B)-m A \delta(B)-n \delta(A) B \in \mathbb{K} I$ for all $A, B \in \mathcal{A}$, then δ is a centralizer. Motivated by these facts, we define a new type of Jordan centralizers that generalizes all the types mentioned above, named generalized (m, n, l)-Jordan centralizer. A linear mapping δ from a unital algebra \mathcal{A} into itself is called a generalized (m, n, l)-Jordan centralizer if it satisfies

$$
(m+n+l) \delta\left(A^{2}\right)-m \delta(A) A-n A \delta(A)-l A \delta(I) A \in \mathbb{K} I
$$

for every $A \in \mathcal{A}$, where $m \geq 0, n \geq 0, l \geq 0$ are fixed integers with $m+n+l \neq 0$. This is equivalent to say that for every $A \in \mathcal{A}$, there exists a $\lambda_{A} \in \mathbb{K}$ such that

$$
(m+n+l) \delta\left(A^{2}\right)=m \delta(A) A+n A \delta(A)+l A \delta(I) A+\lambda_{A} I .
$$

When $\lambda_{A}=0$ for every $A \in \mathcal{A}$, we call such a δ an (m, n, l)-Jordan centralizer. It is clear that each (m, n, l)-Jordan centralizer is a generalized (m, n, l)-Jordan centralizer, each ($m, n, 0$)-Jordan centralizer is an (m, n)-Jordan centralizer and $(0,0,1)$-Jordan centralizer has the relation $\delta\left(A^{2}\right)=A \delta(I) A$ for every $A \in \mathcal{A}$. In this paper, we study (generalized) (m, n, l)-Jordan centralizers on some reflexive algebras and generalized matrix algebras.

Let X be a Banach space over \mathbb{K} and $B(X)$ be the set of all bounded operators on X, where \mathbb{K} is the real field \mathbb{R} or the complex field \mathbb{C}. We use X^{*} to denote the set of all bounded linear functionals on X. For $A \in B(X)$, denote by A^{*} the adjoint of A. For any non-empty subset $L \subseteq X, L^{\perp}$ denotes its annihilator, that is, $L^{\perp}=\left\{f \in X^{*}: f(x)=0\right.$ for all $\left.x \in L\right\}$. By a subspace lattice on X, we mean a collection \mathcal{L} of closed subspaces of X with (0) and X in \mathcal{L} such that for every family $\left\{M_{r}\right\}$ of elements of \mathcal{L}, both $\wedge M_{r}$ and $\vee M_{r}$ belong to \mathcal{L}, where $\wedge M_{r}$ denotes the intersection of $\left\{M_{r}\right\}$, and $\vee M_{r}$ denotes the closed linear span of $\left\{M_{r}\right\}$. For a subspace lattice \mathcal{L} of X, let alg \mathcal{L} denote the algebra of all operators in $B(X)$ that leave members of \mathcal{L} invariant; and for a subalgebra \mathcal{A} of $B(X)$, let lat \mathcal{A} denote the lattice of all closed subspaces of X that are invariant under all
operators in \mathcal{A}. An algebra \mathcal{A} is called reflexive if alglat $\mathcal{A}=\mathcal{A}$; and dually, a subspace lattice is called reflexive if latalg $\mathcal{L}=\mathcal{L}$. Every reflexive algebra is of the form $\operatorname{alg} \mathcal{L}$ for some subspace lattice \mathcal{L} and vice versa.

For a subspace lattice \mathcal{L} and for $E \in \mathcal{L}$, define

$$
E_{-}=\vee\{F \in \mathcal{L}: F \nsupseteq E\} \text { and } E_{+}=\wedge\{F \in \mathcal{L}: F \not \leq E\}
$$

Put

$$
\mathcal{J}(\mathcal{L})=\left\{K \in \mathcal{L}: K \neq(0) \text { and } K_{-} \neq X\right\} .
$$

For any non-zero vectors $x \in X$ and $f \in X^{*}$, the rank one operator $x \otimes f$ is defined by $x \otimes f(y)=f(y) x$ for $y \in X$. Several authors have studied the properties of the set of rank one operators in reflexive algebras (for example, see [4, 6]). It is well known (see [6]) that $x \otimes f \in \operatorname{alg} \mathcal{L}$ if and only if there exists some $K \in \mathcal{J}(\mathcal{L})$ such that $x \in K$ and $f \in K_{-}^{\perp}$. When X is a separable Hilbert space over the complex field \mathbb{C}, we change it to H. In a Hilbert space, we disregard the distinction between a closed subspace and the orthogonal projection onto it. A subspace lattice \mathcal{L} on a Hilbert space H is called a commutative subspace lattice ($C S L$), if all projections in \mathcal{L} commute pairwise. If \mathcal{L} is a CSL, then the corresponding algebra $\operatorname{alg} \mathcal{L}$ is called a CSL algebra. By [1], we know that if \mathcal{L} is a CSL, then \mathcal{L} is reflexive. Let \mathcal{L} be a subspace lattice on a Banach space X satisfying $\vee\{L: L \in \mathcal{J}(\mathcal{L})\}=X$ or $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$. In [9], Lu considered this kind of reflexive algebras which have rich rank one operators. In Section 2, we prove that if δ is a generalized (m, n, l)-Jordan centralizer from $\operatorname{alg} \mathcal{L}$ into itself, where \mathcal{L} is a CSL or satisfies $\vee\{L: L \in \mathcal{J}(\mathcal{L})\}=X$ or $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$, then δ is a centralizer.

A Morita context is a set $(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N})$ and two mappings ϕ and φ, where \mathcal{A} and \mathcal{B} are two algebras over a number field \mathbb{K}, \mathcal{M} is an $(\mathcal{A}, \mathcal{B})$-bimodule and \mathcal{N} is a $(\mathcal{B}, \mathcal{A})$-bimodule. The mappings $\phi: \mathcal{M} \otimes_{\mathcal{B}} \mathcal{N} \rightarrow \mathcal{A}$ and $\varphi: \mathcal{N} \otimes_{\mathcal{A}} \mathcal{M} \rightarrow \mathcal{B}$ are two bimodule homomorphisms satisfying $\phi(M \otimes N) M^{\prime}=M \varphi\left(N \otimes M^{\prime}\right)$ and $\varphi(N \otimes M) N^{\prime}=N \phi\left(M \otimes N^{\prime}\right)$ for any $M, M^{\prime} \in \mathcal{M}$ and $N, N^{\prime} \in \mathcal{N}$. These conditions insure that the set

$$
\left[\begin{array}{cc}
\mathcal{A} & \mathcal{M} \\
\mathcal{N} & \mathcal{B}
\end{array}\right]=\left\{\left.\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right] \right\rvert\, A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}, B \in \mathcal{B}\right\}
$$

forms an algebra over \mathbb{K} under usual matrix operations. We call such an algebra a generalized matrix algebra and denote it by $\mathcal{U}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B}\end{array}\right]$, where \mathcal{A} and \mathcal{B} are two unital algebras and at least one of the two bimodules \mathcal{M} and \mathcal{N} is distinct from zero. This kind of algebra was first introduced by Sands in [14]. Obviously, when $\mathcal{M}=0$ or $\mathcal{N}=0, \mathcal{U}$ degenerates to the triangular algebra. In Section 3, we show that if δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{U} into itself, then δ is a centralizer. We also study (m, n, l)-Jordan centralizers on AF C^{*}-algebras. Throughout the paper, we assume $m, n, l \in \mathbb{N}$ are such that $m+l \geq 1, n+l \geq 1$.

2. Centralizers of certain reflexive algebras

In order to prove our main results, we need the following several lemmas.

Lemma 2.1. Let \mathcal{A} be a unital algebra with identity I. Suppose δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{A} into itself. Then for any $A, B \in \mathcal{A}$,

$$
\begin{align*}
(m+n+l) & \delta(A B+B A) \\
= & m \delta(A) B+m \delta(B) A+n A \delta(B)+n B \delta(A) \\
& \quad+l A \delta(I) B+l B \delta(I) A+\left(\lambda_{A+B}-\lambda_{A}-\lambda_{B}\right) I . \tag{2.1}
\end{align*}
$$

In particular, for any $A \in \mathcal{A}$,

$$
\begin{equation*}
\delta(A)=\frac{m+l}{m+n+2 l} \delta(I) A+\frac{n+l}{m+n+2 l} A \delta(I)+\lambda(A), \tag{2.2}
\end{equation*}
$$

where we set $\lambda(A)=\frac{1}{m+n+2 l}\left(\lambda_{A+I}-\lambda_{A}\right) I$ for every $A \in \mathcal{A}$.
Proof. Since δ is a generalized (m, n, l)-Jordan centralizer, we have

$$
(m+n+l) \delta\left(A^{2}\right)=m \delta(A) A+n A \delta(A)+l A \delta(I) A+\lambda_{A} I
$$

for every $A \in \mathcal{A}$. Replacing A by $A+B$ in above equation, (2.1) holds. Letting $B=I$ in (2.1) gives (2.2), since $\lambda_{I}=0$.

