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Abstract. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y , respectively. Given a non-zero scalar αand s, t ∈ N we
characterize the general form of suitable powers of surjective maps T, T ′ : A −→
B satisfying ‖(Tf)s(T ′g)t − α‖Y = ‖fsgt − α‖X , for all f, g ∈ A, where ‖ · ‖X
and ‖ · ‖Y denote the supremum norms on X and Y , respectively. A similar
result is given for the case where T = T ′ and T is defined between certain
subsets of A and B. We also show that if T : A −→ B is a surjective map
satisfying the stronger conditionRπ((Tf)s(Tg)t − α) ∩ Rπ(fsgt − α) 6= ∅ for
all f, g ∈ A, where Rπ(·) denotes the peripheral range of the algebra elements,
then there exists a homeomorphism ϕ from the Choquet boundary c(B) of B
onto the Choquet boundary c(A) of A such that (Tf)d(y) = (T1)d(y) (f◦ϕ(y))d

for all f ∈ A and y ∈ c(B),where d is the greatest common divisor of s and t.

1. Introduction

A generalization of the classical Banach-Stone theorem asserts that each surjec-
tive linear isometry between uniform algebras is a weighted composition operator
[17, 13]. A related problem, is the study of certain maps, not assumed to be
linear, between uniform algebras (or in general, semisimple commutative Banach
algebras) preserving multiplicatively some structures such as norm, spectrum or
certain subsets of the spectrum called the peripheral spectrum. The study of such
maps was initiated by Molnar in [16] by proving that for a first countable compact
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Hausdorff space X, a surjective map T : C(X) −→ C(X) preserving multiplica-
tively the spectrum of functions, i.e., TfTg(Y ) = fg(X), for all f, g ∈ C(X), is a
weighted composition operator. Then this result was extended in [5, 8, 10, 18, 19]
for more general algebras of functions rather than C(X). In particular, it is shown
in [8] that the same result is valid for maps between unital semisimple commu-
tative Banach algebras preserving multiplicatively the spectrum of the algebra
elements. Introducing the peripheral range and the peripheral spectrum for the
elements in a uniform algebra, surjective maps T : A −→ B between uniform
algebras A and B preserving multiplicatively the peripheral ranges were studied
by Luttman and Tonev in [15]. A similar result was given in [12] for a mapping
T : A −→ B between uniform algebras A and B, preserving peaking functions
such that the peripheral range of fg has a nonempty intersection with the pe-
ripheral range of TfTg for all f, g ∈ A. More results can also be found in [11, 24].

In [6] Hatori, Miura, Takagi characterized the general form of a surjective map
T : A −→ B between uniform algebras A and B on compact Hausdorff spaces X
and Y , respectively, satisfying ‖fg+α‖X = ‖TfTg+α‖Y for all f, g ∈ A, where
α is a non-zero complex number (i.e. α ∈ C\{0}) and ‖ · ‖X and ‖ · ‖Y denote the
supremum norms on X and Y , respectively. Then Luttman and Lambert in [14]
gave an alternative characterization for such maps. Similar results were obtained
in [2] for the pointed Lipschitz algebras and also by the authors in [9] for certain
subalgebras of C(X) and C(Y ) (for compact Hausdorff spaces X and Y ) which
are Banach algebras under some norms. On the other hand, it was shown in [21]
that if s, t are positive integers, i.e. s, t ∈ N, α ∈ C\{0} and T : A −→ B is a
surjective map such that ‖(Tf)s(Tg)t−α‖Y = ‖f sgt−α‖X for all f, g ∈ A, then
there exist a homeomorphism ϕ from the Choquet boundary c(B) of B onto the
Choquet boundary c(A) of A and a clopen subset K of c(B) such that for each
f ∈ A,

(Tf)d(y) = (T1)d(y)

{
f(ϕ(y))d y ∈ K,
f(ϕ(y))

d
y ∈ c(B)\K,

where d is the greatest common divisor of s and t. Indeed, in [21], this result has
been obtained for maps defined between arbitrary subsets A and B containing
A−1 and B−1, respectively, satisfying the same condition. For further results see
also [3, 7, 22]. We also refer the interested reader to [4] for a recent survey on
these topics.

In this paper we consider the case where A and B are certain subalgebras
of continuous functions on compact Hausdorff spaces X and Y endowed with
some Banach algebra norms (not necessarily supremum norm) and extend the
latter result for surjective maps T, T ′ : A −→ B satisfying ‖(Tf)s(T ′g)t − α‖Y =
‖f sgt − α‖X for all f, g ∈ A (Theorem 3.2). It should be noted that since the
maps under consideration are not necessarily linear we can not simply extend
them to the uniform closures of A and B and use the known results in uniform
algebra case. Indeed, the extension will be defined between appropriate subsets of
the uniform closures of A and B. We also show that for two-variables polynomial
p(z, w) = zswt−α, where s, t ∈ N, and α ∈ C\{0}, if A0 and B0 are subsets of A
and B containing all invertible elements and T : A0 −→ B0 is a surjective map
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satisfying

‖p(Tf, Tg)‖Y = ‖p(f, g)‖X (f, g ∈ A0),

then there exist a homeomorphism ϕ from the Choquet boundary c(B) of B onto
the Choquet boundary c(A) of A and a clopen subset K of c(B) such that for
each f ∈ A0,

(Tf)d(y) = (T1)d(y)

{
f(ϕ(y))d y ∈ K,
f(ϕ(y))

d
y ∈ c(B)\K,

where d is the greatest common divisor of s and t (Theorem 3.7). In particular,
this gives the description of T whenever d = 1. For A0 = A and B0 = B under
the additional assumption T (f + 1) = Tf + 1, f ∈ A, we see that Tf = f ◦ ϕ on
K and Tf = f ◦ ϕ on c(B)\K. Furthermore, we obtain the representation of a
surjective map T : A −→ B satisfying the stronger condition

Rπ(p(Tf, Tg)) ∩Rπ(p(f, g)) 6= ∅ (f, g ∈ A),

where p(z, w) = zswt − α and Rπ(.) denotes the peripheral range of algebra
elements and show that such maps are weighted composition operators if the the
greatest common divisor of s and t is 1. This result gives a partial answer to the
Question 7 in [4] for the case where the Banach algebra norm is not necessarily
the supremum norm.

2. preliminaries

Let X be a compact Hausdorff space. By C(X) we mean the algebra of all
continuous complex-valued functions on X and ‖·‖X denotes the supremum norm
on X. A subalgebra A of C(X) is called a function algebra on X if A contains
the constants and separates the points of X. A Banach function algebra on X is
a function algebra on X which is a Banach algebra under a norm. A uniformly
closed function algebra on X is called a uniform algebra on X. The group of
invertible elements in a Banach function algebra A is denoted by A−1.

