

Banach J. Math. Anal. 6 (2012), no. 1, 112–123

 ${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

COMPOSITION OPERATORS FROM NEVANLINNA TYPE SPACES TO BLOCH TYPE SPACES

AJAY K. SHARMA¹ AND SEI-ICHIRO UEKI²*

Communicated by M. S. Moslehian

ABSTRACT. Let X and Y be complete metric spaces of analytic functions over the unit disk in the complex plane. A linear operator $T: X \to Y$ is a bounded operator with respect to metric balls if T takes every metric ball in X into a metric ball in Y. We also say that T is metrically compact if it takes every metric ball in X into a relatively compact subset in Y. In this paper we will consider these properties for composition operators from Nevanlinna type spaces to Bloch type spaces.

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ the space of all analytic functions on \mathbb{D} . For any analytic self-map φ of \mathbb{D} , the composition operator C_{φ} on $H(\mathbb{D})$ is defined by $C_{\varphi}f = f \circ \varphi$ for $f \in H(\mathbb{D})$. Some operator theoretic properties of C_{φ} acting on various analytic function spaces have been studied by many mathematicians. In recent progresses of studies on the operator C_{φ} , some authors have investigated the case C_{φ} acting between different function spaces. These studies on this setting have close connection with one about the weighted composition operator or the integral-type operator (e.g.[6, 7, 8, 12, 14, 15]). In particular, S. Li and S. Stević [6, 7, 8] introduced the generalized

Date: Received: 1 September 2011; Accepted: 27 October 2011.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B33; Secondary 30H15, 30H30.

composition operator C^g_{φ} as follows:

$$C_{\varphi}^{g}f(z) = \int_{0}^{z} f'(\varphi(\zeta))g(\zeta) d\zeta,$$

and characterized operator-theoretic properties by using behaviors of φ and g. As a consequence of them, the characterizations for the operator C_{φ} acting between different function spaces are obtained. For some n-dimensional operators related to operators C_{φ}^g see, for example [13, 17, 18, 19] and the references therein. In this paper we will investigate operator-theoretic properties for composition operators from Nevanlinna-type spaces N^+ , M and N^p (p > 1) into Bloch-type spaces \mathcal{B}_{ω} and $\mathcal{B}_{\omega,0}$.

1.1. Nevanlinna-type spaces N^+ , M and N^p . Let \mathbb{T} denote the boundary of \mathbb{D} and $d\sigma$ the normalized Lebesgue measure on \mathbb{T} . The Nevanlinna class N on \mathbb{D} is defined as the set of all analytic functions f on \mathbb{D} such that

$$\sup_{0 \le r < 1} \int_{\mathbb{T}} \log(1 + |f(r\zeta)|) \, d\sigma(\zeta) < \infty.$$

It is well-known that $f \in N$ has a finite nontangential limit, denoted by f^* , almost everywhere on \mathbb{T} .

The Smirnov class N^+ is a subclass of N such that f satisfies

$$\sup_{0 \le r < 1} \int_{\mathbb{T}} \log(1 + |f(r\zeta)|) \, d\sigma(\zeta) = \int_{\mathbb{T}} \log(1 + |f^*(\zeta)|) \, d\sigma(\zeta).$$

We define a metric $d_{N^+}(f,g) = ||f-g||_{N^+}$ for $f,g \in N^+$ where

$$||f||_{N^+} = \int_{\mathbb{T}} \log(1 + |f^*(\zeta)|) d\sigma(\zeta).$$

The Smirnov class N^+ becomes an F-space with respect to the translation-invariant metric d_{N^+} . The subharmonicity of $\log(1+|f|)$ implies that $f \in N^+$ has the following growth estimation:

$$\log(1+|f(z)|) \le \frac{4||f||_{N^+}}{1-|z|^2} \tag{1.1}$$

for $z \in \mathbb{D}$. Thus the convergence on the metric is stronger than the uniform convergence on compact subsets of \mathbb{D} .

The class M which is contained in N^+ is the set of all analytic functions f on \mathbb{D} such that

$$||f||_M := \int_{\mathbb{T}} \log(1 + Mf(\zeta)) d\sigma(\zeta) < \infty,$$

where $Mf(\zeta) = \sup_{0 \le r < 1} |f(r\zeta)|$ is the radial maximal function of f. This class M has been introduced by H.O. Kim and the study on M has been well established in [5].