Remark 2.2. For an (m, n, l)-Jordan centralizer, we could actually define it from a unital algebra \mathcal{A} to an \mathcal{A}-bimodule. Hence when lemmas in this section are applied to an (m, n, l)-Jordan centralizer δ, we will take it for granted that δ is from a unital algebra \mathcal{A} to its bimodule, since all the proofs remain true if we set $\lambda_{A}=0$ for all $A \in \mathcal{A}$.

Remark 2.3. Obviously, each (1, 0, 0)-Jordan centralizer is a left Jordan centralizer and each ($0,1,0$)-Jordan centralizer is a right Jordan centralizer. So by Lemma 2.1, it follows that every left Jordan centralizer of unital algebras is a left centralizer and every right Jordan centralizer of unital algebras is a right centralizer. Therefore every Jordan centralizer of unital algebras is a centralizer.

Let f be a linear mapping from an algebra \mathcal{A} to its bimodule \mathcal{M}. Recall that f is a derivation if $f(a b)=f(a) b+a f(b)$ for all $a, b \in \mathcal{A}$; it is a Jordan derivation if $f\left(a^{2}\right)=f(a) a+a f(a)$ for every $a \in \mathcal{A}$; it is a generalized derivation if $f(a b)=f(a) b+a d(b)$ for all $a, b \in \mathcal{A}$, where d is a derivation from \mathcal{A} to \mathcal{M}; and it is a generalized Jordan derivation if $f\left(a^{2}\right)=f(a) a+a d(a)$ for every $a \in \mathcal{A}$, where d is a Jordan derivation from \mathcal{A} to \mathcal{M}. From Remarks 2.2 and 2.3, we have the following corollary.

Corollary 2.4. Let \mathcal{L} be a subspace lattice on a Banach space X satisfying $\vee\{F$: $F \in \mathcal{J}(\mathcal{L})\}=X$ or $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$. If f is a generalized Jordan derivation from alg \mathcal{L} to $B(X)$, then f is a generalized derivation.

Proof. Since f is a generalized Jordan derivation, we have the relation

$$
f\left(A^{2}\right)=f(A) A+A d(A)
$$

for every $A \in \operatorname{alg} \mathcal{L}$, where d is a Jordan derivation of $\operatorname{alg} \mathcal{L}$. By [9, Theorem 2.1], one can conclude that d is a derivation. Let $\delta=f-d$. Then we have

$$
\begin{aligned}
\delta\left(A^{2}\right) & =f\left(A^{2}\right)-d\left(A^{2}\right) \\
& =f(A) A+A d(A)-A d(A)-d(A) A \\
& =f(A) A-d(A) A \\
& =\delta(A) A
\end{aligned}
$$

for every $A \in \operatorname{alg} \mathcal{L}$. This means that δ is a left Jordan centralizer. By Remark 2.3, δ is a left centralizer. Hence

$$
f(A B)=d(A B)+\delta(A B)=d(A) B+A d(B)+\delta(A) B=f(A) B+A d(B)
$$

for all $A, B \in \operatorname{alg} \mathcal{L}$. In other words, f is a generalized derivation.
Since every Jordan derivation of CSL algebras is a derivation [10], we also have the following corollary.

Corollary 2.5. Let \mathcal{L} be a CSL on a Hilbert space H. If f is a generalized Jordan derivation from alg \mathcal{L} into itself, then f is a generalized derivation.

Lemma 2.6. Let \mathcal{A} be a unital algebra and δ be a generalized (m, n, l)-Jordan centralizer from \mathcal{A} into itself. Then for every idempotent $P \in \mathcal{A}$ and every $A \in \mathcal{A}$, (i) $\delta(P)=P \delta(I)=\delta(I) P$;
(ii) $\delta(A P)=\delta(A) P+\lambda(A P)-\lambda(A) P$;
(iii) $\delta(P A)=P \delta(A)+\lambda(P A)-\lambda(A) P$.

Proof. (i) Suppose P is an idempotent in \mathcal{A}. It follows from Lemma 2.1 that

$$
\begin{equation*}
(m+n+2 l) \delta(P)=(m+l) \delta(I) P+(n+l) P \delta(I)+\left(\lambda_{P+I}-\lambda_{P}\right) I . \tag{2.3}
\end{equation*}
$$

Right and left multiplication of (2.3) by P gives

$$
P \delta(P) P=P \delta(I) P+\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) P .
$$

Since $(m+n+l) \delta(P)=m \delta(P) P+n P \delta(P)+l P \delta(I) P+\lambda_{P} I$, multiplying P from the right leads to

$$
\begin{aligned}
(n+l) \delta(P) P & =n\left(P \delta(I) P+\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) P\right)+l P \delta(I) P+\lambda_{P} P \\
& =(n+l) P \delta(I) P+\left(\frac{n}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right)+\lambda_{P}\right) P
\end{aligned}
$$

whence

$$
\begin{equation*}
\delta(P) P=P \delta(I) P+\varepsilon_{P} P \tag{2.4}
\end{equation*}
$$

for some $\varepsilon_{P} \in \mathbb{C}$. Similarly, $P \delta(P)=P \delta(I) P+\varepsilon_{P}^{\prime} P$ for some $\varepsilon_{P}^{\prime} \in \mathbb{C}$.
Hence $\delta(P) P-\varepsilon_{P} P=P \delta(P)-\varepsilon_{P}^{\prime} P$. Right and left multiplication of P gives $\varepsilon_{P}=\varepsilon_{P}^{\prime}$, which implies

$$
\begin{equation*}
\delta(P) P=P \delta(P) \tag{2.5}
\end{equation*}
$$

Replacing P by $I-P$ in the above equation gives $\delta(I) P=P \delta(I)$.

Now, we have from (2.3)

$$
\begin{equation*}
\delta(P)=\delta(I) P+\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) I . \tag{2.6}
\end{equation*}
$$

On the other hand, (2.4) and (2.5) yields

$$
\begin{aligned}
(m+n+l) \delta(P) & =m \delta(P) P+n P \delta(P)+l P \delta(I) P+\lambda_{P} I \\
& =(m+n+l) \delta(P) P+\lambda_{P} I-l \varepsilon_{P} P
\end{aligned}
$$

right multiplication of which by P gives $\lambda_{P}=l \varepsilon_{P}$. Hence

$$
\begin{equation*}
\delta(P)=\delta(P) P+\frac{1}{m+n+l} \lambda_{P}(I-P) \tag{2.7}
\end{equation*}
$$

We then have from (2.6) that

$$
\begin{equation*}
\delta(P) P=\delta(I) P+\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) P . \tag{2.8}
\end{equation*}
$$

Now (2.7) and (2.8) yield

$$
\delta(P)=\delta(I) P+\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) P+\frac{1}{m+n+l} \lambda_{P}(I-P)
$$

which together with (2.6) implies

$$
\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right)=\frac{1}{m+n+l} \lambda_{P}
$$

Thus we have

$$
\begin{equation*}
\delta(P)=\delta(I) P+\frac{1}{m+n+l} \lambda_{P} I \tag{2.9}
\end{equation*}
$$

while

$$
\begin{equation*}
\delta(P)=\frac{m+n}{m+n+l} \delta(P) P+\frac{l}{m+n+l} \delta(I) P+\frac{1}{m+n+l} \lambda_{P} I . \tag{2.10}
\end{equation*}
$$

Comparing (2.9) and (2.10) gives

$$
\delta(I) P=\delta(P) P
$$

This together with (2.8) gives

$$
\lambda(P)=\frac{1}{m+n+2 l}\left(\lambda_{P+I}-\lambda_{P}\right) I=\frac{1}{m+n+l} \lambda_{P} I=0
$$

whence

$$
\delta(P)=\delta(I) P=P \delta(I)
$$

(ii) By Lemma 2.1 and (i), we have

$$
\begin{aligned}
\delta(A P) & =\frac{m+l}{m+n+2 l} \delta(I) A P+\frac{n+l}{m+n+2 l} A P \delta(I)+\lambda(A P) \\
& =\left(\frac{m+l}{m+n+2 l} \delta(I) A+\frac{n+l}{m+n+2 l} A \delta(I)\right) P+\lambda(A P) \\
& =(\delta(A)-\lambda(A)) P+\lambda(A P) \\
& =\delta(A) P+\lambda(A P)-\lambda(A) P .
\end{aligned}
$$

(iii) The proof is analogous to the proof of (ii).