Let A be a Banach function algebra on a compact Hausdorff space X. We
denote the uniform closure of A in C(X) by A. A subset E of X is called a
boundary for A if every f ∈ A attains its maximum modulus at some point of E.
The unique minimal closed boundary for A, denoted by ∂A, is called the Šilov
boundary of A. The Choquet boundary of A which is denoted by c(A) is the set
of all x ∈ X such that the evaluation homomorphism δx at x is an extreme point
of the unit ball of the dual space of (A, ‖.‖X). It is well known that c(A) is dense
in ∂A (see [23, Corollary 7.24, Theorem 7.30] for uniform algebra case and [1,
Theorem 1] for general case).

For an element f in a Banach function algebra A on X, σ(f) and r(f) denote
the spectrum and the spectral radius of f , respectively. The peripheral spectrum
and the peripheral range of f ∈ A is defined by

σπ(f) = {λ ∈ σ(f) : |λ| = r(f)}
and

Rπ(f) = {λ ∈ f(X) : |λ| = ‖f‖X}.
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We should note that the peripheral spectrum and the peripheral range of elements
in a uniform algebra are the same by [15, Lemma 1].

Let A be a Banach function algebra on a compact Hausdorff space X. A
function f ∈ A is called a peaking function of A if Rπ(f) = {1}. We call
a subset K of X a peak set for A if there exists a peaking function f ∈ A
such that K = {x ∈ X : f(x) = 1}. For an arbitrary function f ∈ A we set
Mf = {t ∈ X : |f(t)| = ‖f‖X}. A point x ∈ X is a strong boundary point
for A if for every neighborhood V of x, there exists a function f ∈ A such that
‖f‖X = f(x) = 1 and |f | < 1 on X \ V . It is easy to see that the function f in
this definition can be chosen to be a peaking function in exp(A). It is well known
that if A is a uniform algebra, then c(A) is, indeed, the set of all strong boundary
points for A (see [23, Theorem 7.30]).

The following generalizations of the classical Bishop’s Lemma may be used
frequently in this paper:

Lemma 2.1. [14, Corollary 1.1] Let A be a uniform algebra on a compact Haus-
dorff space X. If E ⊆ X is a peak set and f ∈ A such that f |E 6= 0, then
there exists a peaking function h ∈ exp(A) such that Mh = E and fh attains its
maximum modulus exclusively on E.

Lemma 2.2. [5, Lemma 2.1] Let A be a uniform algebra on a compact Hausdorff
space X. Let f ∈ A and x0 ∈ c(A) such that f(x0) 6= 0. Then there exists a
peaking function h ∈ A with h(x0) = 1 and Rπ(fh) = {f(x0)}.

We also use the following result, proved by Shindo, concerning the general
form of certain preserving maps between some subgroups of invertible elements
of uniform algebras:

Theorem 2.3. [21, Proposition 2.6] Let A and B be uniform algebras on compact
Hausdorff spaces X and Y and let A0 and B0 be subgroups of A−1 and B−1 which
contain exp(A) and exp(B), respectively. Let S : A0 −→ B0 be a surjection
satisfying S(1) = 1 and ∥∥∥∥S(f)

S(g)
− 1

∥∥∥∥
Y

=

∥∥∥∥fg − 1

∥∥∥∥
X

for all f, g ∈ A0. Then there exist a homeomorphism ϕ : c(B) −→ c(A) and a
clopen subset K of c(B) such that for every f ∈ A0,

Sf(y) =

{
f(ϕ(y)) y ∈ K,
f(ϕ(y)) y ∈ c(B)\K.

We should note that the subset K given in the proof of the above theorem is
defined by K = {y ∈ c(B) : S(i)(y) = i}.

3. Main Results

Let A be a Banach function algebra on a compact Hausdorff space X and let
A be the closure of A in (C(X), ‖ · ‖X). For s, t ∈ N and a nonempty subset E of
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X we set

Es
t = {f ∈ E : there is an f ′ ∈ E with f sf ′t = 1}.

Clearly Ast is a subgroup of A−1 containing exp(A) and also Ast = (A−1)st . More-
over, if E is a subgroup of A−1, then E1

s = {f s : f ∈ E}. The idea of considering
such subsets comes from [21].

Given s, t ∈ N we use the notation A′ for the set of all invertible elements f ∈ A
for which there exists a sequence {fn} in (Ast)

1
s such that limn→∞ ‖fn− f‖X = 0,

that is, A′ = (A)−1 ∩ (Ast)
1
s. We note that since exp(A) ⊆ (Ast)

1
s it follows easily

that exp(A) ⊆ A′. Moreover, it is obvious that A′ contains the subset (Ast)
1
s of

A−1. For each x ∈ c(A), we also set Fx = {f ∈ A′ : |f(x)| = 1 = ‖f‖X}.

Remark 3.1. a) If A is a Banach function algebra on a compact Hausdorff space
X, then since A is a uniform algebra on X and c(A) = c(A) it follows that for
each point x ∈ c(A) and open neighborhood V of x there exists a peaking function
f ∈ exp(A) ⊆ A′ such that f(x) = 1 = ‖f‖X and |f | < 1 on X\V .

b) If A is a Banach function algebra on a compact Hausdorff space X, then for
each f ∈ A and x0 ∈ c(A) with f(x0) 6= 0 we can find a peaking function h ∈ A′
with h(x0) = 1 and Rπ(fh) = {f(x0)}. For this, it suffices to choose, by Lemma
2.2, a peaking function k ∈ A with k(x0) = 1 and Rπ(fk) = {f(x0)} and then,
using Lemma 2.1, choose a peaking function h ∈ exp(A) ⊆ A′ with Mh = Mk and
Mfh ⊆ Mk. Then it is easy to see that h has the desired properties. Therefore,
the peaking function h given by Lemma 2.2 for the uniform algebra A can be
chosen to be an element of A′.

c) If f and g are elements of a Banach function algebra A on X such that
‖fh− 1‖X = ‖gh− 1‖X for all h ∈ exp(A), then since this equality also holds for
all h ∈ exp(A), it follows immediately from [21, Lemma 3.1] that f = g.

