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Abstract. Let X and Y be complete metric spaces of analytic functions over
the unit disk in the complex plane. A linear operator T : X → Y is a bounded
operator with respect to metric balls if T takes every metric ball in X into a
metric ball in Y . We also say that T is metrically compact if it takes every
metric ball in X into a relatively compact subset in Y . In this paper we
will consider these properties for composition operators from Nevanlinna type
spaces to Bloch type spaces.

1. Introduction

Let D denote the open unit disk in the complex plane C and H(D) the space
of all analytic functions on D. For any analytic self-map ϕ of D, the composition
operator Cϕ on H(D) is defined by Cϕf = f ◦ ϕ for f ∈ H(D). Some operator
theoretic properties of Cϕ acting on various analytic function spaces have been
studied by many mathematicians. In recent progresses of studies on the operator
Cϕ, some authors have investigated the case Cϕ acting between different function
spaces. These studies on this setting have close connection with one about the
weighted composition operator or the integral-type operator (e.g.[6, 7, 8, 12,
14, 15]). In particular, S. Li and S. Stević [6, 7, 8] introduced the generalized
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composition operator Cg
ϕ as follows:

Cg
ϕf(z) =

∫ z

0

f ′(ϕ(ζ))g(ζ) dζ,

and characterized operator-theoretic properties by using behaviors of ϕ and g. As
a consequence of them, the characterizations for the operator Cϕ acting between
different function spaces are obtained. For some n-dimensional operators related
to operators Cg

ϕ see, for example [13, 17, 18, 19] and the references therein. In this
paper we will investigate operator-theoretic properties for composition operators
from Nevanlinna-type spaces N+, M and Np (p > 1) into Bloch-type spaces Bω

and Bω,0.

1.1. Nevanlinna-type spaces N+, M and Np. Let T denote the boundary of
D and dσ the normalized Lebesgue measure on T. The Nevanlinna class N on D
is defined as the set of all analytic functions f on D such that

sup
0≤r<1

∫
T

log(1 + |f(rζ)|) dσ(ζ) < ∞.

It is well-known that f ∈ N has a finite nontangential limit, denoted by f ∗,
almost everywhere on T.

The Smirnov class N+ is a subclass of N such that f satisfies

sup
0≤r<1

∫
T

log(1 + |f(rζ)|) dσ(ζ) =

∫
T

log(1 + |f ∗(ζ)|) dσ(ζ).

We define a metric dN+(f, g) = ‖f − g‖N+ for f, g ∈ N+ where

‖f‖N+ =

∫
T

log(1 + |f ∗(ζ)|) dσ(ζ).

The Smirnov class N+ becomes an F -space with respect to the translation-
invariant metric dN+ . The subharmonicity of log(1 + |f |) implies that f ∈ N+

has the following growth estimation:

log(1 + |f(z)|) ≤ 4‖f‖N+

1− |z|2
(1.1)

for z ∈ D. Thus the convergence on the metric is stronger than the uniform
convergence on compact subsets of D.

The class M which is contained in N+ is the set of all analytic functions f on
D such that

‖f‖M :=

∫
T

log(1 + Mf(ζ)) dσ(ζ) < ∞,

where Mf(ζ) = sup0≤r<1 |f(rζ)| is the radial maximal function of f . This class M
has been introduced by H.O. Kim and the study on M has been well established
in [5].

For each 1 < p < ∞, the Privalov space Np on D is defined as

Np =

{
f ∈ H(D) : ‖f‖Np = sup

0≤r<1

[∫
T
{log(1 + |f(rζ)|)}p dσ(ζ)

]1/p

< ∞

}
.
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Subbotin [20] studied linear space properties of Np. For instance, Np is an F -
space with respect to the translation-invariant metric dNp(f, g) = ‖f − g‖Np or
the convergence in Np gives the uniform convergence on compact subsets of D.
Also Subbotin gave the following inclusions:

Np  M  N+  N.

Thus we will call N+, M and Np Nevanlinna-type spaces.

1.2. Bloch-type spaces Bω and Bω,0. Let ω be a strictly positive continuous
function on D. If ω(z) = ω(|z|) for every z ∈ D, we call it a radial weight.
A radial weight ω is called typical if it is nonincreasing with respect to |z| and
ω(z) → 0 as |z| → 1. For a typical weight ω, the Bloch-type space Bω on D is the
space of all analytic functions f on D such that

sup
z∈D

ω(z)|f ′(z)| < ∞.