An subset \mathcal{I} of an algebra \mathcal{A} is called a left separating set of \mathcal{A} if for every $A \in \mathcal{A}, A \mathcal{I}=0$ implies $A=0$. We have the following simple but noteworthy result.
Corollary 2.7. Suppose \mathcal{I} is a left separating left ideal of a unital algebra \mathcal{A} and is contained in the algebra generated by all idempotents in \mathcal{A}. Then each generalized (m, n, l)-Jordan centralizer δ from \mathcal{A} into itself is a centralizer.
Proof. Since \mathcal{I} is contained in the algebra generated by all idempotents in \mathcal{A} and by (i) of Lemma 2.6, we have that $\delta(I) \in \mathcal{I}^{\prime}$, where \mathcal{I}^{\prime} denotes the commutant of \mathcal{I}. Hence $\delta(A)=\delta(I) A+\lambda(A)=A \delta(I)+\lambda(A)$ for every $A \in \mathcal{I}$ according to (2.2). For any $A(\neq \mathbb{K} I) \in \mathcal{I}$, we have

$$
\begin{aligned}
(m+n+l) & \left(\delta(I) A^{2}+\lambda\left(A^{2}\right)\right) \\
& =(m+n+l) \delta\left(A^{2}\right) \\
& =m \delta(A) A+n A \delta(A)+l A \delta(I) A+\lambda_{A} I \\
& =m\left(\delta(I) A^{2}+\lambda(A) A\right)+n\left(A^{2} \delta(I)+A \lambda(A)\right)+l A^{2} \delta(I)+\lambda_{A} I
\end{aligned}
$$

which implies $\lambda(A) A=k I$ for some $k \in \mathbb{K}$.
Hence $\lambda(A)=0$ and $\delta(A)=\delta(I) A=A \delta(I)$ for every $A \in \mathcal{I}$. Then Lemma 2.6 yields $A \delta(I) B=A B \delta(I)=\delta(A B)=\delta(I) A B$ for every $B \in \mathcal{I}$, and since \mathcal{I} is a separating left ideal, we have $A \delta(I)=\delta(I) A$ for every $A \in \mathcal{A}$. Therefore, $\delta(A)=\delta(I) A+\lambda(A)=A \delta(I)+\lambda(A)$ for every $A \in \mathcal{A}$. Now by the same argument as above, we have that $\delta(A)=\delta(I) A=A \delta(I)$ for every $A \in \mathcal{A}$ and this completes the proof.
Remark 2.8. By [3, Proposition 2.2], [13, Example 6.2], we see that the class of algebras we discussed in Corollary 2.7 contains a lot of algebras and is therefore very large.

The proof of the following lemma is analogous to the proof of [8, Proposition 1.1]. For the sake of completeness, we present the proof here.

Lemma 2.9. Let E and F be non-zero subspaces of X and X^{*} respectively. Let $\phi: E \times F \rightarrow B(X)$ be a bilinear mapping such that $\phi(x, f) X \subseteq \mathbb{K} x$ for all $x \in E$ and $f \in F$. Then there exists a linear mapping $S: F \rightarrow X^{*}$ such that $\phi(x, f)=x \otimes S f$ for all $x \in E$ and $f \in F$.
Proof. For any non-zero vectors $x \in E$ and $f \in F$, since $\phi(x, f) X \subseteq \mathbb{K} x$, there exists a continuous linear functional $h_{x, f}$ on X such that for each $z \in X$, $\phi(x, f) z=h_{x, f}(z) x$. That is, for all $x \in E$ and $f \in F$,

$$
\begin{equation*}
\phi(x, f)=x \otimes h_{x, f} \tag{2.11}
\end{equation*}
$$

We claim that $h_{x, f}$ depends only on f. To see this, fix a non-zero functional f in F, and let x_{1} and x_{2} be non-zero vectors in E. Suppose that x_{1} and x_{2} are linearly independent. For all $z \in X$, by (2.11) we have

$$
\begin{aligned}
h_{x_{1}+x_{2}, f}(z)\left(x_{1}+x_{2}\right) & =\phi\left(x_{1}+x_{2}, f\right) z \\
& =\phi\left(x_{1}, f\right) z+\phi\left(x_{2}, f\right) z \\
& =h_{x_{1}, f}(z) x_{1}+h_{x_{2}, f}(z) x_{2}
\end{aligned}
$$

from which we have

$$
\left(h_{x_{1}+x_{2}, f}(z)-h_{x_{1}, f}(z)\right) x_{1}=\left(h_{x_{2}, f}(z)-h_{x_{1}+x_{2}, f}(z)\right) x_{2}
$$

So $h_{x_{1}, f}=h_{x_{1}+x_{2}, f}=h_{x_{2}, f}$. Now suppose that x_{1} and x_{2} are linearly dependent. Let $x_{2}=k x_{1}$. Then

$$
x_{2} \otimes h_{x_{2}, f}=\phi\left(x_{2}, f\right)=k \phi\left(x_{1}, f\right)=k x_{1} \otimes h_{x_{1}, f}=x_{2} \otimes h_{x_{1}, f}
$$

which yields $h_{x_{1}, f}=h_{x_{2}, f}$. Thus $\phi(x, f)=x \otimes h_{f}$ for all $x \in E$ and $f \in F$. Hence there exists a linear mapping S from F to X^{*} such that $\phi(x, f)=x \otimes S f$. It is easy to check that the mapping S is well defined and linear.

Lemma 2.10. Let \mathcal{L} be a subspace lattice on a Banach space X and δ be a generalized (m, n, l)-Jordan centralizer from alg \mathcal{L} into itself. Suppose that E and L are in $\mathcal{J}(\mathcal{L})$ such that $E_{-} \nsupseteq L$. Let x be in E and f be in L_{-}^{\perp}. Then $(\delta(x \otimes f)-\lambda(x \otimes f)) X \subseteq \mathbb{K} x$.

Proof. Since $E_{-} \nexists L$, we have that $E \leq L$. So $x \otimes f \in \operatorname{alg} \mathcal{L}$. Suppose $f(x) \neq 0$, it follows from Lemmas 2.1 and 2.6 that $\lambda(x \otimes f)=0$ and $\delta(x \otimes f)=x \otimes f \delta(I)$. Thus $\delta(x \otimes f) X \subseteq \mathbb{K} x$.

Now we assume $f(x)=0$. Choose z from L and g from E_{-}^{\perp} such that $g(z)=1$. Then

$$
\begin{aligned}
(m+ & n+2 l)(m+n+l) \delta(x \otimes f) \\
= & (m+n+2 l)(m+n+l) \delta((x \otimes g)(z \otimes f)+(z \otimes f)(x \otimes g)) \\
= & (m+n+2 l)(m \delta(x \otimes g)(z \otimes f)+n(x \otimes g) \delta(z \otimes f)+l(x \otimes g) \delta(I)(z \otimes f)) \\
& +(m+n+2 l)(m \delta(z \otimes f)(x \otimes g)+n(z \otimes f) \delta(x \otimes g) \\
& +l(z \otimes f) \delta(I)(x \otimes g))+(m+n+2 l)\left(\lambda_{x \otimes g+z \otimes f}-\lambda_{x \otimes g}-\lambda_{z \otimes f}\right) I \\
= & \left(m^{2}+m l\right) \delta(I) x \otimes f+\left(n^{2}+n l\right) x \otimes f \delta(I) \\
& +2\left(m n+m l+n l+l^{2}\right)(x \otimes g \delta(I) z \otimes f+z \otimes f \delta(I) x \otimes g)+\lambda_{1} I
\end{aligned}
$$

for some $\lambda_{1} \in \mathbb{K}$.
On the other hand,

$$
\begin{aligned}
&(m+2 n+l)(m+n+l) \delta(x \otimes f) \\
&=(m+n+l)\left((m+l) \delta(I) x \otimes f+(n+l) x \otimes f \delta(I)+\left(\lambda_{x \otimes f+I}-\lambda_{x \otimes f}\right) I\right) \\
&=\left(m^{2}+2 m l+l^{2}+m n+n l\right) \delta(I) x \otimes f \\
&+\left(m l+m n+l^{2}+2 n l+n^{2}\right) x \otimes f \delta(I)+\lambda_{2} I
\end{aligned}
$$

for some $\lambda_{2} \in \mathbb{K}$.
So

$$
\begin{equation*}
\delta(I) x \otimes f+x \otimes f \delta(I)=2 x \otimes g \delta(I) z \otimes f+2 z \otimes f \delta(I) x \otimes g+\lambda I \tag{2.12}
\end{equation*}
$$

for some $\lambda \in \mathbb{K}$.
Notice that (2.12) is valid for all z in L satisfying $g(z)=1$. Applying this equation to x, we have

$$
\begin{equation*}
f(\delta(I) x) x=2 g(x) f(\delta(I) x) z+\lambda x \tag{2.13}
\end{equation*}
$$

