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A GLIMPSE AT THE DUNKL–WILLIAMS INEQUALITY

M. S. MOSLEHIAN1, F. DADIPOUR2∗, R. RAJIĆ3 AND A. MARIĆ4

Communicated by M. Fujii

Abstract. In this paper we survey the results on the Dunkl–Williams in-
equality in normed linear spaces. These are related to the geometry of normed
linear spaces, the characterizations of inner product spaces, some inequalities
regarding operators on Hilbert spaces and elements of Hilbert C∗-modules.

1. Dunkl–Williams norm inequality

In 1964, Dunkl and Williams [10] proved that the inequality∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 4‖x− y‖
‖x‖+ ‖y‖

(1.1)

holds for all nonzero elements x, y in a (real) normed linear space X . To see it,
note that

‖x‖
∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ ‖x‖
∥∥∥∥ x

‖x‖
− y

‖x‖

∥∥∥∥+ ‖x‖
∥∥∥∥ y

‖x‖
− y

‖y‖

∥∥∥∥
= ‖x− y‖+

∥∥∥∥(‖y‖ − ‖x‖)y
‖y‖

∥∥∥∥
= ‖x− y‖+ |‖y‖ − ‖x‖|
≤ 2‖x− y‖. (1.2)
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Similarly we have

‖y‖
∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 2‖x− y‖. (1.3)

The inequality (1.1) now follows by adding (1.2) and (1.3).
Two years later, Kirk and Smiley [17] showed that the equality holds in (1.1) if
and only if x = y.

The Dunkl–Williams inequality (1.1) gives the upper bound for the angular
distance

α[x, y] :=

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥
between nonzero vectors x and y. The angular distance, also called the Clarkson
distance, was introduced by Clarkson [5], in order to make a detailed analysis of
the triangle inequality in uniformly convex spaces.

The Dunkl–Williams inequality has many interesting refinements, reverses and
generalizations, which have been obtained over the years. Massera and Schäffer
[22] proved that

α[x, y] ≤ 2‖x− y‖
max{‖x‖, ‖y‖}

(1.4)

for all nonzero vectors x, y ∈ X . This inequality is the strengthening of the
Dunkl–Williams inequality and actually precedes it. Kelly [16] proved that for
distinct nonzero vectors x, y ∈ X the equality holds in (1.4) if and only if x and
y span the unit parallelogram with vertices ±‖y − x‖−1(y − x) and ±‖x‖−1x in
the underlying normed linear space.

The best known refinement of the Dunkl–Williams inequality so far was ob-
tained by Maligranda in [20], where upper and lower bounds for the angular
distance between nonzero vectors x, y ∈ X were established:

α[x, y] ≤ ‖x− y‖+ | ‖x‖ − ‖y‖ |
max{‖x‖, ‖y‖}

, (1.5)

α[x, y] ≥ ‖x− y‖ − | ‖x‖ − ‖y‖ |
min{‖x‖, ‖y‖}

. (1.6)

By paying our attention to the proof of the inequality (1.1), it seems that Dunkl
and Williams were implicitly aware of the inequality (1.5). An alternative proof
of the inequality (1.6) was given by Mercer in [24].

Maligranda’s inequalities (1.5) and (1.6) can be rewritten in the following forms:

‖x + y‖ ≤ ‖x‖+ ‖y‖ −
(

2−
∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥)min{‖x‖, ‖y‖} (1.7)

and

‖x + y‖ ≥ ‖x‖+ ‖y‖ −
(

2−
∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥)max{‖x‖, ‖y‖}. (1.8)

Note that (1.7) is a refinement of the usual norm triangle inequality.
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Another improvement of the Dunkl–Williams inequality was given by Pečarić
and Rajić [28] who showed that for nonzero vectors x, y ∈ X it holds

α[x, y] ≤ (2‖x− y‖2 + 2(‖x‖ − ‖y‖)2)
1
2

max{‖x‖, ‖y‖}
. (1.9)

The inequality (1.9) is stronger than the Massera–Schäffer inequality (1.4), but
is weaker than Maligranda’s inequality (1.5).

There is also a generalization of the Dunkl–Williams inequality for nonzero
vectors of a normed linear space due to Al-Rashed [1], who proved the following
result.

Theorem 1.1. [1] Let (X , ‖ · ‖) be a normed linear space, and let q ∈ R, q > 0.
For nonzero x, y ∈ X the following statements hold.