The little Bloch-type space Bω,0 consists of all f ∈ Bω such that

lim
|z|→1

ω(z)|f ′(z)| = 0.

Both spaces Bω and Bω,0 are Banach spaces with the norm

‖f‖Bω = |f(0)|+ sup
z∈D

ω(z)|f ′(z)|,

and Bω,0 is a closed subspace of Bω. For a closed subset L ⊂ Bω,0, the compactness
of it can be characterized as follows.

Lemma 1.1. A closed set L in Bω,0 is compact if and only if it is bounded with
respect to the norm ‖ · ‖Bω and satisfies

lim
|z|→1

sup
f∈L

ω(z)|f ′(z)| = 0.

This result for the case ω(z) = (1−|z|2) was proved by Madigan and Matheson
[9]. By a modification of their proof, we can prove the above lemma. In the study
on the compactness of operators which its range space is Bω,0, this type of result
is a very useful tool (see [6, 8, 9], etc).

1.3. Boundedness and compactness. Let X and Y be linear topological vec-
tor spaces. Recall that a linear operator T : X → Y is a bounded operator if the
image of any topological bounded set in X under T is also a topological bounded
set in Y . When X and Y are metric spaces with respect to suitable distance
functions dX and dY , we can define a metrical bounded operator from X into
Y . Namely, a linear operator T : X → Y is a metrical bounded operator if there
exists C > 0 such that dY (Tf, 0) ≤ CdX(f, 0) for f ∈ X. In general, the bound-
edness of T and the metrical boundedness of T do not coincide. When, however,
X and Y are Banach spaces, the metrical boundedness of T coincides with the
boundedness of T . For more informations on the metrical boundedness, we can
refer to papers [2, 3]. Now we will introduce the third concept for the bounded
operator from X into Y . We say that a linear operator T : X → Y is bounded
with respect to metric balls if it takes every metric ball in X into a metric ball in
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Y . Since a metric ball is also a bounded set if X and Y are Banach spaces, this
boundedness coincides with the above two definitions for the boundedness.

A topological bounded subset L of N+ is characterized by the following two
conditions;

(i) there exists K > 0 such that ‖f‖N+ ≤ K for all f ∈ L,
(ii) the family {log(1 + |f |)}f∈L is uniformly integrable.

The above condition (i) means that L is in a metric ball in N+. This charac-
terization was proved by Yanagihara [21]. For the class M and the space Np,
the same characterization for a bounded subset also holds (see [5, 20]). These
mean that the topological boundedness of operators on Nevanlinna-type spaces
is not equivalent to the metrical boundedness or the boundedness with respect
to metric balls. To consider the boundedness for operators on Nevanlinna-type
spaces, thus, we need another boudedness of operators. For the compactness for
operators, we use the metrical compactness. Namely, T : X → Y is metrically
compact if it takes every metric ball in X into a relatively compact subset in
Y . Linear operators, for example composition operators or weighted composition
operators, on Nevanlinna-type spaces have been studied by several authors (see
[1, 2, 3, 10, 11, 16]). Motivated by these works, in this paper, we will give charac-
terizations for the boundedness with metric balls and the metrical compactness
of Cϕ acting from Nevanlinna-type spaces into Bloch-type spaces.

Furthermore all our arguments can be applied to studies on generalized compo-
sition operators Cg

ϕ from Nevanlinna-type spaces into Bloch-type spaces. Hence
we will formulate the corresponding results on operators Cg

ϕ without giving proofs.

2. The operator Cϕ : X → Bω, when X = N+, M or Np

First we will give one of sufficient conditions for which Cϕ is bounded with
respect to metric balls.

Proposition 2.1. If an analytic self-map ϕ of D satisfies

sup
z∈D

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
< ∞ (2.1)

for any c > 0, then Cϕ : N+ or M → Bω is bounded with respect to metric balls.

Proof. Since ‖f‖N+ ≤ ‖f‖M , it is enough to prove the case Cϕ : N+ → Bω. For
f ∈ N+ the inequality (1.1) gives

|f(z)| ≤ exp

{
4‖f‖N+

1− |z|2

}
for z ∈ D.