Theorem 3.2. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y , respectively. Let s, t ∈ N and α ∈ C\{0}. If T : A −→ B and
T ′ : A −→ B are surjective maps satisfying

‖(Tf)s(T ′g)t − α‖Y = ‖f sgt − α‖X
for all f, g ∈ A, then there exist a homeomorphism ϕ from c(B) onto c(A) and a
clopen subset K of c(B) such that for each f ∈ A,

(Tf)s(y) = (T1)s(y)

{
f(ϕ(y))s y ∈ K,
f(ϕ(y))

s
y ∈ c(B)\K,

and

(T ′f)t(y) = (T ′1)t(y)

{
f(ϕ(y))t y ∈ K,
f(ϕ(y))

t
y ∈ c(B)\K.

Proof. Let β be a complex number with βt = α. We first show that T (Ast) = Bs
t .

For suppose that g ∈ Ast , then there exists a function g′ ∈ A such that gs(g′)t = 1.
Hence

‖(Tg)sT ′(βg′)t − α‖Y = ‖gs(βg′)t − α‖X = 0,
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and consequently (Tg)s(β−1T ′(βg′))t = 1. This shows that T (Ast) ⊆ Bs
t . Con-

versely, if G ∈ B and Gs(G′)t = 1 for some G′ ∈ B, then since there exist g, g′ ∈ A
such that G = Tg, T ′g′ = βG′, a similar argument shows that gs(β−1g′)t = 1,
that is g ∈ Ast . Therefore Bs

t ⊆ T (Ast) and consequently T (Ast) = Bs
t .

We should note that if f ∈ A and g ∈ Ast , then letting g′ ∈ A such that
gs · (g′)t = 1 it follows from the above argument that∥∥∥∥(Tf)s

(Tg)s
− 1

∥∥∥∥
Y

=
1

|α|
‖(Tf)s(T ′(βg′))t−α‖Y =

1

|α|
‖f s(βg′)t−α‖Y =

∥∥∥∥f sgs − 1

∥∥∥∥
X

.

Hence ∥∥∥∥(Tf)s

(Tg)s
− 1

∥∥∥∥
Y

=

∥∥∥∥f sgs − 1

∥∥∥∥
X

(f ∈ A, g ∈ Ast) (3.1)

We prove the theorem through the following steps:

Step 1. There is a surjective map S : A′ −→ B′ such that S((Ast)
1
s) = (Bs

t )
1
s

and S(f s) = (Tf)s

(T1)s
for all f ∈ Ast . Furthermore, S1 = 1 and

∥∥∥SfSg − 1
∥∥∥
Y

=∥∥∥fg − 1
∥∥∥
X

for all f, g ∈ A′.
Proof. We first define the map S on (Ast)

1
s = {f s : f ∈ Ast} by

S(f s) =
(Tf)s

(T1)s
(f ∈ Ast).

Note that by (3.1), S is well-defined. It is clear that S(f s) = (Tf)s

(T1)s
∈ (Bs

t )
1
s ⊆ B′

for all f ∈ Ast . Since Bs
t is closed under multiplication and T (Ast) = Bs

t we
conclude that S((Ast)

1
s) = (Bs

t )
1
s. Furthermore, it follows from (3.1) that∥∥∥∥SfSg − 1

∥∥∥∥
Y

=

∥∥∥∥fg − 1

∥∥∥∥
X

(f, g ∈ (Ast)
1
s) (3.2)

We now extend S on A′ as follows. Let f ∈ A′ be an arbitrary element and let
{fn} be a sequence in (Ast)

1
s converging uniformly on X to f . Since f is invertible

in A, it follows that there exist scalars c, d ∈ R+ such that c < |fn(x)| < d for all
sufficiently large n ∈ N and x ∈ X. So we can assume that c < |fn(x)| < d for
all n ∈ N and x ∈ X. Let ε > 0. Then since {fn} is a Cauchy sequence, there
exists N ∈ N such that ‖fn − fm‖X < ε for all m,n ≥ N . Thus for all m,n ≥ N
we have ∣∣∣∣ fn(x)

fm(x)
− 1

∣∣∣∣ ≤ ε

|fm(x)|
<
ε

c
(x ∈ X),

and so ‖ fn
fm
− 1‖X < ε

c
. Hence, by (3.2), ‖ Sfn

Sfm
− 1‖Y = ‖ fn

fm
− 1‖X < ε

c
for all

n,m ≥ N . Therefore,

|Sfn(y)− Sfm(y)| < ε

c
|Sfm(y)| ≤ ε

c
‖Sfm‖Y (n,m ≥ N, y ∈ Y ).

On the other hand, since for all n ∈ N, ‖Sfn‖Y ≤ ‖Sfn−1‖Y +1 = ‖fn−1‖X+1 ≤
‖fn‖X + 2, it follows that {‖Sfn‖Y } is a bounded sequence. Hence {Sfn} is a
Cauchy sequence in the uniform closure B of B. Therefore, there exists an F ∈ B
with limn→∞ ‖Sfn − F‖Y = 0. It is easy to see that the function F , obtained in
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this way, is independent of the choice of the sequence {fn} in (Ast)
1
s converging

uniformly to f . We claim that F is an element of B′. Note that since for each
n ∈ N, Sfn ∈ S((Ast)

1
s) = (Bs

t )
1
s and ‖Sfn − F‖Y −→ 0 it follows that F is in

the uniform closure of (Bs
t )

1
s. Therefore it suffices to show that F is invertible

in B. Assume on the contrary that F /∈ (B)−1. Then since {Sfn} converges
uniformly to F and for each n ∈ N, Sfn ∈ B−1 ⊆ (B)−1 we conclude that
‖(Sfn)−1‖Y → ∞. Since S1 = 1 it follows from (3.2) that ‖f−1n − 1‖X → ∞
and consequently ‖f−1n ‖X → ∞ which is impossible, since fn → f in A and so
f−1n → f−1 in A. Therefore, F ∈ B′.

Using this fact we extend S on A′ in such a way that for each f ∈ A′, Sf is
the element F ∈ B′ given in the above argument. As we noted before, for each
f ∈ A′, the function F is independent of the sequence in (Ast)

1
s converging to f ,

that is S is well-defined. It is easy to see that ‖f
g
− 1‖X = ‖Sf

Sg
− 1‖Y holds for

all f, g ∈ A′. We shall show that S : A′ −→ B′ is surjective. For suppose that
F ∈ B′. Then there exists a sequence {Fn} in (Bs

t )
1
s such that ‖Fn − F‖Y −→ 0.