(i) If 0 < q ≤ 1, then α[x, y] ≤ 21+ 1
q

‖x−y‖

(‖x‖q+‖y‖q)
1
q
.

(ii) If q ≥ 1, then α[x, y] ≤ 4 ‖x−y‖

(‖x‖q+‖y‖q)
1
q
.

The notion of angular distance can be generalized by considering the p-angular
distance (p ∈ R, p ≥ 0) between nonzero elements x and y in a normed linear
space X as

αp[x, y] := ‖‖x‖p−1x− ‖y‖p−1y‖

(see [5, 20]). The following estimate for p-angular distance is a generalization of
the Massera–Schäffer inequality obtained by Maligranda in [20].

Theorem 1.2. [20] Let (X , ‖ ·‖) be a normed linear space, and let p ∈ R, p ≥ 0.
For nonzero x, y ∈ X the following statements hold.

(i) If 0 ≤ p ≤ 1, then αp[x, y] ≤ (2− p) ‖x−y‖
max{‖x‖,‖y‖}1−p .

(ii) If p ≥ 1, then αp[x, y] ≤ p max{‖x‖, ‖y‖}p−1‖x− y‖.

In the case of a normed linear space, we have a generalization of the Dunkl–
Williams inequality obtained by Dadipour and Moslehian [8].

Theorem 1.3. [8] Let (X , ‖ · ‖) be a normed linear space, p ∈ [0, 1] and q > 0.
Then the following inequality holds

αp[x, y] ≤ 21+ 1
q

‖x− y‖
(‖x‖(1−p)q + ‖y‖(1−p)q)

1
q

for all nonzero elements x and y in X .

A generalization of the Dunkl–Williams inequality and its reverse for finitely
many elements of a normed linear space was established by Pečarić and Rajić in
[30]. By modifying the method used in [15], they obtained the following result.
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Theorem 1.4. [30] Let (X , ‖·‖) be a normed linear space and x1, . . . , xn nonzero
elements of X . Then we have

(i)

∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥ ≤ min
1≤i≤n

{
1

‖xi‖

( ∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+
n∑

j=1

| ‖xj‖ − ‖xi‖ |

)}
, (1.10)

(ii)

∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥ ≥ max
1≤i≤n

{
1

‖xi‖

( ∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥−
n∑

j=1

| ‖xj‖ − ‖xi‖ |

)}
. (1.11)

In the same paper they also characterized the case of equality in Theorem 1.4
for the elements of a strictly convex normed linear space as follows.

Theorem 1.5. [30] Let (X , ‖·‖) be a normed linear space and x1, . . . , xn nonzero
elements of X .

(i) The equality in (1.10) holds if and only if ‖x1‖ = · · · = ‖xn‖ or there
exist i ∈ {1, . . . , n} and v ∈ X satisfying sgn(‖xi‖ − ‖xj‖) xj

‖xj‖ = v for all

j ∈ {1, . . . , n} such that ‖xj‖ 6= ‖xi‖ and
∑n

j=1 xj = ‖
∑n

j=1 xj‖v.
(ii) The equality in (1.11) holds if and only if ‖x1‖ = · · · = ‖xn‖ or there

exist i ∈ {1, . . . , n} and v ∈ X satisfying sgn(‖xj‖ − ‖xi‖) xj

‖xj‖ = v for all

j ∈ {1, . . . , n} such that ‖xj‖ 6= ‖xi‖ and
∑n

j=1
xj

‖xj‖ = ‖
∑n

j=1
xj

‖xj‖‖v.

Remark 1.6. Note that in the case when n = 2, by putting x1 = x and x2 = −y
in Theorem 1.4, we get Maligranda’s inequalities (1.5) and (1.6).

Dragomir [9] generalized Theorem 1.4 by providing upper and lower bounds for
the norm of linear combination

∑n
j=1 αjxj, in which αj are scalars and xj ∈ X

for j ∈ {1, . . . , n}. His result was further extended by Zhao et al. in [34].