By Cauchy’s integral formula, we obtain that

(1− |z|2)|f ′(z)| ≤ 2

π

∫
T
|f(z + (1− |z|)ζ/2)| |dζ| ≤ 4 exp

{
16‖f‖N+

1− |z|2

}
(2.2)

for each z ∈ D. Hence we have that

‖Cϕf‖Bω ≤ exp

{
4‖f‖N+

1− |ϕ(0)|2

}
+ 4 sup

z∈D

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
16‖f‖N+

1− |ϕ(z)|2

}
.
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Combining this inequality and the condition (2.1), we see that Cϕ takes every
metric ball in N+ into a metric ball in Bω, namely Cϕ : N+ → Bω is bounded
with respect to metric balls. �

Remark 2.2. According to the above proof, we also see that the condition (2.1)
implies Cϕ(N+) ⊂ Bω. Since N+ is an F -space, hence, the closed graph theorem
shows that Cϕ : N+ → Bω is bounded. But the condition (2.1) does not imply
the metrical boundedness of it.

Lemma 2.3. Let X ∈ {N+, M, Np} (1 < p < ∞). We assume that an analytic
self-map ϕ of D satisfies Cϕ(X) ⊂ Bω. Then Cϕ : X → Bω is metrically compact
if and only if for any sequences {fj} in X with ‖fj‖X ≤ K and converge to zero
uniformly on compact subsets of D, {Cϕfj} converges to zero in Bω.

Proof. This is an extension of a well-known result on the compactness of compo-
sition operators on analytic function spaces. We see that any metrical bounded
sequence in X form a normal family. Hence an argument by using the Montel
theorem also proves this lemma. �

Theorem 2.4. Let ϕ be an analytic self-map of D. Then the following conditions
are equivalent;

(i) Cϕ : N+ → Bω is bounded with respect to metric balls,
(ii) Cϕ : M → Bω is bounded with respect to metric balls,
(iii) Cϕ : N+ → Bω is metrically compact,
(iv) Cϕ : M → Bω is metrically compact,
(v) ϕ ∈ Bω and ϕ satisfies

lim
|ϕ(z)|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0 (2.3)

for any c > 0.

Proof. First note that the relation ‖f‖N+ ≤ ‖f‖M implies that every metric ball
in M is also a metric ball in N+. Thus implications (i) ⇒ (ii) and (iii) ⇒ (iv)
are trivial. A relatively compact set in Bω is a bounded set in it. Since Bω is a
Banach space, each bounded set is also in a metric ball in Bω. Hence the metrically
compactness of Cϕ mapping into Bω gives the boundedness with respect to metric
balls. So implications (iii) ⇒ (i) and (iv) ⇒ (ii) are true.

Now we will prove (v) ⇒ (iii). Assume that the condition (2.3) holds and take
an ε > 0 arbitrary. Then we can choose an 0 < r0 < 1 such that

sup
|ϕ(z)|>r0

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
< ε

for any c > 0. Choose any sequence {fj} in N+ with ‖fj‖N+ ≤ K for all j
converging to zero uniformly on compact subsets of D. Since ϕ ∈ Bω and (2.3)
imply (2.1), by Proposition 2.1 or its remark, we see that Cϕ(N+) ⊂ Bω. The
assumption ϕ ∈ Bω also implies that

sup
|ϕ(z)|≤r0

ω(z)|(Cϕf)′(z)| ≤ sup
z∈D

ω(z)|ϕ′(z)| · max
|w|≤r0

|f ′j(w)| → 0
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as j →∞. On the other hand, it follows from (2.2) that

sup
|ϕ(z)|>r0

ω(z)|(Cϕf)′(z)| ≤ 4 sup
|ϕ(z)|>r0

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
16K

1− |ϕ(z)|2

}
< ε.

Thus we see

lim sup
j→∞

‖Cϕfj‖Bω ≤ ε.

Since ε is arbitrary, we get ‖Cϕfj‖Bω → 0 as j → ∞. Lemma 2.3 shows that
Cϕ : N+ → Bω is metrically compact.

Finally we prove the implication (ii) ⇒ (v). Fix c > 0 and put w = ϕ(z). We
define the following functions:

fw(v) = exp

{
c

1− |w|2

(1− wv)2

}
− 1 and gw(v) = c

1− |w|2

(1− wv)2
.