If $g(x)=0$ and $f(z)=0$, then $f(\delta(I) x)=\lambda$. Substituting $z+x$ for z in (2.12) gives

$$
\begin{equation*}
\delta(I) x \otimes f+x \otimes f \delta(I)=2 x \otimes g \delta(I)(z+x) \otimes f+2 \lambda(z+x) \otimes g+\lambda I \tag{2.14}
\end{equation*}
$$

Comparing (2.12) with (2.14) yields

$$
g(\delta(I) x) x \otimes f+\lambda x \otimes g=0
$$

Applying this equation to z leads to $\lambda x=0$, which means $f(\delta(I) x)=\lambda=0$.
If $g(x)=0$ and $f(z) \neq 0$, from (2.13) we also have $f(\delta(I) x)=\lambda$, and it follows from Lemma 2.6 that

$$
\begin{aligned}
\delta(I) x \otimes f+x \otimes f \delta(I) & =2 x \otimes g \delta(I) z \otimes f+2 z \otimes f \delta(I) x \otimes g+\lambda I \\
& =2(x \otimes g)(z \otimes f) \delta(I)+2 \delta(I)(z \otimes f)(x \otimes g)+\lambda I \\
& =2 x \otimes f \delta(I)+\lambda I
\end{aligned}
$$

whence

$$
\delta(I) x \otimes f=x \otimes f \delta(I)+\lambda I
$$

Applying the above equation to x yields $f(\delta(I) x)=-\lambda$. Thus $f(\delta(I) x)=\lambda=0$.
If $g(x) \neq 0$, replacing z by $\frac{1}{g(x)} x$ in (2.13) gives $f(\delta(I) x)=-\lambda$, while

$$
\begin{aligned}
\delta(I) x \otimes f+x \otimes f \delta(I) & =2 x \otimes g \delta(I) z \otimes f+2 z \otimes f \delta(I) x \otimes g+\lambda I \\
& =2 \delta(I)(x \otimes g)(z \otimes f)+2(z \otimes f)(x \otimes g) \delta(I)+\lambda I \\
& =2 \delta(I)(x \otimes f)+\lambda I
\end{aligned}
$$

Hence

$$
\begin{equation*}
x \otimes f \delta(I)=\delta(I) x \otimes f+\lambda I \tag{2.15}
\end{equation*}
$$

Applying (2.15) to x leads to $f(\delta(I) x)=\lambda$. Therefore, $f(\delta(I) x)=\lambda=0$.
So by (2.12), we obtain $\delta(I) x \otimes f=2 g(\delta(I) z) x \otimes f-x \otimes f \delta(I)$. It follows from Lemma 2.1 that

$$
\begin{aligned}
\delta(x \otimes f)= & \frac{m+l}{m+n+2 l} \delta(I)(x \otimes f)+\frac{n+l}{m+n+2 l}(x \otimes f) \delta(I)+\lambda(x \otimes f) \\
= & \frac{m+l}{m+n+2 l}(2 g(\delta(I) z) x \otimes f-x \otimes f \delta(I)) \\
& +\frac{n+l}{m+n+2 l}(x \otimes f) \delta(I)+\lambda(x \otimes f) \\
= & \frac{2(m+l)}{m+n+2 l} g(\delta(I) z) x \otimes f+\frac{n-m}{m+n+2 l}(x \otimes f) \delta(I)+\lambda(x \otimes f) .
\end{aligned}
$$

Hence $(\delta(x \otimes f)-\lambda(x \otimes f)) X \subseteq \mathbb{K} x$.
Theorem 2.11. Let \mathcal{L} be a subspace lattice on a Banach space X satisfying $\vee\{F: F \in \mathcal{J}(\mathcal{L})\}=X$. If δ is a generalized (m, n, l)-Jordan centralizer from alg \mathcal{L} into itself, then δ is a centralizer. In particular, the conclusion holds if \mathcal{L} has the property $X_{-} \neq X$.

Proof. Let E be in $\mathcal{J}(\mathcal{L})$. By $\vee\{F: F \in \mathcal{J}(\mathcal{L})\}=X$, there is an element L in $\mathcal{J}(\mathcal{L})$ such that $E_{-} \nsupseteq L$. Let x be in E and f be in $\left(L_{-}\right)^{\perp}$. Let $\bar{\delta}=\delta-\lambda$. Then $\bar{\delta}(I)=\delta(I)$, and it follows from Lemmas 2.9 and 2.10 that there exists a linear mapping $S:\left(L_{-}\right)^{\perp} \rightarrow X^{*}$ such that

$$
\bar{\delta}(x \otimes f)=x \otimes S f
$$

This together with

$$
\frac{m+l}{m+n+2 l} \bar{\delta}(I) x \otimes f+\frac{n+l}{m+n+2 l} x \otimes f \bar{\delta}(I)=\bar{\delta}(x \otimes f)
$$

leads to

$$
x \otimes\left(S f-\frac{n+l}{m+n+2 l} \bar{\delta}(I)^{*} f\right)=\frac{m+l}{m+n+2 l} \bar{\delta}(I) x \otimes f
$$

Thus there exists a constant λ_{E} in \mathbb{K} such that $\bar{\delta}(I) x=\lambda_{E} x$ for every $x \in E$. Similarly, for every $y \in L$, we have $\bar{\delta}(I) y=\lambda_{L} y$.

If $f(x) \neq 0$, it follows from Lemma 2.6 that $\bar{\delta}(x \otimes f)=\bar{\delta}(I) x \otimes f=x \otimes f \bar{\delta}(I)$.
If $f(x)=0$, according to the proof of Lemma 2.10, we can choose z from L and g from E_{-}^{\perp} such that $g(z)=1$ and $\bar{\delta}(I) x \otimes f=2 g(\bar{\delta}(I) z) x \otimes f-x \otimes f \bar{\delta}(I)$. Since $x \in E \leq L$, we have $\bar{\delta}(I) x=\lambda_{L} x$. Thus

$$
\bar{\delta}(I) x \otimes f=2 \lambda_{L} x \otimes f-x \otimes f \bar{\delta}(I)=2 \bar{\delta}(I) x \otimes f-x \otimes f \bar{\delta}(I)
$$

Hence $\bar{\delta}(x \otimes f)=\bar{\delta}(I) x \otimes f=x \otimes f \bar{\delta}(I)$.
Therefore, for any $x \in E, f \in\left(L_{-}\right)^{\perp}$ and $A \in \operatorname{alg} \mathcal{L}$, we have

$$
A \bar{\delta}(I) x \otimes f=A x \otimes f \bar{\delta}(I)=\bar{\delta}(I) A x \otimes f
$$

which yields $A \bar{\delta}(I) x=\bar{\delta}(I) A x$ for any $x \in E$.
Now by $\vee\{F: F \in \mathcal{J}(\mathcal{L})\}=X$, we have $\bar{\delta}(A)=A \bar{\delta}(I)=\bar{\delta}(I) A$ for any $A \in \operatorname{alg} \mathcal{L}$, this means $\delta(A)=A \delta(I)+\lambda(A)=\delta(I) A+\lambda(A)$. The remaining part goes along the same line as the proof of Corollary 2.7 and this completes the proof.
Remark 2.12. By [7], a subspace lattice \mathcal{L} is said to be completely distributive if $L=\vee\left\{E \in \mathcal{L}: E_{-} \nsupseteq L\right\}$ and $L=\wedge\left\{E_{-}: E \in \mathcal{L}\right.$ and $\left.E \not \leq L\right\}$ for all $L \in$ \mathcal{L}. It follows that completely distributive subspace lattices satisfy the condition $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$. Thus Theorem 2.11 applies to completely distributive subspace lattice algebras. A subspace lattice \mathcal{L} is called a \mathcal{J}-subspace lattice on X if $\vee\{K: K \in \mathcal{J}(\mathcal{L})\}=X, \wedge\left\{K_{-}: K \in \mathcal{J}(\mathcal{L})\right\}=(0), K \vee K_{-}=X$ and $K \wedge K_{-}=(0)$ for any $K \in \mathcal{J}(\mathcal{L})$. Note also that the condition $\vee\{K: K \in$ $\mathcal{J}(\mathcal{L})\}=X$ is part of the definition of \mathcal{J}-subspace lattices, thus Theorem 2.11 also applies to \mathcal{J}-subspace lattice algebras.