2. From the Dunkl–Williams inequality to characterization of
inner product spaces

There are a lot of significant natural geometric properties, which fail in general
normed spaces, such as non Euclidean ones. Some of these interesting properties
hold just when the space is an inner product one. This is the most important
motivation for studying characterizations of inner product spaces.
The first norm characterization of inner product spaces was given by Fréchet [11]
in 1935. He proved that a normed space (X , ‖ · ‖) is an inner product one if and
only if

‖x + y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 − ‖x + y‖2 − ‖y + z‖2 − ‖x + z‖2 = 0

for all x, y, z ∈ X . In 1936, Jordan and von Neumann [14] showed that a
normed space (X , ‖ · ‖) is an inner product one if and only if the parallelogram
law ‖x− y‖2 + ‖x + y‖2 = 2‖x‖2 + 2‖y‖2 holds for all x, y ∈ X . Since then, the
problem of finding necessary and sufficient conditions for a normed space to be an
inner product one has been investigated by many mathematicians who considered
some geometric aspects of underlying spaces. The interested reader is referred to
[2, 31, 27] and references therein.
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There are interesting norm inequalities connected with characterizations of in-
ner product spaces. One of the celebrated characterizations of inner product
spaces was based on the Dunkl–Williams inequality. First we note that the con-
stant 4 in inequality (1.1) is the best possible choice in normed spaces.
To show this, consider X = R2 with the norm of x = (x1, x2) given by ‖x‖1 =
|x1|+ |x2|. Take x = (1, ε) and y = (1, 0), where ε > 0 is small. Then

α[x, y]
‖x‖1 + ‖y‖1

‖x− y‖1

=
4 + 2ε

1 + ε
−→ 4 (as ε −→ 0).

If the norm of x = (x1, x2) is given by ‖x‖∞ = max{|x1|, |x2|}, one can take the
vectors x = (1, 1) and y = (1 − ε, 1 + ε), where ε > 0 is small enough, to show
that

α[x, y]
‖x‖∞ + ‖y‖∞
‖x− y‖∞

=
2(2 + ε)

1 + ε
−→ 4 (as ε −→ 0).

Dunkl and Williams proved that the constant 4 can be replaced by 2 if X is
an inner product space. To prove this fact (see, e.g. [10]), first note that∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2

=

〈
x

‖x‖
− y

‖y‖
,

x

‖x‖
− y

‖y‖

〉
= 2− 2Re

〈
x

‖x‖
,

y

‖y‖

〉
=

1

‖x‖ ‖y‖
(2‖x‖ ‖y‖ − 2Re 〈x, y〉)

=
1

‖x‖ ‖y‖
(
‖x− y‖2 − (‖x‖ − ‖y‖)2

)
.

Hence

‖x− y‖2 − 1

4
(‖x‖+ ‖y‖)2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2

=

(‖x‖ − ‖y‖)2

4‖x‖ ‖y‖
(
(‖x‖+ ‖y‖)2 − ‖x− y‖2

)
≥ 0 .

In 1964, Kirk and Smiley [17] showed that if the inequality

α[x, y] ≤ 2
‖x− y‖
‖x‖+ ‖y‖

(2.1)

holds for all nonzero elements x and y of a normed linear space X , then X is
an inner product space. In the same work they also showed that the equality
holds in (2.1) if and only if ‖x‖ = ‖y‖ or ‖y‖x + ‖x‖y = 0. To do this, they used
Lorch’s characterization of inner product spaces (see [19]).

Jiménez–Melado, Llorens–Fuster and Mazcuñán–Navarro [13] introduced the
Dunkl–Williams constant of a normed linear space X as

DW(X ) := sup

{
α[x, y]

‖x‖+ ‖y‖
‖x− y‖

: x, y ∈ X , x 6= 0, y 6= 0, x 6= y

}
.
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Observe that 2 ≤ DW(X ) ≤ 4 for every normed linear space X , and DW(X ) =
2 precisely when X is an inner product space. We have shown that DW((R, ‖ ·
‖1)) = DW((R, ‖ · ‖∞)) = 4, so the extreme value 4 can be achieved as well. In
fact, the Dunkl–Williams constant DW(X ) measures “how much” a space X is
close (or far) to be an inner product one (cf. [13]).

It is known that every Hilbert space is uniformly nonsquare. Moreover, among
all Banach spaces one can characterize the uniformly nonsquare ones by means
of the Dunkl–Williams constant. Namely, a Banach space X is uniformly non-
square if and only if DW(X ) < 4. This result was proved by Baronti and Papini
[4]. Jiménez–Melado et al. proved in [13] that for every Banach space X , the
inequalities

max{2ε0(X ), 4ρ′X (0), 2} ≤ DW(X ) ≤ 2 + J(X )

hold, where ε0(X ), ρ′X (0), and J(X ) denote the characteristic of convexity, the
characteristic of smoothness, and the James constant of X , respectively, and
obtained some geometric properties of Banach spaces in terms of the Dunkl–
Williams constant.