Then gw belongs to the Hardy space H1 and ‖gw‖H1 = c. By an application of
the nontangential complex maximal theorem for H1 functions (see [4, Theorem
II.3.1]), we have that∫

T
log(1 + Nαfw(ζ)) dσ(ζ) ≤

∫
T
Nαgw(ζ) dσ(ζ) ≤ C‖gw‖H1 = C, (2.4)

where Nαf denotes the nontangential maximal function:

Nαf(ζ) = sup{|f(z)| : z ∈ Γα(ζ)}

and Γα(ζ) (0 < α < 1) is the open convex hull of the set {ζ} ∪ αD. Inequalities
(2.4) show that {fw} forms a metric ball in M . Also we have that

f ′w(v) = 2c
w(1− |w|2)
(1− wv)3

exp

{
c

1− |w|2

(1− wv)2

}
.

Since {Cϕfw} is a metric ball in Bω, there is a positive constant C which inde-
pendent of w = ϕ(z) such that ‖Cϕfw‖Bω ≤ C. Thus we obtain that

C ≥ ω(z)|(Cϕfw)′(z)|

= 2c
ω(z)|ϕ′(z)||ϕ(z)|

(1− |ϕ(z)|2)2
exp

{
c

1− |ϕ(z)|2

}
,

and so
ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
≤ C(1− |ϕ(z)|2)

2c|ϕ(z)|
.

Taking limit as |ϕ(z)| → 1 on both sides of the above inequality, we get (v). This
completes the proof. �

Each f ∈ Np has the estimation:

log(1 + |f(z)|) ≤ 41/p‖f‖Np

(1− |z|2)1/p
. (2.5)

Thus we obtain the following sufficient condition for the boundedness with respect
to metric balls of Cϕ : Np → Bω by using the inequality (2.5) instead of (1.1).
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Proposition 2.5. Let 1 < p < ∞. If an analytic self-map ϕ of D satisfies

sup
z∈D

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)1/p

}
< ∞

for any c > 0, then Cϕ : Np → Bω is bounded with respect to metric balls.

Moreover we consider the following test functions

fw(v) = exp

{
c

(
1− |w|2

(1− wv)2

)1/p
}
− 1,

where w = ϕ(z) and c > 0. Then we see that the family {fw} becomes a metic
ball in Np converging to 0 uniformly on compact subsets on D as |w| → 1. Hence
the inequality (2.5) and the above functions {fw} give an analogue of Theorem
2.4 as follows.

Theorem 2.6. Let 1 < p < ∞ and ϕ be an analytic self-map of D. Then the
following conditions are equivalent;

(i) Cϕ : Np → Bω is bounded with respect to metric balls,
(ii) Cϕ : Np → Bω is metrically compact,
(iii) ϕ ∈ Bω and ϕ satisfies

lim
|ϕ(z)|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)1/p

}
= 0

for any c > 0.

Proof. Since the proof is similar to that of Theorem 2.4, we omit the details of
it. �

3. The operator Cϕ : X → Bω,0, when X = N+, M or Np

In this section we will investigate operators Cϕ : N+ or M → Bω,0 and Cϕ :
Np → Bω,0. As in Section 2, it is enough only to prove the case Cϕ : N+ or M →
Bω,0.

Proposition 3.1. If an analytic self-map ϕ of D satisfies

lim
|z|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0 (3.1)

for all c > 0, then Cϕ : N+ or M → Bω,0 is bounded with respect to metric balls.
Also we obtain that Cϕ(N+) ⊂ Bω,0 or Cϕ(M) ⊂ Bω,0

Proof. Since Cϕ : N+ or M → Bω is bounded with respect to balls by Proposition
2.1, we only prove that Cϕ(L) ⊂ Bω,0 for any metric balls L in N+. However the
inequality (2.2) shows that

ω(z)|(Cϕf)′(z)| ≤ 4
ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
16‖f‖N+

1− |ϕ(z)|2

}
for each f ∈ L. Thus the condition (3.1) implies ω(z)|(Cϕf)′(z)| → 0 as |z| → 1.
The case Cϕ : M → Bω,0 is verified by the relation ‖f‖N+ ≤ ‖f‖M . �
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Theorem 3.2. Let ϕ be an analytic self-map of D. Then the following conditions
are equivalent;

(i) Cϕ : N+ → Bω,0 is bounded with respect to metric balls,
(ii) Cϕ : N+ → Bω is bounded with respect to metric balls and ϕ ∈ Bω,0,
(iii) Cϕ : N+ → Bω,0 is metrically compact,
(iv) Cϕ : M → Bω,0 is bounded with respect to metric balls,
(v) Cϕ : M → Bω is bounded with respect to metric balls and ϕ ∈ Bω,0,
(vi) Cϕ : M → Bω,0 is metrically compact,
(vii) ϕ satisfies the condition (3.1).