For each $1 , the Privalov space <math>N^p$ on \mathbb{D} is defined as

$$N^{p} = \left\{ f \in H(\mathbb{D}) : \|f\|_{N^{p}} = \sup_{0 \le r < 1} \left[\int_{\mathbb{T}} \{ \log(1 + |f(r\zeta)|) \}^{p} \, d\sigma(\zeta) \right]^{1/p} < \infty \right\}.$$

Subbotin [20] studied linear space properties of N^p . For instance, N^p is an Fspace with respect to the translation-invariant metric $d_{N^p}(f,g) = ||f-g||_{N^p}$ or
the convergence in N^p gives the uniform convergence on compact subsets of \mathbb{D} .
Also Subbotin gave the following inclusions:

$$N^p \subsetneq M \subsetneq N^+ \subsetneq N$$
.

Thus we will call N^+ , M and N^p Nevanlinna-type spaces.

1.2. Bloch-type spaces \mathcal{B}_{ω} and $\mathcal{B}_{\omega,0}$. Let ω be a strictly positive continuous function on \mathbb{D} . If $\omega(z) = \omega(|z|)$ for every $z \in \mathbb{D}$, we call it a radial weight. A radial weight ω is called *typical* if it is nonincreasing with respect to |z| and $\omega(z) \to 0$ as $|z| \to 1$. For a typical weight ω , the *Bloch-type space* \mathcal{B}_{ω} on \mathbb{D} is the space of all analytic functions f on \mathbb{D} such that

$$\sup_{z\in\mathbb{D}}\omega(z)|f'(z)|<\infty.$$

The little Bloch-type space $\mathcal{B}_{\omega,0}$ consists of all $f \in \mathcal{B}_{\omega}$ such that

$$\lim_{|z|\to 1}\omega(z)|f'(z)|=0.$$

Both spaces \mathcal{B}_{ω} and $\mathcal{B}_{\omega,0}$ are Banach spaces with the norm

$$||f||_{\mathcal{B}_{\omega}} = |f(0)| + \sup_{z \in \mathbb{D}} \omega(z)|f'(z)|,$$

and $\mathcal{B}_{\omega,0}$ is a closed subspace of \mathcal{B}_{ω} . For a closed subset $L \subset \mathcal{B}_{\omega,0}$, the compactness of it can be characterized as follows.

Lemma 1.1. A closed set L in $\mathcal{B}_{\omega,0}$ is compact if and only if it is bounded with respect to the norm $\|\cdot\|_{\mathcal{B}_{\omega}}$ and satisfies

$$\lim_{|z| \to 1} \sup_{f \in L} \omega(z) |f'(z)| = 0.$$

This result for the case $\omega(z) = (1-|z|^2)$ was proved by Madigan and Matheson [9]. By a modification of their proof, we can prove the above lemma. In the study on the compactness of operators which its range space is $\mathcal{B}_{\omega,0}$, this type of result is a very useful tool (see [6, 8, 9], etc).

1.3. Boundedness and compactness. Let X and Y be linear topological vector spaces. Recall that a linear operator $T: X \to Y$ is a bounded operator if the image of any topological bounded set in X under T is also a topological bounded set in Y. When X and Y are metric spaces with respect to suitable distance functions d_X and d_Y , we can define a metrical bounded operator from X into Y. Namely, a linear operator $T: X \to Y$ is a metrical bounded operator if there exists C > 0 such that $d_Y(Tf, 0) \leq Cd_X(f, 0)$ for $f \in X$. In general, the boundedness of T and the metrical boundedness of T do not coincide. When, however, X and Y are Banach spaces, the metrical boundedness of T coincides with the boundedness of T. For more informations on the metrical boundedness, we can refer to papers [2, 3]. Now we will introduce the third concept for the bounded operator from X into Y. We say that a linear operator $T: X \to Y$ is bounded with respect to metric balls if it takes every metric ball in X into a metric ball in

Y. Since a metric ball is also a bounded set if X and Y are Banach spaces, this boundedness coincides with the above two definitions for the boundedness.

A topological bounded subset L of N^+ is characterized by the following two conditions;

- (i) there exists K > 0 such that $||f||_{N^+} \leq K$ for all $f \in L$,
- (ii) the family $\{\log(1+|f|)\}_{f\in L}$ is uniformly integrable.