In [24], Mercer showed that two independent vectors x and y in an inner product
space X for which ‖x‖ 6= ‖y‖ satisfy the following refinement of the inequality
(2.1),

α[x, y] ≤ 2
‖x− y‖
‖x‖+ ‖y‖

− t,

where

0 < t =
2
(
‖x‖−‖y‖
‖x‖+‖y‖

)2(
2− 2‖x−y‖

‖x‖+‖y‖

)
2‖x−y‖
‖x‖+‖y‖ −

(
‖x‖−‖y‖
‖x‖+‖y‖

)2

+
√

4‖x−y‖2
(‖x‖+‖y‖)2 + (‖x‖−‖y‖)4

(‖x‖+‖y‖)4 − 4 (‖x‖−‖y‖)2
(‖x‖+‖y‖)2

.

In 1993, Al-Rashed [1] generalized the Kirk–Smiley characterization of inner
product spaces. The result can be reformulated as follows.

Theorem 2.1. [1] Let (X , ‖ · ‖) be a normed linear space, and q > 0. Then the
following inequality

α[x, y] ≤ 2
1
q

‖x− y‖
(‖x‖q + ‖y‖q)

1
q

(x, y 6= 0) (2.2)

holds if and only if the given norm is induced by an inner product.

Dadipour and Moslehian [8] extended the Kirk–Smiley characterization by us-
ing the notion of p-angular distance (p ∈ [0, 1)). They provided a suitable ex-
tension of the inequality (2.2), for which the given norm is induced by an inner
product.

Theorem 2.2. [8] Let (X , ‖ · ‖) be a normed linear space, and p ∈ [0, 1). Then
the following statements are mutually equivalent :

(i) αp[x, y] ≤ 2
1
q

‖x−y‖

(‖x‖(1−p)q+‖y‖(1−p)q)
1
q

(x, y 6= 0), for all q ∈ (0, 1];
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(ii) αp[x, y] ≤ 2
1
q

‖x−y‖

(‖x‖(1−p)q+‖y‖(1−p)q)
1
q

(x, y 6= 0), for some q > 0;

(iii) (X , ‖ · ‖) is an inner product space.

Proof. We shall only give a proof of (ii)⇒ (iii). For this, we need a result obtained
by Lorch in [19], which states that a real normed linear space (X , ‖ · ‖) is an
inner product one if and only if for all x, y ∈ X \ {0} satisfying ‖x‖ = ‖y‖, the
inequality ‖x + y‖ ≤ ‖γx + γ−1y‖ must hold for all real γ 6= 0.

Let us now take γ 6= 0, and x, y ∈ X \ {0} satisfying ‖x‖ = ‖y‖. By Lorch’s
characterization, it is enough to prove that ‖x + y‖ ≤ ‖γx + γ−1y‖.

Let n ∈ N∪ {0}. Applying the inequality (ii) to γpn
x and −γ−pn

y for x and y,
respectively, we obtain

αp[γ
pn

x,−γ−pn

y] ≤ 2
1
q

‖γpn
x + γ−pn

y‖
(‖γpnx‖(1−p)q + ‖γ−pny‖(1−p)q)

1
q

.

For γ > 0, it follows from the definition of αp that∥∥∥∥ γpn
x

γpn(1−p)‖x‖1−p
+

γ−pn
y

γ−pn(1−p)‖y‖1−p

∥∥∥∥ ≤ 2
1
q

‖γpn
x + γ−pn

y‖
‖x‖1−p(γpn(1−p)q + γ−pn(1−p)q)

1
q

,

or equivalently(γpn(1−p)q + γ−pn(1−p)q

2

) 1
q ‖γpn+1

x + γ−pn+1

y‖ ≤ ‖γpn

x + γ−pn

y‖;

whence 0 ≤ ‖γpn+1
x+γ−pn+1

y‖ ≤ ‖γpn
x+γ−pn

y‖, since γpn(1−p)q +γ−pn(1−p)q ≥ 2.
Hence {‖γpn

x+γ−pn
y‖}∞n=0 is a convergent sequence of nonnegative real numbers.

Thus we get
‖x + y‖ = lim

n→∞
‖γpn

x + γ−pn

y‖ ≤ ‖γx + γ−1y‖
due to 0 ≤ p < 1.
Now let γ be negative. Put µ = −γ > 0. From the positive case we get

‖x + y‖ ≤ ‖µx + µ−1y‖ = ‖γx + γ−1y‖.
�

3. Operator approaches to the Dunkl–Williams inequality

In this section we present several operator–valued versions of the Dunkl–Williams
inequality which are related to some known operator–valued inequalities of Bohr’s
type.