Since S((Ast)
1
s) = (Bs

t )
1
s it follows that for each n ∈ N there exists a function fn

in (Ast)
1
s such that Fn = Sfn. Hence, ‖ Fn

Fm
− 1‖Y = ‖ fn

fm
− 1‖X , by (3.2), and so

using the same argument as above, we conclude that {fn} converges uniformly
to a function f in A. A similar argument concludes that f ∈ A′. Now by the
definition of S we have limn→∞ ‖Fn − Sf‖Y = limn→∞ ‖Sfn − Sf‖Y = 0 and so
Sf = F . This shows that S : A′ −→ B′ is a surjective map with S((Ast)

1
s) = (Bs

t )
1
s.

Since A,B are uniform algebras and A′, B′ are subgroups of (A)−1 and (B)−1

containing exp(A) and exp(B), respectively, it follows from Theorem 2.3 that
there exists a homeomorphism ϕ : c(B) −→ c(A) such that

Sf(y) =

{
f(ϕ(y)) y ∈ K,
f(ϕ(y)) y ∈ c(B)\K,

for every f ∈ A′, where K = {y ∈ c(B) : S(i)(y) = i}. Put ψ = ϕ−1. Then
by the above description of S we have |Sf(ψ(x))| = |f(x)| for all f ∈ A′ and
x ∈ c(A). In the next steps we extend S to a function from As ∪A′ onto Bs ∪B′
having similar properties and show that the above description is valid for every
f ∈ As ∪ A′.

Step 2. The map S : A′ −→ B′ can be extended to a surjective map S̃ :

As ∪ A′ −→ Bs ∪ B′ such that
∥∥∥ S̃f
S̃g
− 1
∥∥∥
Y

=
∥∥∥fg − 1

∥∥∥
X

for all f ∈ As ∪ A′ and

g ∈ A′.
Proof. For each f ∈ A′ we set S̃f = Sf and for each f ∈ A we set

S̃(f s) =
(Tf)s

(T1)s
.

We first show that S̃ is well-defined, i.e., (Tf)s

(T1)s
= (Tg)s

(T1)s
for each f, g ∈ A with

f s = gs and, moreover, the two definitions of S̃ coincide on the intersection
As ∩ A′. For this, first assume that f, g ∈ A such that f s = gs and let H ∈ B′
be an arbitrary element. Then by Step 1, we can find a function h ∈ A′ such
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that Sh = H. Let {hn} be a sequence in Ast such that limn→∞ ‖(hn)s− h‖X = 0.
Then, using the definition of S and (3.1) we have∥∥∥∥∥

(Tf)s

(T1)s

H
− 1

∥∥∥∥∥
Y

= lim
n→∞

∥∥∥∥∥
(Tf)s

(T1)s

(Thn)s

(T1)s

− 1

∥∥∥∥∥
Y

= lim
n→∞

∥∥∥∥ (Tf)s

(Thn)s
− 1

∥∥∥∥
Y

= lim
n→∞

∥∥∥∥ f s

(hn)s
− 1

∥∥∥∥
X

.

Hence

∥∥∥∥ (Tf)s

(T1)s

H
− 1

∥∥∥∥
Y

= limn→∞

∥∥∥ fs

(hn)s
− 1
∥∥∥
X

. The same argument shows that

∥∥∥∥∥
(Tg)s

(T1)s

H
− 1

∥∥∥∥∥
Y

= lim
n→∞

∥∥∥∥ gs

(hn)s
− 1

∥∥∥∥
X

and consequently

∥∥∥∥ (Tf)s

(T1)s

H
− 1

∥∥∥∥
Y

=

∥∥∥∥ (Tg)s

(T1)s

H
− 1

∥∥∥∥
Y

, since f s = gs. Therefore, by

Remark 3.1(c), (Tf)s

(T1)s
= (Tg)s

(T1)s
, since exp(B) ⊆ B′. Now assume that h ∈ As ∩ A′.

Then there exists a sequence {hn} in (Ast)
1
s such that ‖hn − h‖X → 0 and there

exists a function f ∈ A such that h = f s. For each n ∈ N, since hn ∈ (Ast)
1
s we

can find a function h′n ∈ Ast such that hn = (h′n)s. Hence by (3.1)∥∥∥∥ (Tf)s

(Th′n)s
− 1

∥∥∥∥
Y

=

∥∥∥∥ f s

(h′n)s
− 1

∥∥∥∥
X

→ 0.

Thus (Tf)s = limn→∞(Th′n)s and consequently (Tf)s

(T1)s
= limn→∞ S(hn) = Sh

which shows that the two definitions for S̃(h) are the same. This clearly implies

that S̃ is well-defined.
We shall show that S̃ is surjective. For this let G ∈ B. Then by the surjectivity

of T , there exists a function f ∈ A such that Tf = G · T1. Thus (Tf)s

(T1)s
= Gs

and so S̃(f s) = Gs, that is S̃ is surjective. The above argument also shows that∥∥∥ S̃f
S̃g
− 1
∥∥∥
Y

=
∥∥∥fg − 1

∥∥∥
X

holds for all f ∈ As ∪ A′ and g ∈ A′.

Step 3. The map S̃ is injective and ‖fg−1‖X = ‖S̃f(S̃g)−1‖Y for all f ∈
As ∪ A′ and g ∈ A′. In particular, ‖S̃f‖Y = ‖f‖X and ‖g−1‖X = ‖(Sg)−1‖Y for
all f ∈ As ∪ A′ and g ∈ A′.

Proof. Let f, g ∈ As ∪ A′ with S̃f = S̃g . Then for each h ∈ A′,

‖fh−1 − 1‖X = ‖S̃f(S̃h)−1 − 1‖Y = ‖S̃g(S̃h)−1 − 1‖Y = ‖gh−1 − 1‖X ,

in particular, ‖fu − 1‖X = ‖gu − 1‖X for all u ∈ exp(A). Hence, by Remark

3.1(c), f = g, that is S̃ is injective.

Now we show that ‖fg−1‖X = ‖S̃f(S̃g)−1‖Y for all f ∈ As∪A′ and g ∈ A′. Let
f ∈ As ∪A′ and g ∈ A′ and let {gn} be a sequence in (Ast)

1
s converging uniformly

to g. For each n ∈ N, set kn = (S(n−1gn))−1S(gn). Then kn ∈ B and

‖kn‖Y − 1 ≤ ‖kn − 1‖Y = ‖(S(n−1gn))−1S(gn)− 1‖Y = ‖ng−1n gn − 1‖X = n− 1.
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Hence ‖kn‖Y ≤ n for all n ∈ N. Therefore,

n‖g−1n f‖X − 1 ≤ ‖ng−1n f − 1‖X = ‖(S(n−1gn))−1S̃f − 1‖Y
≤ ‖kn‖Y ‖(Sgn)−1S̃f‖Y + 1 ≤ n‖(Sgn)−1S̃f‖Y + 1.