The above condition (i) means that L is in a metric ball in N^+ . This characterization was proved by Yanagihara [21]. For the class M and the space N^p , the same characterization for a bounded subset also holds (see [5, 20]). These mean that the topological boundedness of operators on Nevanlinna-type spaces is not equivalent to the metrical boundedness or the boundedness with respect to metric balls. To consider the boundedness for operators on Nevanlinna-type spaces, thus, we need another boundedness of operators. For the compactness for operators, we use the metrical compactness. Namely, $T: X \to Y$ is metrically compact if it takes every metric ball in X into a relatively compact subset in Y. Linear operators, for example composition operators or weighted composition operators, on Nevanlinna-type spaces have been studied by several authors (see [1, 2, 3, 10, 11, 16]). Motivated by these works, in this paper, we will give characterizations for the boundedness with metric balls and the metrical compactness of C_{φ} acting from Nevanlinna-type spaces into Bloch-type spaces.

Furthermore all our arguments can be applied to studies on generalized composition operators C_{φ}^g from Nevanlinna-type spaces into Bloch-type spaces. Hence we will formulate the corresponding results on operators C_{φ}^g without giving proofs.

2. The operator
$$C_{\varphi}: X \to \mathcal{B}_{\omega}$$
, when $X = N^+$, M or N^p

First we will give one of sufficient conditions for which C_{φ} is bounded with respect to metric balls.

Proposition 2.1. If an analytic self-map φ of \mathbb{D} satisfies

$$\sup_{z \in \mathbb{D}} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} < \infty \tag{2.1}$$

for any c > 0, then $C_{\varphi} : N^+$ or $M \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls.

Proof. Since $||f||_{N^+} \le ||f||_M$, it is enough to prove the case $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$. For $f \in N^+$ the inequality (1.1) gives

$$|f(z)| \le \exp\left\{\frac{4\|f\|_{N^+}}{1-|z|^2}\right\}$$
 for $z \in \mathbb{D}$.

By Cauchy's integral formula, we obtain that

$$(1 - |z|^2)|f'(z)| \le \frac{2}{\pi} \int_{\mathbb{T}} |f(z + (1 - |z|)\zeta/2)| \, |d\zeta| \le 4 \exp\left\{\frac{16||f||_{N^+}}{1 - |z|^2}\right\} \tag{2.2}$$

for each $z \in \mathbb{D}$. Hence we have that

$$||C_{\varphi}f||_{\mathcal{B}_{\omega}} \leq \exp\left\{\frac{4||f||_{N^{+}}}{1 - |\varphi(0)|^{2}}\right\} + 4\sup_{z \in \mathbb{D}} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^{2}} \exp\left\{\frac{16||f||_{N^{+}}}{1 - |\varphi(z)|^{2}}\right\}.$$

Combining this inequality and the condition (2.1), we see that C_{φ} takes every metric ball in N^+ into a metric ball in \mathcal{B}_{ω} , namely $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls.

Remark 2.2. According to the above proof, we also see that the condition (2.1) implies $C_{\varphi}(N^+) \subset \mathcal{B}_{\omega}$. Since N^+ is an F-space, hence, the closed graph theorem shows that $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is bounded. But the condition (2.1) does not imply the metrical boundedness of it.

Lemma 2.3. Let $X \in \{N^+, M, N^p\}$ $(1 . We assume that an analytic self-map <math>\varphi$ of \mathbb{D} satisfies $C_{\varphi}(X) \subset \mathcal{B}_{\omega}$. Then $C_{\varphi}: X \to \mathcal{B}_{\omega}$ is metrically compact if and only if for any sequences $\{f_j\}$ in X with $||f_j||_X \leq K$ and converge to zero uniformly on compact subsets of \mathbb{D} , $\{C_{\varphi}f_j\}$ converges to zero in \mathcal{B}_{ω} .

Proof. This is an extension of a well-known result on the compactness of composition operators on analytic function spaces. We see that any metrical bounded sequence in X form a normal family. Hence an argument by using the Montel theorem also proves this lemma.

Theorem 2.4. Let φ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}: M \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (iii) $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is metrically compact,
- (iv) $C_{\varphi}: M \to \mathcal{B}_{\omega}$ is metrically compact,
- (v) $\varphi \in \mathcal{B}_{\omega}$ and φ satisfies

$$\lim_{|\varphi(z)| \to 1} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} = 0 \tag{2.3}$$

for any c > 0.