By B(H ) we denote the algebra of all bounded linear operators acting on a
complex Hilbert space H . The inner product on H will be denoted by 〈·, ·〉. A
self–adjoint operator A ∈ B(H ) is positive if 〈Ax, x〉 ≥ 0 for all x ∈ H . We
write A ≥ 0 if A is positive. If A, B ∈ B(H ) are self-adjoint operators such that
A−B ≥ 0, we write A ≤ B. By |A| we denote the absolute value of A ∈ B(H ),

that is, |A| = (A∗A)
1
2 , where A∗ stands for the adjoint operator of A.

Pečarić and Rajić [28] introduced an operator–valued version of (1.9). They
estimated |A|A|−1 −B|B|−1 | for operator angular distance, where A and B are
Hilbert space operators such that |A| and |B| are invertible. To do this, they used
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an operator version of the Bohr inequality due to Hirzallah [12], which states that
for Hilbert space operators A, B and r, s > 1 such that 1

r
+ 1

s
= 1 the operator

inequality |A−B|2 ≤ r|A|2+s|B|2 holds (see also [26, 23]). Moreover, the equality
holds if and only if (1− r)A = B.

Theorem 3.1. [28] Let A, B ∈ B(H ) such that |A| and |B| are invertible, and
let r, s > 1 with 1

r
+ 1

s
= 1. Then

|A|A|−1 −B|B|−1|2 ≤ |A|−1(r|A−B|2 + s(|A| − |B|)2)|A|−1 . (3.1)

The equality holds in (3.1) if and only if

(r − 1)(A−B)|A|−1 = B(|A|−1 − |B|−1). (3.2)

In the same paper, the authors fully described the case of equality in (3.1)
when r ≥ 2. In this case, the equality holds in (3.1) precisely when A = B. By
adding one more condition on operators A and B, they also got a refinement of
the equality condition (3.2) when 1 < r < 2. They showed that, for invertible
(r−2)A−rB, the equality holds in (3.1) if and only if A = B; while for invertible
|A−B| the equality holds precisely when A = r

r−2
B.

Dadipour, Fujii and Moslehian [6] (see also [7]) presented an operator Dunkl–
Williams inequality involving the p-angular distance.

Theorem 3.2. [6, 7] Let A, B ∈ B(H ) such that |A| and |B| are invertible, and
p, r, s ∈ R where r, s > 1 with 1

r
+ 1

s
= 1. Then

|A|A|p−1 −B|B|p−1|2 ≤ |A|p−1(r|A−B|2 + s| |B|p|A|1−p − |B| |2)|A|p−1.

The equality holds if and only if

(r − 1)(A−B)|A|p−1 = B(|A|p−1 − |B|p−1).

Proof.

|A|A|p−1 −B|B|p−1|2

= |A|A|p−1 −B|A|p−1 −B|B|p−1 + B|A|p−1|2

= |(A−B)|A|p−1 −B(|B|p−1 − |A|p−1)|2

≤ r|(A−B)|A|p−1|2 + s|B(|B|p−1 − |A|p−1)|2

= r|A|p−1|A−B|2|A|p−1 + s(|B|p−1 − |A|p−1)|B|2(|B|p−1 − |A|p−1)

= r|A|p−1|A−B|2|A|p−1 + s|A|p−1(|A|1−p|B|p − |B|)(|B|p|A|1−p − |B|)|A|p−1

= |A|p−1[r|A−B|2 + s(|A|1−p|B|p − |B|)(|B|p|A|1−p − |B|)]|A|p−1

= |A|p−1(r|A−B|2 + s| |B|p|A|1−p − |B| |2)|A|p−1.

In addition, the equality holds if and only if

(r − 1)(A−B)|A|p−1 = B(|A|p−1 − |B|p−1).

�

Theorem 3.2 was recently improved by Saito and Tominaga [32] for the case
when p = 0. Using the polar decompositions of operators A and B, they es-
tablished the following result, in which the invertibility of |A| and |B| are not
required anymore.
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Theorem 3.3. [32] Let A, B ∈ B(H ) be the operators with the polar decomposi-
tions A = U |A| and B = V |B|, and let r, s > 1 with 1

r
+ 1

s
= 1. Then

|(U − V )|A||2 ≤ r|A−B|2 + s(|A| − |B|)2. (3.3)

The equality holds in (3.3) if and only if

(r − 1)(A−B) = V (|B| − |A|) and U∗U = V ∗V. (3.4)

The following improvement of equality conditions (3.4) was also obtained in
[32].