Proof. By the same reasons as in the proof of Theorem 2.4, implications (i) ⇒
(iv), (iii) ⇒ (vi), (iii) ⇒ (i) and (vi) ⇒ (iv) are true. Also we can easily see
that (i) ⇒ (ii) and (iv) ⇒ (v) are hold. In fact, we may consider the function
f(z) = z in N+ or M . This one satisfies ‖f‖N+ ≤ ‖f‖M ≤ log 2, and so f is in
some metric balls in N+ or M . This shows that ϕ ∈ Bω,0.

To prove (ii) ⇒ (vii), we take a sequence {zj} in D with |zj| → 1 as j → ∞
and

lim sup
|z|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= lim

j→∞

ω(zj)|ϕ′(zj)|
1− |ϕ(zj)|2

exp

{
c

1− |ϕ(zj)|2

}
. (3.2)

If supj≥1 |ϕ(zj)| < 1, then the assumption ϕ ∈ Bω,0 implies that the right limit
in the equation (3.2) is equal to 0, and so we obtain the condition (3.1). If
supj≥1 |ϕ(zj)| = 1, then we can choose a subsequence {zjk

} ⊂ {zj} such that
|ϕ(zjk

)| → 1 as k →∞. Since Cϕ : N+ → Bω is bounded with respect to metric
balls, by Theorem 2.4, ϕ satisfies

lim
|ϕ(z)|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0 (3.3)

for any c > 0. By (3.2) and (3.3) we have that

lim sup
|z|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= lim

k→∞

ω(zjk
)|ϕ′(zjk

)|
1− |ϕ(zjk

)|2
exp

{
c

1− |ϕ(zjk
)|2

}
≤ lim sup

|ϕ(z)|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0.

This implies that (3.1) holds. (v) ⇒ (vii) is also verified by the same argument
in the above.

Finally we will prove the implication (vii) ⇒ (iii). Take any metric ball LN+

in N+. Then there is a constant K > 0 such that ‖f‖N+ ≤ K for any f ∈ LN+ .
For any f ∈ LN+ and z ∈ D we have that

ω(z)|(Cϕf)′(z)| ≤ 4
ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
16K

1− |ϕ(z)|2

}
.
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Combining this with (3.1), we obtain

lim
|z|→1

sup
f∈LN+

ω(z)|(Cϕf)′(z)| = 0,

and so Lemma 1.1 shows that Cϕ(LN+) is compact in Bω,0 for any metric balls
LN+ . This means that Cϕ : N+ → Bω,0 is metrically compact. The proof is
accomplished. �

Finally we will state results for the case X = Np. Proofs of these ones are
similar to those of Proposition 3.1 and Theorem 3.2. Hence they will be omitted.

Proposition 3.3. Let 1 < p < ∞. If an analytic self-map ϕ of D satisfies

lim
|z|→1

ω(z)|ϕ′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)1/p

}
= 0 (3.4)

for all c > 0, then Cϕ : Np → Bω,0 is bounded with respect to metric balls. Also
we obtain Cϕ(Np) ⊂ Bω,0.

Theorem 3.4. Let 1 < p < ∞ and ϕ be an analytic self-map of D. The following
conditions are equivalent;

(i) Cϕ : Np → Bω,0 is bounded with respect to metric balls,
(ii) Cϕ : Np → Bω is bounded with respect to metric balls and ϕ ∈ Bω,0,
(iii) Cϕ : Np → Bω,0 is metrically compact,
(iv) ϕ satisfies the condition (3.4).

4. On generalized composition operators

For g ∈ H(D) and an analytic self-map ϕ of D the generalized composition
operator Cg

ϕ introduced by Li and Stević is defined by

Cg
ϕf(z) =

∫ z

0

f ′(ϕ(ζ))g(ζ) dζ.