Proof. First note that the relation $||f||_{N^+} \leq ||f||_M$ implies that every metric ball in M is also a metric ball in N^+ . Thus implications (i) \Rightarrow (ii) and (iii) \Rightarrow (iv) are trivial. A relatively compact set in \mathcal{B}_{ω} is a bounded set in it. Since \mathcal{B}_{ω} is a Banach space, each bounded set is also in a metric ball in \mathcal{B}_{ω} . Hence the metrically compactness of C_{φ} mapping into \mathcal{B}_{ω} gives the boundedness with respect to metric balls. So implications (iii) \Rightarrow (i) and (iv) \Rightarrow (ii) are true.

Now we will prove (v) \Rightarrow (iii). Assume that the condition (2.3) holds and take an $\varepsilon > 0$ arbitrary. Then we can choose an $0 < r_0 < 1$ such that

$$\sup_{|\varphi(z)| > r_0} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} < \varepsilon$$

for any c > 0. Choose any sequence $\{f_j\}$ in N^+ with $||f_j||_{N^+} \leq K$ for all j converging to zero uniformly on compact subsets of \mathbb{D} . Since $\varphi \in \mathcal{B}_{\omega}$ and (2.3) imply (2.1), by Proposition 2.1 or its remark, we see that $C_{\varphi}(N^+) \subset \mathcal{B}_{\omega}$. The assumption $\varphi \in \mathcal{B}_{\omega}$ also implies that

$$\sup_{|\varphi(z)| \le r_0} \omega(z) |(C_{\varphi}f)'(z)| \le \sup_{z \in \mathbb{D}} \omega(z) |\varphi'(z)| \cdot \max_{|w| \le r_0} |f_j'(w)| \to 0$$

as $j \to \infty$. On the other hand, it follows from (2.2) that

$$\sup_{|\varphi(z)|>r_0} \omega(z)|(C_{\varphi}f)'(z)| \leq 4 \sup_{|\varphi(z)|>r_0} \frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{16K}{1-|\varphi(z)|^2}\right\} < \varepsilon.$$

Thus we see

$$\limsup_{j \to \infty} \|C_{\varphi} f_j\|_{\mathcal{B}_{\omega}} \le \varepsilon.$$

Since ε is arbitrary, we get $||C_{\varphi}f_j||_{\mathcal{B}_{\omega}} \to 0$ as $j \to \infty$. Lemma 2.3 shows that $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is metrically compact.

Finally we prove the implication (ii) \Rightarrow (v). Fix c > 0 and put $w = \varphi(z)$. We define the following functions:

$$f_w(v) = \exp\left\{c\frac{1-|w|^2}{(1-\overline{w}v)^2}\right\} - 1$$
 and $g_w(v) = c\frac{1-|w|^2}{(1-\overline{w}v)^2}$.

Then g_w belongs to the Hardy space H^1 and $||g_w||_{H^1} = c$. By an application of the nontangential complex maximal theorem for H^1 functions (see [4, Theorem II.3.1]), we have that

$$\int_{\mathbb{T}} \log(1 + N_{\alpha} f_w(\zeta)) d\sigma(\zeta) \le \int_{\mathbb{T}} N_{\alpha} g_w(\zeta) d\sigma(\zeta) \le C \|g_w\|_{H^1} = C, \tag{2.4}$$

where $N_{\alpha}f$ denotes the nontangential maximal function:

$$N_{\alpha}f(\zeta) = \sup\{|f(z)| : z \in \Gamma_{\alpha}(\zeta)\}$$

and $\Gamma_{\alpha}(\zeta)$ (0 < α < 1) is the open convex hull of the set $\{\zeta\} \cup \alpha \mathbb{D}$. Inequalities (2.4) show that $\{f_w\}$ forms a metric ball in M. Also we have that

$$f'_w(v) = 2c \frac{\overline{w}(1-|w|^2)}{(1-\overline{w}v)^3} \exp\left\{c \frac{1-|w|^2}{(1-\overline{w}v)^2}\right\}.$$

Since $\{C_{\varphi}f_w\}$ is a metric ball in \mathcal{B}_{ω} , there is a positive constant C which independent of $w = \varphi(z)$ such that $\|C_{\varphi}f_w\|_{\mathcal{B}_{\omega}} \leq C$. Thus we obtain that

$$C \ge \omega(z)|(C_{\varphi}f_w)'(z)|$$

$$= 2c \frac{\omega(z)|\varphi'(z)||\varphi(z)|}{(1-|\varphi(z)|^2)^2} \exp\left\{\frac{c}{1-|\varphi(z)|^2}\right\},$$

and so

$$\frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2}\exp\left\{\frac{c}{1-|\varphi(z)|^2}\right\} \leq \frac{C(1-|\varphi(z)|^2)}{2c|\varphi(z)|}.$$

Taking limit as $|\varphi(z)| \to 1$ on both sides of the above inequality, we get (v). This completes the proof.