With a proof similar to the proof of Theorem 2.11, we have the following theorem.

Theorem 2.13. Let \mathcal{L} be a subspace lattice on a Banach space X satisfying $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$. If δ is a generalized (m, n, l)-Jordan centralizer from $\operatorname{alg} \mathcal{L}$ into itself, then δ is a centralizer. In particular, the conclusion holds if \mathcal{L} has the property $(0)_{+} \neq(0)$.

As for the cases of (m, n, l)-Jordan centralizers, we have from Remark 2.2, Theorem 2.11 and Theorem 2.13 the following theorem.

Theorem 2.14. Let \mathcal{L} be a subspace lattice on a Banach space X satisfying $\vee\{F: F \in \mathcal{J}(\mathcal{L})\}=X$ or $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$. If δ is an (m, n, l)-Jordan centralizer from alg \mathcal{L} to $B(X)$, then δ is a centralizer.

In the rest of this section we will investigate generalized (m, n, l)-Jordan centralizers on CSL algebras. Let H be a complex separable Hilbert space and \mathcal{L} be a CSL on H. Let \mathcal{L}^{\perp} be the lattice $\{I-E: E \in \mathcal{L}\}$ and \mathcal{L}^{\prime} be the commutant of \mathcal{L}. It is easy to verify that $(\operatorname{alg} \mathcal{L})^{*}=\operatorname{alg} \mathcal{L}^{\perp}$ for any lattice \mathcal{L} on H and the diagonal $(\operatorname{alg} \mathcal{L}) \cap(\operatorname{alg} \mathcal{L})^{*}=\mathcal{L}^{\prime}$ is a von Neumann algebra. Given a CSL \mathcal{L} on a Hilbert space H, we define $G_{1}(\mathcal{L})$ and $G_{2}(\mathcal{L})$ to be the projections onto the closures of the linear spans of $\{E A(I-E) x: E \in \mathcal{L}, A \in \operatorname{alg} \mathcal{L}, x \in H\}$ and $\left\{(I-E) A^{*} E x: E \in \mathcal{L}, A \in \operatorname{alg} \mathcal{L}, x \in H\right\}$, respectively. For simplicity, we write G_{1} and G_{2} for $G_{1}(\mathcal{L})$ and $G_{2}(\mathcal{L})$. Since CSL is reflexive, it is easy to verify that $G_{1} \in \mathcal{L}$ and $G_{2} \in \mathcal{L}^{\perp}$. In [10], Lu showed that $G_{1} \vee G_{2} \in \mathcal{L} \cap \mathcal{L}^{\perp}$ and $\operatorname{alg} \mathcal{L}\left(I-G_{1} \vee G_{2}\right) \subseteq \mathcal{L}^{\prime}$.

Theorem 2.15. Let \mathcal{L} be a CSL on a complex separable Hilbert space H. If δ is a bounded generalized (m, n, l)-Jordan centralizer from alg \mathcal{L} into itself, then δ is a centralizer.

Proof. We divide the proof into two cases.
Case 1: Suppose $G_{1} \vee G_{2}=I$.
Let $A \in \operatorname{alg} \mathcal{L}$. For any $T \in \operatorname{alg} \mathcal{L}$ and $P \in \mathcal{L}$, since

$$
P T(I-P)=P-(P-P T(I-P)),
$$

which is a difference of two idempotents, it follows from Lemma 2.6 that

$$
\begin{aligned}
\delta(I) A P T(I-P) & =A \delta(I) P T(I-P) \\
& =\delta(A P T(I-P)) \\
& =\delta(A) P T(I-P)-\lambda(A) P T(I-P) .
\end{aligned}
$$

By arbitrariness of P and T, we have $A \delta(I) G_{1}=\delta(I) A G_{1}=(\delta(A)-\lambda(A)) G_{1}$. That is,

$$
\delta(A) G_{1}=(A \delta(I)+\lambda(A)) G_{1}=(\delta(I) A+\lambda(A)) G_{1}
$$

whence

$$
\begin{align*}
\delta\left(A G_{1}\right) & =\delta(A) G_{1}+\lambda\left(A G_{1}\right)-\lambda(A) G_{1} \\
& =\delta(I) A G_{1}+\lambda\left(A G_{1}\right) \\
& =A \delta(I) G_{1}+\lambda\left(A G_{1}\right) . \tag{2.16}
\end{align*}
$$

Define $\delta^{*}\left(A^{*}\right)=\delta(A)^{*}$ for every $A^{*} \in \operatorname{alg} \mathcal{L}^{\perp}$. So

$$
\begin{aligned}
(m+n+l) \delta^{*}\left(\left(A^{*}\right)^{2}\right) & =\left((m+n+l) \delta\left(A^{2}\right)\right)^{*} \\
& =\left(m \delta(A) A+n A \delta(A)+l A \delta(I) A+\lambda_{A} I\right)^{*} \\
& =m A^{*} \delta^{*}\left(A^{*}\right)+n \delta^{*}\left(A^{*}\right) A^{*}+l A^{*} \delta^{*}(I) A^{*}+\lambda_{A^{*}},
\end{aligned}
$$

where $\lambda_{A^{*}}=\overline{\lambda_{A}}$.
With the proof similar to the proof of (2.16), we have

$$
G_{2} \delta(I) A=G_{2} A \delta(I)=G_{2}(\delta(A)-\lambda(A))
$$

So by $G_{1} \vee G_{2}=I$,

$$
\left(I-G_{1}\right) \delta(I) A=\left(I-G_{1}\right) A \delta(I)=\left(I-G_{1}\right)(\delta(A)-\lambda(A)),
$$

whence

$$
\begin{align*}
\delta\left(\left(I-G_{1}\right) A\right) & =\left(1-G_{1}\right) \delta(A)+\lambda\left(\left(I-G_{1}\right) A\right)-\lambda(A)\left(I-G_{1}\right) \\
& =\left(1-G_{1}\right)(\delta(A)-\lambda(A))+\lambda\left(\left(I-G_{1}\right) A\right) \\
& =\left(1-G_{1}\right) \delta(I) A+\lambda\left(\left(I-G_{1}\right) A\right) \\
& =\left(I-G_{1}\right) A \delta(I)+\lambda\left(\left(I-G_{1}\right) A\right) . \tag{2.17}
\end{align*}
$$

Hence by (2.16) and (2.17),

$$
\begin{aligned}
\delta(A)= & \delta\left(A G_{1}+G_{1} A\left(I-G_{1}\right)+\left(I-G_{1}\right) A\right) \\
= & A \delta(I) G_{1}+\lambda\left(A G_{1}\right)+G_{1} A\left(I-G_{1}\right) \delta(I) \\
& +\left(I-G_{1}\right) A \delta(I)+\lambda\left(\left(1-G_{1}\right) A\right) \\
= & G_{1} A \delta(I) G_{1}+G_{1} A \delta(I)\left(I-G_{1}\right)+\left(I-G_{1}\right) A \delta(I) \\
& +\lambda\left(A G_{1}\right)+\lambda\left(\left(1-G_{1}\right) A\right)+\lambda\left(G_{1} A\left(1-G_{1}\right)\right) \\
= & A \delta(I)+\lambda(A) .
\end{aligned}
$$

Similarly, $\delta(A)=\delta(I) A+\lambda(A)$. The remaining part goes along the same line as the proof of Corollary 2.7 and we conclude that δ is a centralizer in this case.
Case 2: Suppose $G_{1} \vee G_{2}<I$.
Let $G=G_{1} \vee G_{2}$. Since $G \in \mathcal{L} \cap \mathcal{L}^{\perp}$ and $\operatorname{alg} \mathcal{L}(I-G) \subseteq \mathcal{L}^{\prime}$, so $(I-G) \operatorname{alg} \mathcal{L}(I-G)$ is a von Neumann algebra. The algebra $\operatorname{alg} \mathcal{L}$ can be written as the direct sum

$$
\operatorname{alg} \mathcal{L}=\operatorname{alg}(G \mathcal{L} G) \oplus \operatorname{alg}((I-G) \mathcal{L}(I-G))
$$

By Lemma 2.6 we have that

$$
\delta(G A G)=G \delta(A) G \text { and } \delta((I-G) A(I-G))=(I-G) \delta(A)(I-G)
$$

for every $A \in \operatorname{alg} \mathcal{L}$. Therefore δ can be written as $\delta^{(1)} \oplus \delta^{(2)}$, where $\delta^{(1)}$ is a generalized (m, n, l)-Jordan centralizer from $\operatorname{alg}(G \mathcal{L} G)$ into itself and $\delta^{(2)}$ is a generalized (m, n, l)-Jordan centralizer from $\operatorname{alg}((I-G) \mathcal{L}(I-G))$ into itself. It is easy to show that $G_{1}(G \mathcal{L} G) \vee G_{2}(G \mathcal{L} G)=G$. So it follows from Case 1 that $\delta^{(1)}$ is a centralizer on $\operatorname{alg}(G \mathcal{L} G)$. $(I-G) \operatorname{alg} \mathcal{L}(I-G)$ is a von Neumann algebra and $\delta^{(2)}$ is continuous, so by Corollary 2.7, $\delta^{(2)}$ is a centralizer on $\operatorname{alg}((I-G) \mathcal{L}(I-G))$. Consequently, δ is a centralizer on $\operatorname{alg} \mathcal{L}$.