Theorem 3.4. [32] Let A, B ∈ B(H ) be the operators with the polar decomposi-
tions A = U |A| and B = V |B|, and let r, s > 1 with 1

r
+ 1

s
= 1.

(i) If r ≥ 2, then the equality holds in (3.3) if and only if A = B.
(ii) If 1 < r < 2, then the equality holds in (3.3) if and only if

A = B
(
I − 2

2− r
W ∗W

)
and |A| = |B|

(
I +

2r

(2− r)s
W ∗W

)
,

where W is the partial isometry which is appeared in the polar decomposition of
A−B.

A similar type of Theorem 3.3 was obtained in [6].

Theorem 3.5. [6] Let A, B ∈ B(H ) be the operators with the polar decomposi-
tions A = U |A| and B = V |B|, and let p ∈ (0, 1] and r, s > 1 with 1

r
+ 1

s
= 1.

Then

|(U |A|p − V |B|p)|A|1−p|2 ≤ r|A−B|2 + s| |B|p|A|1−p − |B| |2 . (3.5)

The equality holds if and only if (r − 1)(A−B) = V (|B| − |B|p|A|1−p).

Remark 3.6. Observe that (3.5) implies

|U |A|p − V |B|p|2 ≤ |A|p−1(r|A−B|2 + s| |B|p|A|1−p − |B| |2)|A|p−1.

This shows that in the case p ∈ (0, 1], the inequality from Theorem 3.2 can be
expressed in the form in which the invertibility of |A| and |B| are not needed
anymore.

In [7], the authors presented some necessary and sufficient conditions for the
case of equality in (3.5). More precisely, they proved that if A, B and r, s, p are
the same as in Theorem 3.5, for which

|(U |A|p − V |B|p)|A|1−p|2 = r|A−B|2 + s||B|p|A|1−p − |B||2, (3.6)

then the following statements hold.
(i) (r − 1)|A−B|2 = 1

r
|A|1−p|B|2p|A|1−p + 1

s
|A|2 − |B|2 .

(ii) |B| ≤ (1
r
|A|1−p|B|2p|A|1−p + 1

s
|A|2) 1

2 .
(iii) (r−1)|A−B| = | |B|p|A|1−p−|B| | and A−B = −V W |A−B|, where W is the
partial isometry which is appeared in the polar decomposition of |B|p|A|1−p−|B| .
Moreover, (3.6) and (iii) are equivalent.
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4. The Dunkl–Williams inequality in inner product C∗-modules

The notion of Hilbert C∗-module is a generalization of that of Hilbert space
in which the field of scalars C is replaced by a C∗-algebra. The basic theory of
Hilbert C∗-modules can be found in [18, 33].

The formal definition is as follows.
A right inner product C∗-module X over a C∗-algebra A (or a right inner

product A -module) is a right A -module together with an A -valued inner product
〈·, ·〉 : X ×X → A satisfying the conditions:

(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ X , α, β ∈ C,
(ii) 〈x, ya〉 = 〈x, y〉a for x, y ∈ X , a ∈ A ,
(iii) 〈x, y〉∗ = 〈y, x〉 for x, y ∈ X ,
(iv) 〈x, x〉 ≥ 0 for x ∈ X ,
(v) 〈x, x〉 = 0 if and only if x = 0.

We can define a norm on X by ‖x‖ = ‖〈x, x〉‖ 1
2 .

An inner product A -module which is complete with respect to its norm is
called a Hilbert C∗-module over A , or a Hilbert A -module.

Clearly, every inner product space is an inner product C-module. Every C∗-
algebra can also be regarded as a Hilbert C∗-module over itself via 〈a, b〉 =
a∗b (a, b ∈ A ).

For every x ∈ X , the absolute value of x is defined as the unique positive
square root of 〈x, x〉 ∈ A , that is, |x| = 〈x, x〉 1

2 .
By using the characterization of the triangle equality for the elements of an

inner product C∗-module obtained in [3], Pečarić and Rajić [29] characterized
equality attainedness for each of the inequalities (1.10) and (1.11).