Each $f \in \mathbb{N}^p$ has the estimation:

$$\log(1+|f(z)|) \le \frac{4^{1/p}||f||_{N^p}}{(1-|z|^2)^{1/p}}.$$
(2.5)

Thus we obtain the following sufficient condition for the boundedness with respect to metric balls of $C_{\varphi}: N^p \to \mathcal{B}_{\omega}$ by using the inequality (2.5) instead of (1.1).

Proposition 2.5. Let $1 . If an analytic self-map <math>\varphi$ of \mathbb{D} satisfies

$$\sup_{z\in\mathbb{D}}\frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2}\exp\left\{\frac{c}{(1-|\varphi(z)|^2)^{1/p}}\right\}<\infty$$

for any c > 0, then $C_{\varphi} : N^p \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls.

Moreover we consider the following test functions

$$f_w(v) = \exp\left\{c\left(\frac{1 - |w|^2}{(1 - \overline{w}v)^2}\right)^{1/p}\right\} - 1,$$

where $w = \varphi(z)$ and c > 0. Then we see that the family $\{f_w\}$ becomes a metic ball in N^p converging to 0 uniformly on compact subsets on \mathbb{D} as $|w| \to 1$. Hence the inequality (2.5) and the above functions $\{f_w\}$ give an analogue of Theorem 2.4 as follows.

Theorem 2.6. Let $1 and <math>\varphi$ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C_{\varphi}: N^p \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}: N^p \to \mathcal{B}_{\omega}$ is metrically compact,
- (iii) $\varphi \in \mathcal{B}_{\omega}$ and φ satisfies

$$\lim_{|\varphi(z)|\to 1} \frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{c}{(1-|\varphi(z)|^2)^{1/p}}\right\} = 0$$

for any c > 0.

Proof. Since the proof is similar to that of Theorem 2.4, we omit the details of it.

3. The operator $C_{\varphi}: X \to \mathcal{B}_{\omega,0}$, when $X = N^+$, M or N^p

In this section we will investigate operators $C_{\varphi}: N^+$ or $M \to \mathcal{B}_{\omega,0}$ and $C_{\varphi}: N^p \to \mathcal{B}_{\omega,0}$. As in Section 2, it is enough only to prove the case $C_{\varphi}: N^+$ or $M \to \mathcal{B}_{\omega,0}$.

Proposition 3.1. If an analytic self-map φ of \mathbb{D} satisfies

$$\lim_{|z| \to 1} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} = 0$$
 (3.1)

for all c > 0, then $C_{\varphi} : N^+$ or $M \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls. Also we obtain that $C_{\varphi}(N^+) \subset \mathcal{B}_{\omega,0}$ or $C_{\varphi}(M) \subset \mathcal{B}_{\omega,0}$

Proof. Since $C_{\varphi}: N^+$ or $M \to \mathcal{B}_{\omega}$ is bounded with respect to balls by Proposition 2.1, we only prove that $C_{\varphi}(L) \subset \mathcal{B}_{\omega,0}$ for any metric balls L in N^+ . However the inequality (2.2) shows that

$$|\omega(z)|(C_{\varphi}f)'(z)| \le 4\frac{|\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{16||f||_{N^+}}{1-|\varphi(z)|^2}\right\}$$

for each $f \in L$. Thus the condition (3.1) implies $\omega(z)|(C_{\varphi}f)'(z)| \to 0$ as $|z| \to 1$. The case $C_{\varphi}: M \to \mathcal{B}_{\omega,0}$ is verified by the relation $||f||_{N^+} \le ||f||_M$.

Theorem 3.2. Let φ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C_{\varphi}: N^+ \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}: N^+ \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\varphi \in \mathcal{B}_{\omega,0}$,
- (iii) $C_{\varphi}: N^+ \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (iv) $C_{\varphi}: M \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,
- (v) $C_{\varphi}: M \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\varphi \in \mathcal{B}_{\omega,0}$,
- (vi) $C_{\varphi}: M \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (vii) φ satisfies the condition (3.1).