Thus ‖g−1n f‖X ≤ ‖(Sgn)−1S̃f‖Y + 2
n

for all n ∈ N. Letting n −→ ∞, we get

‖g−1f‖X ≤ ‖(Sg)−1S̃f‖Y . Since (S̃)
−1

has the same properties as S̃, it follows

that ‖(Sg)−1S̃f‖Y ≤ ‖g−1f‖X . Therefore, ‖fg−1‖X = ‖S̃f(S̃g)−1‖Y .

Step 4. The equality |S̃f(ψ(x))| = |f(x)| holds for all f ∈ As ∪ A′ and
x ∈ c(A).

Proof. Let f ∈ As ∪ A′, x ∈ c(A) and set y = ψ(x). We shall show that

|f(x)| = |S̃f(y)|. If S̃f(y) = 0, then for each ε > 0 we can easily find a function

g ∈ A′ such that Sg ∈ Fy and ‖S̃fSg‖Y < ε, where Fy is defined as in the
beginning of this section for the Banach function algebra B. Take g′ ∈ A′ such
that Sg′ = (Sg)−1. Then, using Step 3, we have

|f(x)g′−1(x)| ≤ ‖fg′−1‖X = ‖S̃fSg‖Y < ε. (3.3)

Now by Remark 3.1(b) we can choose u ∈ Fx with Rπ(g′−1 ·u) = {g′−1(x)}. Then
it follows from the description of S on A′ that, Su ∈ Fy and hence

|g′−1(x)| = ‖g′−1u‖X = ‖SgSu‖Y = |Sg(y)Su(y)| = 1.

Thus |g′−1(x)| = 1 and consequently |f(x)| < ε, by (3.3). Since ε is arbitrary it

follows that f(x) = 0 = S̃f(y), as desired.

Now suppose that S̃f(y) 6= 0. Choosing G ∈ Fy with Rπ(S̃f · G) = {S̃f(y)}
a similar argument as above shows that there exists a function g ∈ A′ such that
|g−1(x)| = 1 and Sg = G−1. Therefore, by Step 3, we have

|f(x)| = |fg−1(x)| ≤ ‖fg−1‖X = ‖S̃f ·G‖Y = |S̃f(y)|,

that is |f(x)| ≤ |S̃f(y)|. A similar argument shows that |S̃f(y)| ≤ |f(x)| and

consequently |S̃f(y)| = |f(x)|.

Step 5. Let f ∈ As ∪ A′ and g ∈ A′. Then −1 ∈ Rπ(fg−1) if and only if

−1 ∈ Rπ(S̃f(Sg)−1).
Proof. Assume first that −1 ∈ Rπ(fg−1), then

‖S̃f(Sg)−1 − 1‖Y = ‖fg−1 − 1‖X = 2

and

‖S̃f(Sg)−1‖Y = ‖fg−1‖X = 1,

by Step 3. Thus −1 ∈ Rπ(S̃f(Sg)−1). The converse statement is obtained in a
similar manner.

We now show that the description given earlier for the map S is valid for the

extended map S̃. The proof of the next step is basically a modification of [9,
Lemma 3.8].
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Step 6. For each f ∈ As ∪ A′ and y0 ∈ c(B) we have

S̃f(y0) =

{
f(ϕ(y0)) y0 ∈ K,
f(ϕ(y0)) y0 ∈ c(B)\K.

Proof. Let f ∈ As ∪ A′ and y0 ∈ c(B). Assume first that y0 ∈ K and set

x0 = ϕ(y0). If either f(x0) = 0 or S̃f(y0) = 0, then since by Step 4, |f(x0)| =

|S̃f(y0)| it follows that f(x0) = S̃f(y0). So we may assume that f(x0) 6= 0 and

S̃f(y0) 6= 0. Put a = f(x0) and b = S̃f(y0). Let U be an arbitrary neighborhood
of x0 and set V = ϕ(K) ∩ U . Then clearly V is an open subset of c(A) and
consequently there exists a neighborhood V ′ of x0 such that V ′ ∩ c(A) = V . We
now claim that there exists a function h ∈ A′ with Mh ⊆ V ′ and Rπ(fh) = {a}
and, moreover, fh attains its maximum modulus exclusively on Mh. For this we
first choose, by Remark 3.1(b), a peaking function h1 ∈ A′ such that h1(x0) = 1
and Rπ(fh1) = {a}. Then since the set E = {x ∈ X : fh1(x) = a} is a
peak set of A, using Lemma 2.1 for the peak set E and the function fh1, we
can find another peaking function h2 ∈ exp(A) ⊆ A′, with Mfh1h2 = E and
Mh2 = E. Moreover, since V ′ is a neighborhood of the strong boundary point
x0 we can choose a peaking function h3 ∈ A′ with h3(x0) = 1 and |h3| < 1 on
X\V ′. Setting h = h1h2h3, it is easy to see that h ∈ A′, Mh ⊆ E ∩ V ′ with
Rπ(fh) = {a} and, in addition, fh attains its maximum modulus exclusively on
Mh, as we claimed. Hence Rπ(−a−1fh) = {−1} and so by the previous step,

−1 ∈ Rπ(S̃f (S̃(−ah−1))−1). Therefore, there exists a point y ∈ c(B) such that

S̃f(y) (S̃(−ah−1))−1(y) = −1. (3.4)

Let x = ϕ(y). Then x ∈ c(A) and by the above equality |f(x)a−1h(x)| =

|S̃f(y)(S̃(−ah−1))−1(y)| = 1. Hence ‖fh‖X = |a| = |f(x)h(x)|. In particular,
x ∈Mfh ⊆Mh and consequently

|(S̃(−ah−1))−1(y)| = |a−1h(x)| = |a−1| = ‖a−1h‖X = ‖(S̃(−ah−1))−1‖Y ,

which implies that−1 ∈ Rπ(−γ(S̃(−ah−1))−1), where γ = S̃(−ah−1)(y). We note
that since x ∈ Mh ∩ c(A) ⊆ E ∩ V ⊆ ϕ(K), it follows that y ∈ K and so by the

description of S we have S(−γ)(y) = −γ. Hence −1 ∈ Rπ(S(−γ)(S̃(−ah−1))−1)
and by Step 5, −1 ∈ Rπ(γa−1h) = {γa−1}. This clearly shows that a = −γ,

that is, f(x0) = −S̃(−ah−1)(y). Therefore, f(x0) = S̃f(y) = S̃f(ψ(x)), by (3.4).