Theorem 4.1. [29] Let X be an inner product C∗-module over a C∗-algebra A ,
and x1, . . . , xn nonzero elements of X .
(i) If

∑n
j=1 xj 6= 0, then∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥ = min
1≤i≤n

{
1

‖xi‖

( ∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+
n∑

j=1

| ‖xj‖ − ‖xi‖ |

)}

if and only if ‖x1‖ = · · · = ‖xn‖ or there exist i ∈ {1, . . . , n} and a state ϕ of

A such that sgn(‖xi‖ − ‖xk‖)
∑n

j=1 ϕ(〈xj, xk〉) =
∥∥∥∑n

j=1 xj

∥∥∥ ‖xk‖ for all k ∈
{1, . . . , n} satisfying ‖xk‖ 6= ‖xi‖.
(ii) If

∑n
j=1 xj = 0, then∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥ = min
1≤i≤n

1

‖xi‖

n∑
j=1

| ‖xj‖ − ‖xi‖ |

if and only if ‖x1‖ = · · · = ‖xn‖ or there exist i, k ∈ {1, . . . , n} satisfying ‖xi‖ 6=
‖xk‖ and a state ϕ of A such that sgn(‖xi‖−‖xj‖) sgn(‖xi‖−‖xk‖)ϕ(〈xj, xk〉) =
‖xj‖‖xk‖ for all j ∈ {1, . . . , n} \ {k} satisfying ‖xj‖ 6= ‖xi‖.
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Theorem 4.2. [29] Let X be an inner product C∗-module over a C∗-algebra A ,
and x1, . . . , xn nonzero elements of X .
(i) If

∑n
j=1

xj

‖xj‖ 6= 0, then∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥ = max
1≤i≤n

{
1

‖xi‖

( ∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥−
n∑

j=1

| ‖xj‖ − ‖xi‖ |

)}

if and only if ‖x1‖ = · · · = ‖xn‖ or there exist i ∈ {1, . . . , n} and a state ϕ
of A such that sgn(‖xk‖ − ‖xi‖)

∑n
j=1 ϕ

(〈 xj

‖xj‖ , xk

〉)
=
∥∥∑n

j=1
xj

‖xj‖

∥∥‖xk‖ for all

k ∈ {1, . . . , n} satisfying ‖xk‖ 6= ‖xi‖.
(ii) If

∑n
j=1

xj

‖xj‖ = 0, then

max
1≤i≤n

{
1

‖xi‖

( ∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥−
n∑

j=1

| ‖xj‖ − ‖xi‖ |

)}
= 0

if and only if ‖x1‖ = · · · = ‖xn‖ or there exist i, k ∈ {1, . . . , n} satisfying ‖xi‖ 6=
‖xk‖ and a state ϕ of A such that sgn(‖xi‖−‖xj‖) sgn(‖xi‖−‖xk‖)ϕ(〈xj, xk〉) =
‖xj‖‖xk‖ for all j ∈ {1, . . . , n} \ {k} satisfying ‖xj‖ 6= ‖xi‖.

Dadipour and Moslehian in [25] established a generalization of the Dunkl–
Williams inequality and its reverse in the framework of inner product C∗-modules
as follows.

Theorem 4.3. [25] Let X be an inner product C∗-module over a unital C∗-
algebra A . If xj ∈ X and aj ∈ A for j = 1, . . . , n such that aj, aj−ai are scalar
multiples of coisometries, then

(i)

∥∥∥∥∥
n∑

j=1

xjaj

∥∥∥∥∥ ≤ min
1≤i≤n

{∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ‖ai‖+
n∑

j=1

‖xj‖ ‖aj − ai‖

}
, (4.1)

(ii)

∥∥∥∥∥
n∑

j=1

xjaj

∥∥∥∥∥ ≥ max
1≤i≤n

{∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ‖ai‖ −
n∑

j=1

‖xj‖ ‖aj − ai‖

}
. (4.2)

Theorem 4.3 generalizes Theorem 1.4 as well as some results due to Dragomir
[9] for the elements of inner product C∗-modules. The authors also described the
case of equality in the inequality (4.1).