Since (Cg
ϕf)′(z) = f ′(ϕ(z))g(z) and Cg

ϕf(0) = 0, by using the inequality (2.2) or
(2.5), we have

‖Cg
ϕf‖Bω ≤ 4 sup

z∈D

ω(z)|g(z)|
1− |z|2

exp

{
16‖f‖X

1− |ϕ(z)|2

}
for f ∈ X where X ∈ {N+, M}, or

‖Cg
ϕf‖Bω ≤ 4 sup

z∈D

ω(z)|g(z)|
1− |z|2

exp

{
161/p‖f‖Np

(1− |ϕ(z)|2)1/p

}
for f ∈ Np. Hence if we replaced |ϕ′(z)| with |g(z)| in arguments in the above
section 2, then we obtain the characterizetions for the boundedness with respect to
metric ball of opreators Cg

ϕ : N+, M or Np → Bω. Moreover we can easily see that
Lemma 2.3 holds for the operator Cg

ϕ. Thus we also obtain the characterizations
for the metrically compactness of Cg

ϕ. Since the proofs of the following results
are quite similar to the proofs of Theorem 2.4 and 2.6, we have decided to state
only the results.
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Theorem 4.1. Let g ∈ H(D) and ϕ be an analytic self-map of D. Then the
following conditions are equivalent;

(i) Cg
ϕ : N+ → Bω is bounded with respect to metric balls,

(ii) Cg
ϕ : M → Bω is bounded with respect to metric balls,

(iii) Cg
ϕ : N+ → Bω is metrically compact,

(iv) Cg
ϕ : M → Bω is metrically compact,

(v) g and ϕ satisfy supz∈D ω(z)|g(z)| < ∞ and

lim
|ϕ(z)|→1

ω(z)|g(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0

for any c > 0.

Theorem 4.2. Let 1 < p < ∞, g ∈ H(D) and ϕ be an analytic self-map of D.
Then the following conditions are equivalent;

(i) Cg
ϕ : Np → Bω is bounded with respect to metric balls,

(ii) Cg
ϕ : Np → Bω is metrically compact,

(iii) g and ϕ satisfy supz∈D ω(z)|g(z)| < ∞ and

lim
|ϕ(z)|→1

ω(z)|g(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)1/p

}
= 0

for any c > 0.

Operators Cg
ϕ : N+, M or Np → Bω,0 have the same characterization as The-

orem 3.2 or 3.4. By considering the test function f(z) = z, we see that the
boundedness with metric balls of Cg

ϕ : X → Bω,0 where X ∈ {N+, M, Np} im-
plies ω(z)|g(z)| → 0 as |z| → 1. Hence we obtain the following characterizations
for Cg

ϕ : X → Bω,0.

Theorem 4.3. Let g ∈ H(D) and ϕ be an analytic self-map of D. Then the
following conditions are equivalent;

(i) Cg
ϕ : N+ → Bω,0 is bounded with respect to metric balls,

(ii) Cg
ϕ : N+ → Bω is bounded with respect to metric balls and ω(z)|g(z)| → 0

as |z| → 1,
(iii) Cg

ϕ : N+ → Bω,0 is metrically compact,
(iv) Cg

ϕ : M → Bω,0 is bounded with respect to metric balls,
(v) Cg

ϕ : M → Bω is bounded with respect to metric balls and ω(z)|g(z)| → 0
as |z| → 1,

(vi) Cg
ϕ : M → Bω,0 is metrically compact,

(vii) g and ϕ satisfy

lim
|z|→1

ω(z)|g(z)|
1− |ϕ(z)|2

exp

{
c

1− |ϕ(z)|2

}
= 0

for all c > 0.

Theorem 4.4. Let 1 < p < ∞, g ∈ H(D) and ϕ be an analytic self-map of D.
The following conditions are equivalent;

(i) Cg
ϕ : Np → Bω,0 is bounded with respect to metric balls,
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(ii) Cg
ϕ : Np → Bω is bounded with respect to metric balls and ω(z)|g(z)| → 0

as |z| → 1,
(iii) Cg

ϕ : Np → Bω,0 is metrically compact,
(iv) g and ϕ satisfy

lim
|z|→1

ω(z)|g(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)1/p

}
= 0

for all c > 0.
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