Proof. By the same reasons as in the proof of Theorem 2.4, implications (i) \Rightarrow (iv), (iii) \Rightarrow (vi), (iii) \Rightarrow (i) and (vi) \Rightarrow (iv) are true. Also we can easily see that (i) \Rightarrow (ii) and (iv) \Rightarrow (v) are hold. In fact, we may consider the function f(z) = z in N^+ or M. This one satisfies $||f||_{N^+} \leq ||f||_M \leq \log 2$, and so f is in some metric balls in N^+ or M. This shows that $\varphi \in \mathcal{B}_{\omega,0}$.

To prove (ii) \Rightarrow (vii), we take a sequence $\{z_j\}$ in $\mathbb D$ with $|z_j| \to 1$ as $j \to \infty$ and

$$\lim_{|z|\to 1} \sup \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\}$$

$$= \lim_{j\to\infty} \frac{\omega(z_j)|\varphi'(z_j)|}{1 - |\varphi(z_j)|^2} \exp\left\{\frac{c}{1 - |\varphi(z_j)|^2}\right\}. \tag{3.2}$$

If $\sup_{j\geq 1} |\varphi(z_j)| < 1$, then the assumption $\varphi \in \mathcal{B}_{\omega,0}$ implies that the right limit in the equation (3.2) is equal to 0, and so we obtain the condition (3.1). If $\sup_{j\geq 1} |\varphi(z_j)| = 1$, then we can choose a subsequence $\{z_{j_k}\} \subset \{z_j\}$ such that $|\varphi(z_{j_k})| \to 1$ as $k \to \infty$. Since $C_{\varphi} : N^+ \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls, by Theorem 2.4, φ satisfies

$$\lim_{|\varphi(z)| \to 1} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} = 0 \tag{3.3}$$

for any c > 0. By (3.2) and (3.3) we have that

$$\begin{split} &\limsup_{|z|\to 1} \frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{c}{1-|\varphi(z)|^2}\right\} \\ &= \lim_{k\to\infty} \frac{\omega(z_{j_k})|\varphi'(z_{j_k})|}{1-|\varphi(z_{j_k})|^2} \exp\left\{\frac{c}{1-|\varphi(z_{j_k})|^2}\right\} \\ &\leq \limsup_{|\varphi(z)|\to 1} \frac{\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{c}{1-|\varphi(z)|^2}\right\} = 0. \end{split}$$

This implies that (3.1) holds. (v) \Rightarrow (vii) is also verified by the same argument in the above.

Finally we will prove the implication (vii) \Rightarrow (iii). Take any metric ball L_{N^+} in N^+ . Then there is a constant K > 0 such that $||f||_{N^+} \leq K$ for any $f \in L_{N^+}$. For any $f \in L_{N^+}$ and $z \in \mathbb{D}$ we have that

$$|\omega(z)|(C_{\varphi}f)'(z)| \le 4\frac{|\omega(z)|\varphi'(z)|}{1-|\varphi(z)|^2} \exp\left\{\frac{16K}{1-|\varphi(z)|^2}\right\}.$$

Combining this with (3.1), we obtain

$$\lim_{|z|\to 1} \sup_{f\in L_{N^+}} \omega(z)|(C_{\varphi}f)'(z)| = 0,$$

and so Lemma 1.1 shows that $C_{\varphi}(L_{N^+})$ is compact in $\mathcal{B}_{\omega,0}$ for any metric balls L_{N^+} . This means that $C_{\varphi}: N^+ \to \mathcal{B}_{\omega,0}$ is metrically compact. The proof is accomplished.

Finally we will state results for the case $X = N^p$. Proofs of these ones are similar to those of Proposition 3.1 and Theorem 3.2. Hence they will be omitted.

Proposition 3.3. Let $1 . If an analytic self-map <math>\varphi$ of \mathbb{D} satisfies

$$\lim_{|z| \to 1} \frac{\omega(z)|\varphi'(z)|}{1 - |\varphi(z)|^2} \exp\left\{ \frac{c}{(1 - |\varphi(z)|^2)^{1/p}} \right\} = 0$$
 (3.4)

for all c > 0, then $C_{\varphi} : N^p \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls. Also we obtain $C_{\varphi}(N^p) \subset \mathcal{B}_{\omega,0}$.

Theorem 3.4. Let $1 and <math>\varphi$ be an analytic self-map of \mathbb{D} . The following conditions are equivalent;

- (i) $C_{\varphi}: N^p \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}: N^p \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\varphi \in \mathcal{B}_{\omega,0}$,
- (iii) $C_{\varphi}: N^p \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (iv) φ satisfies the condition (3.4).