Since U is an arbitrary neighborhood of x0, the continuity of f , S̃f and ψ conclude

that f(x0) = S̃f(ψ(x0)), i.e., a = b. One can use a similar argument to show that

for each y0 ∈ c(B) \K, S̃f(y0) = f(ϕ(y0)).

Step 7. For each f ∈ A,

(Tf)s(y) = (T1)s(y)

{
f(ϕ(y))s y ∈ K,
f(ϕ(y))

s
y ∈ c(B)\K,

and

(T ′f)t(y) = (T ′1)t(y)

{
f(ϕ(y))t y ∈ K,
f(ϕ(y))

t
y ∈ c(B)\K.
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Proof. Let f ∈ A. Then by the definition of S̃, S̃(f s) = (Tf)s

(T1)s
. Hence, by Step

6,

(Tf)s(y) = (T1)s(y)

{
f(ϕ(y))s y ∈ K,
f(ϕ(y))

s
y ∈ c(B)\K.

Interchanging the role of s and t, the same argument shows that there exist a
homeomorphism ϕ′ : c(B) −→ c(A) and a clopen subset K ′ of c(B) such that for
each f ∈ A,

(T ′f)t(y) = (T ′1)t(y)

{
f(ϕ′(y))t y ∈ K ′,
f(ϕ′(y))

t
y ∈ c(B)\K ′.

We now show that K = K ′ and ϕ = ϕ′. Let y ∈ K and y ∈ c(B)\K ′. Then for
each f ∈ A,

(Tf)s(y) = (T1)s(y)f(ϕ(y))s

and
(T ′f)t(y) = (T ′1)t(y)f(ϕ′(y))

t
.

Now let f ∈ Ast . Then there exists g ∈ A with f sgt = 1 and since

‖(Tf)s(T ′(βg))t − α‖Y = ‖f s(βg)t − α‖X = 0

it follows that (Tf)s(T ′(βg))t = α. Therefore

(T1)s(y)(T ′1)t(y)f(ϕ(y))sg(ϕ′(y))
t
α = α.

Obviously (T1)s(T ′β)t = α which concludes that

T (1)s(y)(T ′1)t(y)α = α.

Consequently f(ϕ(y))sg(ϕ′(y))
t

= 1. Since by assumption f(ϕ′(y))sg(ϕ′(y))t = 1

we get f(ϕ(y))s = f(ϕ′(y))
s

for all f ∈ Ast which is impossible since Ast contains
the constant functions. This shows that K ⊆ K ′. In the same way K ′ ⊆ K, that
is K = K ′. Now assume that there exists y ∈ K with ϕ(y) 6= ϕ′(y) and let f ∈ Ast .
Then since (Tf)s(y) = (T1)s(y)f(ϕ(y))s and (T ′g)t(y) = (T ′1)t(y)g(ϕ′(y))t where
g ∈ A is such that f sgt = 1 we get easily

f(ϕ(y))sg(ϕ′(y))t = 1.

Therefore, f(ϕ(y))s = f(ϕ′(y))s for all f ∈ Ast . Now since A separates the point
of X we can choose an element h ∈ A with h(ϕ(y)) = 0 and h(ϕ′(y)) = 1. Then
f = exp(h) ∈ Ast while f(ϕ(y))s 6= f(ϕ′(y))s, a contradiction. Hence ϕ = ϕ′ on K
and a similar argument shows that ϕ = ϕ′ on c(B)\K as desired. This completes
the proof of the theorem. �

Corollary 3.3. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y and let α ∈ C\{0}.

(i) If ρ : B −→ B and T : A −→ B are surjective maps satisfying ‖Tf ·ρ(Tg)−
α‖Y = ‖fg − α‖X for all f, g ∈ A, then there exist a homeomorphism ϕ from
c(B) onto c(A) and a clopen subset K of c(B) such that for each f ∈ A,

Tf(y) = T1(y)

{
f(ϕ(y)) y ∈ K,
f(ϕ(y)) y ∈ c(B)\K.
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(ii) For two variables polynomial p(z, w) = azsw + bzs − α, where s ∈ N and
a, b are complex numbers with a 6= 0, any surjective map T : A −→ B satisfying
‖p(Tf, Tg)‖Y = ‖p(f, g)‖X has the following representation:

Tf(y) =

{
w(y) · (af(ϕ(y)) + b)− b

a
y ∈ K,

w(y) · (af(ϕ(y)) + b)− b
a

y ∈ c(B)\K,

where ϕ and K are as in (i) and w = T (1−b
a

) + b
a
.

Proof. (i) It is immediate from Theorem 3.2 by considering the case where s =
t = 1 and T ′ = ρ ◦ T .

(ii) It suffices to apply Theorem 3.2 for t = 1 and the surjective map T ′ :
A −→ B defined by T ′(g) = aT (g−b

a
) + b. Then by this theorem there exist a

homeomorphism ϕ : c(B) −→ c(A) and a clopen subset K of c(B) such that

T ′g(y) = T ′1(y)

{
g(ϕ(y)) y ∈ K,
g(ϕ(y)) y ∈ c(B)\K.

Let w(y) = T ′1(y)
a

, for all y ∈ Y . Then w ∈ B and for each f ∈ A by considering
the above description for g = af + b it follows that

Tf(y) =

{
w(y) · (af(ϕ(y)) + b)− b

a
y ∈ K,

w(y) · (af(ϕ(y)) + b)− b
a

y ∈ c(B)\K.
�

Corollary 3.4. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y . Let s, t ∈ N, α ∈ C\{0} and T : A −→ B be a surjective map
satisfying ‖(Tf)s(Tg)t − α‖Y = ‖f sgt − α‖X for all f, g ∈ A, then there exist a
homeomorphism ϕ from c(B) onto c(A) and a clopen subset K of c(B) such that
for each f ∈ A,

(Tf)d(y) = (T1)d(y)

{
f(ϕ(y))d y ∈ K,
f(ϕ(y))

d
y ∈ c(B)\K,

where d is the greatest common divisor of s and t.