3. Centralizers of generalized matrix algebras

Let \mathcal{A} be a unital algebra over a number field \mathbb{K}. We call \mathcal{M} a unital \mathcal{A}-bimodule if \mathcal{M} is an \mathcal{A}-bimodule and satisfies $I_{\mathcal{A}} M=M I_{\mathcal{A}}=M$ for every $M \in \mathcal{M}$. We call
\mathcal{M} a faithful left \mathcal{A}-module if for any $A \in \mathcal{A}, A \mathcal{M}=0$ implies $A=0$. Similarly, we can define a faithful right \mathcal{A}-module.

Throughout this section, we denote the generalized matrix algebra originated from the Morita context $\left(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N}, \phi_{\mathcal{M N}}, \varphi_{\mathcal{N M}}\right)$ by $\mathcal{U}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ \mathcal{N} & \mathcal{B}\end{array}\right]$, where \mathcal{A}, \mathcal{B} are two unital algebras over a number field \mathbb{K} and \mathcal{M}, \mathcal{N} are two unital bimodules, and at least one of \mathcal{M} and \mathcal{N} is distinct from zero. We use the symbols $I_{\mathcal{A}}$ and $I_{\mathcal{B}}$ to denote the unit element in \mathcal{A} and \mathcal{B}, respectively. Moreover, we make no difference between $\lambda(A)=\frac{1}{m+n+2 l}\left(\lambda_{A+I}-\lambda_{A}\right) I$ and $\frac{1}{m+n+2 l}\left(\lambda_{A+I}-\lambda_{A}\right) \in \mathbb{K}$.

Lemma 3.1. Let δ be a generalized (m, n, l)-Jordan centralizer from \mathcal{U} into itself. Then δ is of the form
$\delta\left(\left[\begin{array}{cc}A & M \\ N & B\end{array}\right]\right)=\left[\begin{array}{cc}a_{11}(A)+\lambda\left(\left[\begin{array}{cc}0 & M \\ N & B\end{array}\right]\right) I_{\mathcal{A}} & c_{12}(M) \\ d_{21}(N) & b_{22}(B)+\lambda\left(\left[\begin{array}{cc}A & M \\ N & 0\end{array}\right]\right) I_{\mathcal{B}}\end{array}\right]$
for any $A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}, B \in \mathcal{B}$, where $a_{11}: \mathcal{A} \rightarrow \mathcal{A}, c_{12}: \mathcal{M} \rightarrow \mathcal{M}$, $d_{21}: \mathcal{N} \rightarrow \mathcal{N}, b_{22}: \mathcal{B} \rightarrow \mathcal{B}$ are all linear mappings satisfying

$$
c_{12}(M)=a_{11}\left(I_{\mathcal{A}}\right) M=M b_{22}\left(I_{\mathcal{B}}\right) \text { and } d_{21}(N)=N a_{11}\left(I_{\mathcal{A}}\right)=b_{22}\left(I_{\mathcal{B}}\right) N
$$

Proof. Assume that δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{U} into itself. Because δ is linear, for any $A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}, B \in \mathcal{B}$, we can write

$$
\begin{aligned}
& \delta\left(\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right]\right) \\
& \quad=\left[\begin{array}{ll}
a_{11}(A)+b_{11}(B)+c_{11}(M)+d_{11}(N) & a_{12}(A)+b_{12}(B)+c_{12}(M)+d_{12}(N) \\
a_{21}(A)+b_{21}(B)+c_{21}(M)+d_{21}(N) & a_{22}(A)+b_{22}(B)+c_{22}(M)+d_{22}(N)
\end{array}\right]
\end{aligned}
$$

where $a_{i j}, b_{i j}, c_{i j}, d_{i j}$ are linear mappings, $i, j \in\{1,2\}$.
Let $P=\left[\begin{array}{cc}I_{\mathcal{A}} & 0 \\ 0 & 0\end{array}\right]$ and for any $A \in \mathcal{A}, S=\left[\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right]$. By Lemma 2.6, $\delta(P S)=P \delta(S)+\lambda(P S)-\lambda(S) P$ and $\delta(S P)=\delta(S) P+\lambda(S P)-\lambda(S) P$, so we have

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{array}\right]} \\
& \quad=\delta\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) \\
& \quad=\delta\left(\left[\begin{array}{cc}
I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\right) \\
& \quad=\left[\begin{array}{cc}
I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right] \delta\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right)+\left[\begin{array}{cc}
\lambda(P S) I_{\mathcal{A}} & 0 \\
0 & \lambda(P S) I_{\mathcal{B}}
\end{array}\right]-\left[\begin{array}{cc}
\lambda(S) I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
a_{11}(A) & \lambda\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a_{11}(A) & a_{12}(A) \\
a_{21}(A) & a_{22}(A)
\end{array}\right]} \\
& \quad=\delta\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) \\
& \quad=\delta\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) \\
& \quad=\delta\left(\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{cc}
I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\lambda(S P) I_{\mathcal{A}} & 0 \\
0 & \lambda(S P) I_{\mathcal{B}}
\end{array}\right]-\left[\begin{array}{cc}
\lambda(S) I_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
a_{11}(A) & 0 \\
a_{21}(A) & \lambda\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right] .
\end{aligned}
$$

So we have

$$
a_{12}(A)=0, a_{21}(A)=0 \text { and } a_{22}(A)=\lambda\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}} .
$$

Similarly, by considering $S=\left[\begin{array}{cc}0 & M \\ 0 & 0\end{array}\right]$ and $P=\left[\begin{array}{cc}I_{\mathcal{A}} & 0 \\ 0 & 0\end{array}\right]$, we obtain that

$$
c_{11}(M)=\lambda\left(\left[\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right]\right) I_{\mathcal{A}}, c_{21}(M)=0 \text { and } c_{22}(M)=\lambda\left(\left[\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
$$

for every $M \in \mathcal{M}$.
By considering $S=\left[\begin{array}{cc}0 & 0 \\ N & 0\end{array}\right]$ and $P=\left[\begin{array}{cc}I_{\mathcal{A}} & 0 \\ 0 & 0\end{array}\right]$, we obtain $d_{11}(N)=$ $\lambda\left(\left[\begin{array}{cc}0 & 0 \\ N & 0\end{array}\right]\right) I_{\mathcal{A}}, d_{12}(N)=0$ and $d_{22}(N)=\lambda\left(\left[\begin{array}{cc}0 & 0 \\ N & 0\end{array}\right]\right) I_{\mathcal{B}}$ for every $N \in \mathcal{N}$.