4. On generalized composition operators

For $g \in H(\mathbb{D})$ and an analytic self-map φ of \mathbb{D} the generalized composition operator C^g_{φ} introduced by Li and Stević is defined by

$$C_{\varphi}^{g}f(z) = \int_{0}^{z} f'(\varphi(\zeta))g(\zeta) d\zeta.$$

Since $(C_{\varphi}^g f)'(z) = f'(\varphi(z))g(z)$ and $C_{\varphi}^g f(0) = 0$, by using the inequality (2.2) or (2.5), we have

$$||C_{\varphi}^g f||_{\mathcal{B}_{\omega}} \le 4 \sup_{z \in \mathbb{D}} \frac{\omega(z)|g(z)|}{1 - |z|^2} \exp\left\{\frac{16||f||_X}{1 - |\varphi(z)|^2}\right\}$$

for $f \in X$ where $X \in \{N^+, M\}$, or

$$||C_{\varphi}^{g}f||_{\mathcal{B}_{\omega}} \le 4 \sup_{z \in \mathbb{D}} \frac{\omega(z)|g(z)|}{1 - |z|^{2}} \exp\left\{\frac{16^{1/p}||f||_{N^{p}}}{(1 - |\varphi(z)|^{2})^{1/p}}\right\}$$

for $f \in N^p$. Hence if we replaced $|\varphi'(z)|$ with |g(z)| in arguments in the above section 2, then we obtain the characterizations for the boundedness with respect to metric ball of opreators $C_{\varphi}^g : N^+$, M or $N^p \to \mathcal{B}_{\omega}$. Moreover we can easily see that Lemma 2.3 holds for the operator C_{φ}^g . Thus we also obtain the characterizations for the metrically compactness of C_{φ}^g . Since the proofs of the following results are quite similar to the proofs of Theorem 2.4 and 2.6, we have decided to state only the results.

Theorem 4.1. Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C^g_{\omega}: N^+ \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (ii) $C^g_{\omega}: M \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (iii) $C^{g}_{\omega}: N^{+} \to \mathcal{B}_{\omega}$ is metrically compact,
- (iv) $C^g_{\omega}: M \to \mathcal{B}_{\omega}$ is metrically compact,
- (v) g and φ satisfy $\sup_{z \in \mathbb{D}} \omega(z) |g(z)| < \infty$ and

$$\lim_{|\varphi(z)|\to 1}\frac{\omega(z)|g(z)|}{1-|\varphi(z)|^2}\exp\left\{\frac{c}{1-|\varphi(z)|^2}\right\}=0$$

for any c > 0.

Theorem 4.2. Let $1 , <math>g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C^g_{\omega}: N^p \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}^{g}: N^{p} \to \mathcal{B}_{\omega}$ is metrically compact,
- (iii) g and φ satisfy $\sup_{z \in \mathbb{D}} \omega(z) |g(z)| < \infty$ and

$$\lim_{|\varphi(z)|\to 1}\frac{\omega(z)|g(z)|}{1-|\varphi(z)|^2}\exp\left\{\frac{c}{(1-|\varphi(z)|^2)^{1/p}}\right\}=0$$

for any c > 0.

Operators $C_{\varphi}^g: N^+$, M or $N^p \to \mathcal{B}_{\omega,0}$ have the same characterization as Theorem 3.2 or 3.4. By considering the test function f(z) = z, we see that the boundedness with metric balls of $C_{\varphi}^g: X \to \mathcal{B}_{\omega,0}$ where $X \in \{N^+, M, N^p\}$ implies $\omega(z)|g(z)| \to 0$ as $|z| \to 1$. Hence we obtain the following characterizations for $C_{\varphi}^g: X \to \mathcal{B}_{\omega,0}$.

Theorem 4.3. Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then the following conditions are equivalent;

- (i) $C_{\varphi}^g: N^+ \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,
- (ii) $C_{\varphi}^{g}: N^{+} \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\omega(z)|g(z)| \to 0$ as $|z| \to 1$,
- (iii) $C^g_{\omega}: N^+ \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (iv) $C_{\varphi}^{g}: M \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,
- (v) $C_{\varphi}^{g}: M \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\omega(z)|g(z)| \to 0$ as $|z| \to 1$,
- (vi) $C_{\varphi}^g: M \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (vii) g and φ satisfy

$$\lim_{|z| \to 1} \frac{\omega(z)|g(z)|}{1 - |\varphi(z)|^2} \exp\left\{\frac{c}{1 - |\varphi(z)|^2}\right\} = 0$$

for all c > 0.