Proof. It is immediate from Theorem 3.2 since d = sc + tc′ for some integers c
and c′. �

Remark 3.5. We should note that a similar description to the one given for the
power d of T in Corollary 3.4 may not be valid, in general, for T itself. For
example, if A is a Banach function algebra on a compact Hausdorff space X and
α ∈ C\{0}, then a map δ : A −→ {1,−1} can be chosen such that the self map
T : A −→ A defined by Tf = δ(f)f , f ∈ A, is a surjective map which is neither
R-linear nor multiplicative while it clearly satisfies the condition

‖(Tf)2(Tg)2 − α‖Y = ‖f 2g2 − α‖X (f, g ∈ A)

or even the stronger quality Rπ((Tf)2(Tg)2 − α) ∩ Rπ(f 2g2 − α) 6= ∅ for all
f, g ∈ A. Hence T does not have the representation given in this corollary for the
power one instead of d. However, the next result shows that this is the case, if we
impose an additional assumption on T . In particular, in this case T is injective



POLYNOMIALLY NORM-PRESERVING MAPS 13

and R-linear. The proof of the next theorem is a modification of [3, Corollary
4.1].

Theorem 3.6. Under the hypotheses of Corollary 3.4, if, furthermore, T satisfies
the equality T (f + 1) = Tf + T1 for all f ∈ A, then for each f ∈ A,

Tf = T1

{
f ◦ ϕ on K,
f ◦ ϕ on c(B)\K.

Proof. Let f ∈ A. Since T (f + 1) = T (f) + T1, it follows, by induction, that
T (f + k) = Tf + kT1 for each k ∈ N. For each y ∈ K, by Corollary 3.4 we have

(Tf + kT1)d(y) = ((T (f + k)(y))d = ((T1)(y)((f + k) ◦ ϕ)(y))d

= (T1)d(y)((f ◦ ϕ)(y) + k)d,

i.e., (Tf + kT1)d(y) = (T1)d(y)((f ◦ ϕ)(y) + k)d for all f ∈ A. Similarly for each

y ∈ c(B)\K, (Tf +kT1)d(y) = (T1)d(y)((f ◦ ϕ)(y) +k)d holds for all f ∈ A. Let
a0, ..., am be real numbers such that

abd−1 =
d∑

k=0

ak(a+ kb)d,

holds for all real numbers a and b (cf. [3, The proof of Theorem 1.3]). Then for
each y ∈ K and f ∈ A,

Tf(y)(T1)d−1(y) =
d∑

k=0

ak((Tf + kT1)(y))d

=
d∑

k=0

ak((T1)d(y) · ((f ◦ ϕ)(y) + k)d)

= (T1)d(y)(f ◦ ϕ)(y).

Hence Tf(y) = (T1)(y)(f ◦ ϕ)(y). Similarly for each y ∈ c(B)\K, Tf(y) =
(T1)(y)(f ◦ ϕ)(y) for all f ∈ A, that is

Tf = T1

{
f ◦ ϕ on K,
f ◦ ϕ on c(B)\K,

for all f ∈ A. �

The next theorem shows that similar descriptions can be obtained for the case
where the maps are defined between certain subsets A0 and B0 of A and B rather
than whole A and B.

Theorem 3.7. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y and A0 and B0 be subsets of A and B containing A−1 and B−1,
respectively. Let α ∈ C\{0} and T : A0 −→ B0 be a surjective map satisfying

‖(Tf)s(Tg)t − α‖Y = ‖f sgt − α‖X
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for all f, g ∈ A0. Then there exist a homeomorphism ϕ : c(B) −→ c(A) and a
clopen subset K of c(B) such that for each f ∈ A0,

(Tf)d(y) = (T1)d(y)

{
f(ϕ(y))d y ∈ K,
f(ϕ(y))

d
y ∈ c(B)\K,

where d is the greatest common divisor of s and t.

Proof. We first note that (A0)
s
t = (A−1)st = Ast and (B0)

s
t = (B−1)st = Bs

t and,
moreover, (A0)

s
t , (B0)

s
t are subgroups of A−1 and B−1 containing exp(A) and

exp(B), respectively. An argument as in Theorem 3.2 implies that T (Ast) = Bs
t

and ∥∥∥∥(Tf)s

(Tg)s
− 1

∥∥∥∥
Y

=

∥∥∥∥f sgs − 1

∥∥∥∥
X

(f ∈ A0, g ∈ Ast). (3.5)

Moreover, similar arguments show that there is a surjective map S : A′ −→ B′

such that S((Ast)
1
s) = (Bs

t )
1
s and S(f s) = (Tf)s

(T1)s
for all f ∈ Ast .

Set B′′ = { (Tf)
s

(T1)s
: f ∈ A0} = { Gs

(T1)s
: G ∈ B0}. Since, by assumption, A0

and B0 contain A−1 and B−1, respectively we can use the proof of Step 2 in

Theorem 3.2 to extend S to a surjective map S̃ : (A0)
s∪A′ −→ B′′∪B′ satisfying

‖ S̃f
S̃g
− 1‖Y = ‖f

g
− 1‖X for all f ∈ (A0)

s ∪A′ and g ∈ A′. Indeed, for each f ∈ A0

it suffices to define S̃(f s) = (Tf)s

(T1)s
. Then it is easy to see that S̃ is well-defined

and surjective. For this latter, let G ∈ B0, then, by the surjectivity of T , there

exists f ∈ A0 such that Tf = G. Thus S̃(f s) = (Tf)s

(T1)s
= Gs

(T1)s
. Furthermore,

S̃1 = S1 = 1 and it follows easily from (3.5) that∥∥∥∥∥ S̃fSg − 1

∥∥∥∥∥
Y

=

∥∥∥∥fg − 1

∥∥∥∥
X

for all f, g ∈ (A0)
s ∪ A′ and g ∈ A′.

Now one can apply the same argument as in Theorem 3.2 to define a homeo-
morphism ϕ : c(B) −→ c(A) and a clopen subset K of c(B) such that for each
f ∈ A0,

(Tf)d(y) = (T1)d(y)

{
f(ϕ(y))d y ∈ K,
f(ϕ(y))

d
y ∈ c(B)\K,

where d is the greatest common divisor of s and t.
�

Most recently, some studies have been done to analyze a polynomially spec-
trum (respectively, peripheral spectrum) preserving map, i.e. a map T sat-
isfying σ(p(Tf, Tg)) = σ(p(f, g)) (respectively, σπ(p(Tf, Tg)) = σπ(p(f, g)))
for some polynomial p(z, w). For instance, in [25] (respectively [20]) surjective
maps T : A −→ B between uniform algebras A and B on X and Y satisfying
‖Tf+Tg‖Y = ‖f+g‖X (respectively σπ(Tf+Tg) = σπ(f+g)) for all f, g ∈ A, are
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discussed. Hatori, Miura and Takagi in [7] proved that for certain two-variables
polynomials p, every surjective map T between unital semisimple commutative
Banach algebras A and B is an algebra isomorphism if σ(p(Tf, Tg)) = σ(p(f, g))
holds for all f, g ∈ A. They also look for two-variables polynomials p for which
the above equality implies that T is linear and multiplicative. Moreover, for two
variables polynomial p(z, w) = zswt, s, t ∈ N, surjective maps T : A −→ B
between uniform algebras A and B satisfying Rπ(p(Tf, Tg)) ⊆ Rπ(p(f, g)) for
all f, g ∈ A have been characterized in [3]. In particular, it was shown that if
the greatest common divisor of s and t is 1, then T is linear and is, in fact, a
weighted composition operator. The case where t = s = 1 was proved by Lam-
bert, Luttman and Tonev in [12]. In the next result, we consider a surjective map
T between Banach function algebras A and B satisfying the weaker condition