By considering $S=\left[\begin{array}{cc}0 & 0 \\ 0 & B\end{array}\right]$ and $Q=\left[\begin{array}{cc}0 & 0 \\ 0 & I_{\mathcal{B}}\end{array}\right]$, we obtain

$$
b_{11}(B)=\lambda\left(\left[\begin{array}{cc}
0 & 0 \\
0 & B
\end{array}\right]\right) I_{\mathcal{A}}, \quad b_{12}(B)=0 \text { and } b_{21}(B)=0
$$

for every $B \in \mathcal{B}$.
For any $A \in \mathcal{A}, M_{1} \in \mathcal{M}, M_{2} \in \mathcal{M}$ and $B \in \mathcal{B}$, let $S=\left[\begin{array}{cc}A & M_{1} \\ 0 & 0\end{array}\right]$ and

$$
\begin{aligned}
& T=\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right] \text {. Then by Lemma } 2.1 \text { we have } \\
& (m+n+l)\left[\begin{array}{cc}
\lambda(S T) I_{\mathcal{A}} & c_{12}\left(A M_{2}+M_{1} B\right) \\
0 & \lambda(S T) I_{\mathcal{B}}
\end{array}\right] \\
& =(m+n+l) \delta(S T)=(m+n+l) \delta(S T+T S) \\
& =m\left[\begin{array}{cc}
a_{11}(A)+\lambda\left(\left[\begin{array}{cc}
0 & M_{1} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{A}} & c_{12}\left(M_{1}\right) \\
0 & \\
& \lambda\left(\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right]\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right] \\
& +m\left[\begin{array}{cc}
\lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right]\right) I_{\mathcal{A}} & c_{12}\left(M_{2}\right) \\
0 & b_{22}(B)+\lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right]\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right] \\
& +n\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right]\right) I_{\mathcal{A}} & c_{12}\left(M_{2}\right) \\
0 & \lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}+b_{22}(B)
\end{array}\right] \\
& +n\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
a_{11}(A)+\lambda\left(\left[\begin{array}{cc}
0 & M_{1} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{A}} & c_{12}\left(M_{1}\right) \\
0 &
\end{array} \begin{array}{cc}
\lambda\left(\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right] \\
& +l\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{11}\left(I_{\mathcal{A}}\right) & 0 \\
0 & b_{22}\left(I_{\mathcal{B}}\right)
\end{array}\right]\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right] \\
& +\left[\begin{array}{cc}
\left(\lambda_{S+T}-\lambda_{S}-\lambda_{T}\right) I_{\mathcal{A}} & 0 \\
0 & \left(\lambda_{S+T}-\lambda_{S}-\lambda_{T}\right) I_{\mathcal{B}}
\end{array}\right] .
\end{aligned}
$$

The above matrix equation implies

$$
\begin{align*}
(m+n & +l) c_{12}\left(A M_{2}+M_{1} B\right) \\
= & m a_{11}(A) M_{2}+m \lambda\left(\left[\begin{array}{cc}
0 & M_{1} \\
0 & 0
\end{array}\right]\right) M_{2}+m c_{12}\left(M_{1}\right) B+n M_{1} b_{22}(B) \\
& +m \lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & B
\end{array}\right]\right) M_{1}+n A c_{12}\left(M_{2}\right)+n \lambda\left(\left[\begin{array}{cc}
0 & M_{2} \\
0 & 0
\end{array}\right]\right) M_{1} \\
& +n \lambda\left(\left[\begin{array}{cc}
A & M_{1} \\
0 & 0
\end{array}\right]\right) M_{2}+l A a_{11}\left(I_{\mathcal{A}}\right) M_{2}+l M_{1} b_{22}\left(I_{\mathcal{B}}\right) B . \tag{3.1}
\end{align*}
$$

Taking $B=0, A=I_{\mathcal{A}}$ and $M_{1}=0$ in (3.1), we have $c_{12}(M)=a_{11}\left(I_{\mathcal{A}}\right) M$ for every $M \in \mathcal{M}$. Taking $A=0, B=I_{\mathcal{B}}$ and $M_{2}=0$ in (3.1), we have $c_{12}(M)=M b_{22}\left(I_{\mathcal{B}}\right)$ for every $M \in \mathcal{M}$.

Symmetrically, $d_{21}(N)=b_{22}\left(I_{\mathcal{B}}\right) N=N a_{11}\left(I_{\mathcal{A}}\right)$ for every $N \in \mathcal{N}$.
Theorem 3.2. Let δ be a generalized (m, n, l)-Jordan centralizer from \mathcal{U} into itself. Suppose that one of the following conditions holds:
(1) \mathcal{M} is a faithful left \mathcal{A}-module and a faithful right \mathcal{B}-module;
(2) \mathcal{M} is a faithful left \mathcal{A}-module and \mathcal{N} is a faithful left \mathcal{B}-module;
(3) \mathcal{N} is a faithful right \mathcal{A}-module and a faithful left \mathcal{B}-module;
(4) \mathcal{N} is a faithful right \mathcal{A}-module and \mathcal{M} is a faithful right \mathcal{B}-module.

Then δ is a centralizer.
Proof. Let δ be a generalized (m, n, l)-Jordan centralizer from \mathcal{U} into itself. By Lemma 3.1, we have

$$
\begin{equation*}
c_{12}(M)=a_{11}\left(I_{\mathcal{A}}\right) M=M b_{22}\left(I_{\mathcal{B}}\right) \tag{3.2}
\end{equation*}
$$

for every $M \in \mathcal{M}$, and

$$
\begin{equation*}
d_{21}(N)=N a_{11}\left(I_{\mathcal{A}}\right)=b_{22}\left(I_{\mathcal{B}}\right) N \tag{3.3}
\end{equation*}
$$

for every $N \in \mathcal{N}$.
We assume that (1) holds. The proofs for the other cases are analogous.
For any $A \in \mathcal{A}$ and $M \in \mathcal{M}, a_{11}\left(I_{\mathcal{A}}\right) A M=A M b_{22}\left(I_{\mathcal{B}}\right)=A a_{11}\left(I_{\mathcal{A}}\right) M$. Since \mathcal{M} is a faithful left \mathcal{A}-module, we have

$$
a_{11}\left(I_{\mathcal{A}}\right) A=A a_{11}\left(I_{\mathcal{A}}\right)
$$

whence

$$
a_{11}(A)=A a_{11}\left(I_{\mathcal{A}}\right)+\lambda\left(\left[\begin{array}{cc}
A & 0 \tag{3.4}\\
0 & 0
\end{array}\right]\right) I_{\mathcal{A}}=a_{11}\left(I_{\mathcal{A}}\right) A+\lambda\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right) I_{\mathcal{A}}
$$

For any $B \in \mathcal{B}$ and $M \in \mathcal{M}, M B b_{22}\left(I_{\mathcal{B}}\right)=a_{11}\left(I_{\mathcal{A}}\right) M B=M b_{22}\left(I_{\mathcal{B}}\right) B$. Since \mathcal{M} is a faithful right \mathcal{B}-module, we have

$$
b_{22}(B)=b_{22}\left(I_{\mathcal{B}}\right) B+\lambda\left(\left[\begin{array}{cc}
0 & 0 \tag{3.5}\\
0 & B
\end{array}\right]\right) I_{\mathcal{B}}=B b_{22}\left(I_{\mathcal{B}}\right)+\lambda\left(\left[\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right]\right) I_{\mathcal{B}} .
$$

For any $A \in \mathcal{A}, M \in \mathcal{M}, N \in \mathcal{N}$ and $B \in \mathcal{B}$,

$$
\begin{aligned}
\delta\left(\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right]\right)= & {\left[\begin{array}{cc}
a_{11}(A)+\lambda\left(\left[\begin{array}{cc}
0 & M \\
N & B
\end{array}\right]\right) I_{\mathcal{A}} & c_{12}(M) \\
d_{21}(N) & b_{22}(B)+\lambda\left(\left[\begin{array}{cc}
A & M \\
N & 0
\end{array}\right]\right) I_{\mathcal{B}}
\end{array}\right] } \\
& \delta(I)\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right]=\left[\begin{array}{cc}
a_{11}\left(I_{\mathcal{A}}\right) A & a_{11}\left(I_{\mathcal{A}}\right) M \\
b_{22}\left(I_{\mathcal{B}}\right) N & b_{22}\left(I_{\mathcal{B}}\right) B
\end{array}\right]
\end{aligned}
$$

and

$$
\left[\begin{array}{cc}
A & M \\
N & B
\end{array}\right] \delta(I)=\left[\begin{array}{ll}
A a_{11}\left(I_{\mathcal{A}}\right) & M b_{22}\left(I_{\mathcal{B}}\right) \\
N a_{11}\left(I_{\mathcal{A}}\right) & B b_{22}\left(I_{\mathcal{B}}\right)
\end{array}\right]
$$

So by (3.2)-(3.5), we have for every $S \in \mathcal{U}$,

$$
\delta(S)=\delta(I) S+\lambda(S)=S \delta(I)+\lambda(S)
$$

The remaining part goes along the same line as the proof of Corollary 2.7 and this completes the proof.

Note that a unital prime $\operatorname{ring} \mathcal{A}$ with a non-trivial idempotent P can be written as the matrix form $\left[\begin{array}{cc}P \mathcal{A} P & P \mathcal{A}(I-P) \\ (I-P) \mathcal{A} P & (I-P) \mathcal{A}(I-P)\end{array}\right]$. Moreover, for any $A \in \mathcal{A}$, $P A P \mathcal{A}(I-P)=0$ implies $P A P=0$ and $P \mathcal{A}(I-P) A(I-P)=0$ implies $(I-P) A(I-P)=0$.