Theorem 4.4. Let $1 , <math>g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . The following conditions are equivalent;

(i) $C_{\varphi}^g: N^p \to \mathcal{B}_{\omega,0}$ is bounded with respect to metric balls,

- (ii) $C_{\varphi}^g: N^p \to \mathcal{B}_{\omega}$ is bounded with respect to metric balls and $\omega(z)|g(z)| \to 0$ as $|z| \to 1$.
- (iii) $C^g_{\varphi}: N^p \to \mathcal{B}_{\omega,0}$ is metrically compact,
- (iv) g and φ satisfy

$$\lim_{|z| \to 1} \frac{\omega(z)|g(z)|}{1 - |\varphi(z)|^2} \exp\left\{ \frac{c}{(1 - |\varphi(z)|^2)^{1/p}} \right\} = 0$$

for all c > 0.

Acknowledgement. The authors would like to thank referees for carefully reading the paper and many valuable suggestions for improvements. The work of first author is a part of the research project sponsored by (NBHM)/DAE, India (Grant No. 48/4/2009/R&D-II/426). The second author is partly supported by the Grants-in-Aid for Young Scientists (B, No. 23740100), Japan Society for the Promotion of Science (JSPS).

References

- J.S. Choa and H.O. Kim, Composition operators between the Nevanlinna-type spaces, J. Math. Anal. Appl. 257 (2001), 378–402.
- 2. J.S. Choa, H.O. Kim and J.H. Shapiro, Compact composition operators on the Smirnov class, Proc. Amer. Math. Soc. 128 (2000), 2297–2308.
- 3. B.R. Choe, H. Koo and W. Smith, Carleson measures for the area Nevanlinna spaces and applications, J. Anal. Math. 104 (2008), 207–233.
- 4. J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 5. H.O. Kim, On an F-algebra of holomorphic functions, Can. J. Math. 40 (1988), 718–741.
- 6. S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282–1295.
- 7. S. Li and S. Stević, Products of composition and integral type operators from H[∞] and the Bloch space, Complex Var. Elliptic Equ. **53** (2008), 463–474.
- S. Li and S. Stević, Products of Volterra type operator and composition operator from H[∞] and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl. 345 (2008), 40–50.
- K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679–2687.
- A.K. Sharma, Compact composition operators on generalized Hardy spaces, Georgian J. Math. 15 (2008), 775–783.
- 11. A.K. Sharma, Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces, Turkish J. Math. 35 (2011), 275–291.
- S. Stević, Generalized composition operators between mixed-norm and some weighted spaces, Numer. Funct. Anal. Optim. 29 (2008), 959–978.
- 13. S. Stević, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl. **354** (2009), 426–434.
- 14. S. Stević, Composition followed by differentiation from H^{∞} and the Bloch space to nth weighted-type spaces on the unit disk, Appl. Math. Comput. **216** (2010), 3450–3458.
- 15. S. Stević, Weighted differentiation composition operators from H^{∞} and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. **216** (2010), 3634–3641.
- S. Stević, Weighted composition operators from Bergman-Privalov-type spaces to weightedtype spaces on the unit ball, Appl. Math. Comput. 217 (2010), 1939–1943.
- 17. S. Stević, Norm and essential norm of an integral-type operator from the Dirichlet space to the Bloch-type space on the unit ball, Abstr. Appl. Anal. **2010** Article ID 134969 9 pages.
- 18. S. Stević, On an integral operator between Bloch-type spaces on the unit ball, Bull. Sci. Math. 134 (2010), 329–339.

- 19. S. Stević, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput. **218** (2011), 2600–2618.
- 20. A.V. Subbotin, Functional properties of Privalov spaces of holomorphic functions in several variables, Math. Notes **65** (1999), no. 1-2, 230–237.
- 21. N. Yanagihara, Bounded subsets of some spaces of holomorphic functions, Sci. Papers College Gen. Ed. Univ. Tokyo 23 (1973), 19–28.
- 1 School of Mathematics, Shri Mata Vaishno Devi University, Kakryal, Katra-182320, J&K, India.

 $E ext{-}mail\ address: aksju_76@yahoo.com}$

 $E ext{-}mail\ address: sei-ueki@mx.ibaraki.ac.jp}$

 $^{^{2}}$ Faculty of Engineering, Ibaraki University, Hitachi 316 - 8511, Japan.