Rπ(p(Tf, Tg)) ∩Rπ(p(f, g)) 6= ∅ (f, g ∈ A),

where p(z, w) = zswt − α for some s, t ∈ N and α ∈ C\{0}. It should be
noted that in general such a map need not be injective, linear nor multiplicative
(see [3, Example 3.3]). But the next result shows that if the greatest common
divisor of s and t is 1, then T is a weighted composition operator. Hence, in
particular, complex-linearity and injectivity of T are concluded. In particular,
for the polynomial p(z, w) = zswt−α, α 6= 0, if the greatest common divisor of s
and t is 1, then every surjective map T : A −→ B between uniform algebras A and
B satisfying T (1) = 1 and σ(p(Tf, Tg)) = σ(p(f, g)) is an algebra isomorphism.
This gives a partial answer to the Question 7 in [4] for Banach function algebras.

Theorem 3.8. Let A and B be Banach function algebras on compact Hausdorff
spaces X and Y , respectively. Let s, t ∈ N, α ∈ C\{0} and T : A −→ B be a
surjective map satisfying

Rπ((Tf)s(Tg)t − α) ∩Rπ(f sgt − α) 6= ∅

for all f, g ∈ A. Then there exists a homeomorphism ϕ : c(B) −→ c(A) such that
for each f ∈ A, (Tf)d(y) = (T1)d(y) (f ◦ ϕ(y))d, where d is the greatest common
divisor of s and t.

Proof. Clearly the assumption implies

‖(Tf)s(Tg)t − α‖Y = ‖f sgt − α‖X (f, g ∈ A).

Therefore, by Theorem 3.2, there exists a homeomorphism ϕ : c(B) −→ c(A) and
a clopen subset K of c(B) such that for each f ∈ A,

(Tf)s(y) = (T1)s(y)

{
f(ϕ(y))s y ∈ K,
f(ϕ(y))

s
y ∈ c(B)\K.

As it was shown in the proof of this theorem, there exists a surjective map
S : A′ −→ B′ such that S((Ast)

1
s) = (Bs

t )
1
s and ‖Sf

Sg
− 1‖Y = ‖f

g
− 1‖X for all

f, g ∈ A′ and also

Sf(y) =

{
f(ϕ(y)) y ∈ K,
f(ϕ(y)) y ∈ c(B)\K.
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Let βt = α and let h1, h2 ∈ (Ast)
1
s. Then h1 = ks1 and h2 = ks2 for some k1, k2 ∈ Ast .

Since k2 ∈ Ast there exists k ∈ A with ks2k
t = 1. Hence by the argument at the

beginning of the proof of Theorem 3.2 and the definition of S we have

Rπ(
Sh1
Sh2
− 1) = Rπ(

(Tk1)
s

(Tk2)s
− 1) =

1

α
Rπ((Tk1)

s(T (βk))t − α)

and also Rπ(h1
h2
− 1) = Rπ( (k1)

s

(k2)s
− 1) = 1

α
Rπ(ks1(βk)t − α). Therefore, for each

h1, h2 ∈ (Ast)
1
s,

Rπ(
Sh1
Sh2
− 1) ∩Rπ(

h1
h2
− 1) 6= ∅,

and, in particular, since S1 = 1,

Rπ(Sh1 − 1) ∩Rπ(h1 − 1) 6= ∅. (3.6)

A minor modification of the proof of [9, Theorem 3.9] can be applied to show
that K = c(B). For the sake of completeness we state it here. Assume on the
contrary that K 6= c(B) and let y0 ∈ c(B)\K. Then we can find easily a function
F ∈ B′ such that F (y0) = i, |F | < 1

3
on K, and Im(F ) > 0 (see the proof of [9,

Theorem 3.9]).
Since S(A′) = B′, there exists a function f ∈ A′ with Sf = F . Now let {fn}

be a sequence in (Ast)
1
s such that ‖fn − f‖X → 0. Then ‖Sfn − F‖Y → 0, by

the definition of S. Clearly F (y) = f(ϕ(y)) for each y ∈ K and F (y) = f(ϕ(y))
for each y ∈ c(B)\K. Since Im(F ) > 0, it follows that a <Im(F ) < b for some
a, b > 0. Choose now 0 < ε < a small enough and let c ∈ (4

3
+ ε,
√

2 − ε). Then
we can find a sufficiently large N ∈ N such that for each n ≥ N , ‖Sfn − F‖Y =
sup{|fn(ϕ(y))− f(ϕ(y))| : y ∈ c(B)} ≤ ε. Since Im(F ) > a it is easy to see that

Rπ(Sfn − 1) ⊆ {z ∈ C : Im(z) > 0},
for all n ≥ N .

Since |f ◦ ϕ| = |F | < 1/3 on K and |Sfn − F | = |fn ◦ ϕ − f ◦ ϕ| < ε for
all n ≥ N it follows that |fn(ϕ(y)) − 1| < c for all y ∈ K and n ≥ N . On
the other hand, it is easy to see that |fn(ϕ(y0)) − 1| > c for all n ≥ N . Thus
Rπ(fn− 1) ⊆ (fn− 1)(ϕ(c(B)\K)) for all n ≥ N . Hence for each z0 ∈ Rπ(fn− 1)
there exists a point x0 ∈ ϕ(c(B)\K) such that z0 = fn(x0) − 1. Therefore,

z0 = Sfn(ϕ−1(x0))− 1 which implies that

Im(fn(x0)) = −Im(Sfn(ϕ−1(x0))) < ε− Im(F (ϕ−1(x0))) < ε− a < 0.

Consequently, Im(fn(x0)) − 1 = Im(fn(x0)) < 0. This shows that Rπ(fn − 1) ⊆
{z ∈ C : Im(z) < 0} which is a contradiction to (3.6). Therefore, K = c(B) and
consequently for each f ∈ A and y ∈ c(B),

(Tf)d(y) = (T1)d(y) f(ϕ(y))d.

�
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