Theorem 4.4. [25] Let X be an inner product C∗module over a unital C∗-algebra
A . Let x1, . . . , xn be nonzero elements of X and a1, . . . , an nonzero elements of
A such that ai 6= aj for some i, j and the elements aj, aj −ai are scalar multiples
of coisometries for all i, j.
(i) If

∑n
j=1 xj 6= 0, then∥∥∥∥∥

n∑
j=1

xjaj

∥∥∥∥∥ = min
1≤k≤n

{∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ‖ak‖+
n∑

j=1

‖xj‖ ‖aj − ak‖

}
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if and only if there exist i ∈ {1, . . . , n} and a state ϕ of A such that

n∑
j=1

ϕ(a∗i 〈xj, xk〉(ak − ai)) =

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ‖ai‖ ‖xk‖‖ak − ai‖

for all k ∈ {1, . . . , n} satisfying ak 6= ai.
(ii) If

∑n
j=1 xj = 0, then∥∥∥∥∥

n∑
j=1

xjaj

∥∥∥∥∥ = min
1≤k≤n

{
n∑

j=1

‖xj‖ ‖aj − ak‖

}
if and only if there exist i, l ∈ {1, . . . , n} satisfying ai 6= al and a state ϕ of A
such that

ϕ((a∗l − a∗i )〈xl, xk〉(ak − ai)) = ‖al − ai‖‖ak − ai‖‖xl‖‖xk‖
for all k ∈ {1, . . . , n} \ {l} satisfying ak 6= ai.

The following result was obtained by applying Theorem 4.4 to scalar multiples
of the identity. It characterizes the equality case in an inequality due to Dragomir
[9] in inner product C∗-modules.

Corollary 4.5. [25] Let X be an inner product C∗-module over a unital C∗-
algebra A . Let x1, . . . , xn be nonzero elements of X and α1, . . . , αn nonzero
scalars satisfying αi 6= αj for some i,j.
(i) If

∑n
j=1 xj 6= 0, then∥∥∥∥∥

n∑
j=1

αjxj

∥∥∥∥∥ = min
1≤k≤n

{
|αk|

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+
n∑

j=1

|αj − αk|‖xj‖

}
if and only if there exist i ∈ {1, . . . , n} and a state ϕ of A such that

cis (arg ᾱi + arg(αk − αi))
n∑

j=1

ϕ〈xj, xk〉 =

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ‖xk‖

for all k ∈ {1, . . . , n} satisfying αk 6= αi.
(ii) If

∑n
j=1 xj = 0, then∥∥∥∥∥

n∑
j=1

αjxj

∥∥∥∥∥ = min
1≤k≤n

{
n∑

j=1

|αj − αk|‖xj‖

}
if and only if there exist i, l ∈ {1, . . . , n} satisfying αi 6= αl and a state ϕ of A
such that

cis (arg(ᾱl − ᾱi) + arg(αk − αi)) ϕ〈xl, xk〉 = ‖xl‖‖xk‖
for all k ∈ {1, . . . , n} \ {l} satisfying αk 6= αi.

Finally, with connection to the Dunkl–Williams inequality in the framework of
Hilbert C∗-modules, we shall mention the following result due to Dadipour and
Moslehian [7]. It is also a generalization of Theorem 3.1 and Theorem 3.2.
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Theorem 4.6. Let x, y be elements of a Hilbert C∗-module X such that |x| and
|y| are invertible, and p, r, s ∈ R where r, s > 1 with 1

r
+ 1

s
= 1. Then

|x|x|p−1 − y|y|p−1|2 ≤ |x|p−1[r|x− y|2 + s| |y|p|x|1−p − |y| |2]|x|p−1.

The equality holds if and only if (r − 1)(x− y)|x|p−1 = y(|x|p−1 − |y|p−1).
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11. M. Fréchet, Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés appli-

cables vectoriellement sur l’espace de Hilbert, Ann. of Math. 36 (1935), no. 2, 705–718.
12. O. Hirzallah, Non-commutative operator Bohr inequality, J. Math. Anal. Appl. 282 (2003),

no. 2, 578–583.
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normed linear spaces, J. Inequal. Appl. 2009, Art. ID 137301, 7 pp.

1,2 Department of Pure Mathematics, Center of Excellence in Analysis on
Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box
1159, Mashhad 91775, Iran.

E-mail address: moslehian@ferdowsi.um.ac.ir, moslehian@ams.org
E-mail address: dadipoor@yahoo.com
URL: http://www.um.ac.ir/~moslehian/

3 Faculty of Mining, Geology and Petroleum Engineering, University of Za-
greb, Pierottijeva 6, 10000 Zagreb, Croatia.

E-mail address: rajna.rajic@zg.t-com.hr

4 Sortina 1A, 10000 Zagreb, Croatia.
E-mail address: ana.maric86@gmail.com

http://www.um.ac.ir/~moslehian/

	1. Dunkl--Williams norm inequality
	2. From the Dunkl--Williams inequality to characterization of inner product spaces
	3. Operator approaches to the Dunkl--Williams inequality
	4. The Dunkl--Williams inequality in inner product C*-modules 
	References