Corollary 3.3. Let \mathcal{A} be a unital prime ring with a non-trivial idempotent P. If δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{A} into itself, then δ is a centralizer.

As von Neumann algebras have rich idempotent elements and factor von Neumann algebras are prime, the following corollary is obvious.

Corollary 3.4. Let \mathcal{A} be a factor von Neumann algebra. If δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{A} into itself, then δ is a centralizer.

Obviously, when $\mathcal{N}=0, \mathcal{U}$ degenerates to an upper triangular algebra. Thus we have the following corollary.

Corollary 3.5. Let $\mathcal{U}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be an upper triangular algebra such that \mathcal{M} is a faithful $(\mathcal{A}, \mathcal{B})$-bimodule. If δ is a generalized (m, n, l)-Jordan centralizer from \mathcal{A} into itself, then δ is a centralizer.

Let \mathcal{N} be a nest on a Hilbert space H and $\operatorname{alg} \mathcal{N}$ be the associated algebra. If \mathcal{N} is trivial, then $\operatorname{alg} \mathcal{N}$ is $B(H)$. If \mathcal{N} is nontrivial, take a nontrivial projection $P \in \mathcal{N}$. Let $\mathcal{A}=P \operatorname{alg} \mathcal{N} P, \mathcal{M}=P \operatorname{alg} \mathcal{N}(I-P)$ and $\mathcal{B}=(I-P) \operatorname{alg} \mathcal{N}(I-P)$. Then \mathcal{M} is a faithful $(\mathcal{A}, \mathcal{B})$-bimodule, and $\operatorname{alg} \mathcal{N}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is an upper triangular algebra. Thus as an application of Corollaries 3.4 and 3.5, we have the following corollary.

Corollary 3.6. Let \mathcal{N} be a nest on a Hilbert space H and $\operatorname{alg} \mathcal{N}$ be the associated algebra. If δ is a generalized (m, n, l)-Jordan centralizer from $\operatorname{alg} \mathcal{N}$ into itself, then δ is a centralizer.

In the following, we study (m, n, l)-Jordan centralizers on AF C^{*}-algebras. A unital C^{*}-algebra \mathcal{B} is called approximately finite (AF) if \mathcal{B} contains an increasing chain $\mathcal{B}_{n} \subseteq \mathcal{B}_{n+1}$ of finite-dimensional C^{*}-subalgebra, all containing the unit I of \mathcal{B}, such that $\bigcup_{n=1}^{\infty} \mathcal{B}_{n}$ is dense in \mathcal{B}. For more details and related terms, we refer the readers to $[5,11]$.

Lemma 3.7. Let $\mathcal{M}_{n}(\mathbb{C})$ be the set of all $n \times n$ complex matrices, \mathcal{A} be a $C S L$ subalgebra of $\mathcal{M}_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus \mathcal{M}_{n_{k}}(\mathbb{C})$, and \mathcal{B} be an algebra such that $\mathcal{M}_{n_{1}}(\mathbb{C}) \oplus$ $\cdots \oplus \mathcal{M}_{n_{k}}(\mathbb{C}) \subseteq \mathcal{B}$ as an embedding. If δ is an (m, n, l)-Jordan centralizer from \mathcal{A} into \mathcal{B}, then δ is a centralizer.

Proof. Let \mathcal{A} be the linear span of its matrix units $\left\{E_{i j}\right\}$, and since δ is linear, we only need to show that for any i, j,

$$
\begin{equation*}
\delta\left(E_{i j}\right)=E_{i j} \delta(I)=\delta(I) E_{i j} . \tag{3.6}
\end{equation*}
$$

If $i=j$, by Lemma 2.4, (3.6) is clear.

Next, we will prove (3.6) for $i \neq j$. By Lemma 2.1 and Remark 2.2, we have

$$
\begin{aligned}
(m+n+l) \delta\left(E_{i j}\right) & =(m+n+l) \delta\left(E_{i i} E_{i j}+E_{i j} E_{i i}\right) \\
& =m \delta\left(E_{i i}\right) E_{i j}+n E_{i i} \delta(I) E_{i j}+l E_{i i} \delta(I) E_{i j} \\
& =(m+n+l) \delta\left(E_{i i}\right) E_{i j},
\end{aligned}
$$

Hence $\delta\left(E_{i j}\right)=\delta\left(E_{i i}\right) E_{i j}$ for any i, j.
Similarly, we have $\delta\left(E_{i j}\right)=E_{i j} \delta\left(E_{j j}\right)$ for any i, j.
Hence for any i, j,

$$
E_{i j} \delta(I)=E_{i j} \sum_{k=1}^{n} \delta\left(E_{k k}\right)=E_{i j} \sum_{k=1}^{n} E_{k k} \delta\left(E_{k k}\right)=E_{i j} \delta\left(E_{j j}\right)=\delta\left(E_{i j}\right) .
$$

Similarly, we have for any $i, j, \delta(I) E_{i j}=\delta\left(E_{i j}\right)$ and the proof is complete.
Theorem 3.8. Let \mathcal{A} be a canonical subalgebra of an $A F C^{*}$-algebra \mathcal{B}. If δ is a bounded (m, n, l)-Jordan centralizer from \mathcal{A} into \mathcal{B}, then δ is a centralizer.

Proof. Suppose δ is a bounded (m, n, l)-Jordan centralizer from \mathcal{A} into \mathcal{B}. Since \mathcal{A}_{n} is a CSL algebra, $\left.\delta\right|_{\mathcal{A}_{n}}$ is a centralizer by Lemma 3.7; that is, for any S in \mathcal{A}_{n},

$$
\delta(S)=\delta(I) S=S \delta(I)
$$

Since δ is norm continuous and $\cup_{i=1}^{\infty} A_{n}$ is dense in A, it follows that δ is a centralizer.

Acknowledgement

This work is supported by NSF of China.

References

1. K. Davidson, Nest Algebras, Pitman Res. Notes Math. Ser., 191, Longman, Harlow, 1988.
2. J. Guo and J. Li, On centralizers of some reflexive algebras, Aequat. Math. 2012, DOI: 10.1007/s00010-012-0137-y.
3. D. Hadwin and J. Li, Local derivations and local automorphisms on some algebras, J. Operator Theory 60 (2008), no. 1, 29-44.
4. M. Lambrou, On the rank of operators in reflexive algebras, Linear Algebra Appl. 142 (1990), 211-235.
5. J. Li and Z. Pan, On derivable mappings, J. Math. Anal. Appl. 374(1) (2011), 311-322.
6. W. Longstaff, Operators of rank one in reflexive algebras, Canad. J. Math. 28 (1976), 19-23.
7. W. Longstaff, Strongly reflexive lattices, J. Lond. Math. Soc. 11 (1975), 491-498.
8. F. Lu and B. Liu, Lie derivations of reflexive algebras, Integral Equations Operator Theory 64 (2009), 261-271.
9. F. Lu, Jordan derivations of reflexive algebras, Integral Equations Operator Theory 67 (2010), 51-56.
10. F. Lu, The Jordan structure of CSL algebras, Studia Math. 190 (2009), 283-299.
11. S. Power, Limit Algebras: an introduction to subalgebras of C^{*}-algebras, Pitman Res. Notes Math. Ser., 278, Longman, Harlow, 1992.
12. X. Qi, S. Du and J. Hou, Characterization of Centralizers, Acta Math. Sinica (Chin. Ser.) 51(3) (2008), 509-516.
13. E. Samei, Approximately local derivations, J. Lond. Math. Soc. 71 (2005), 759-778.
14. A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.
15. J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447-456.
16. J. Vukman and I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Aust. Math. Soc. 71 (2005), 225-234.
17. J. Vukman, On centralizers of semisomple H^{*} algebras, Taiwanese J. Math. 4 (2007), 10631074.
18. J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolin. 42 (2001), 237-245.
19. J. Vukman, On (m, n)-Jordan centralizers in rings and algebras, Glas. Mat. Ser. III 45 (2010), 43-53.
20. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P. R. China.

E-mail address: jiankuili@yahoo.com
E-mail address: qihuashen@yahoo.com.cn
E-mail address: jianbin-guo@163.com

[^0]: Date: Received: 17 October 2011; Accepted: 12 December 2012.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47L35; Secondly 17B40, 17B60.
 Key words and phrases. CSL algebra, centralizer, (m, n, l)-Jordan centralizer, generalized matrix algebra, reflexive algebra.

