

Banach J. Math. Anal. 4 (2010), no. 2, 147–157

 ${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

FINITE-DIMENSIONAL HILBERT C*-MODULES

LJILJANA ARAMBAŠIĆ 1* , DAMIR BAKIĆ 2 AND RAJNA RAJIĆ 3

Communicated by M. Joita

ABSTRACT. In this paper we obtain a characterization of finite-dimensional Hilbert C^* -modules. It is known that those are the modules for which both underlying C^* -algebras are finite-dimensional. We show that such modules can be described by a certain property of bounded sequences of their elements. It turns out that similar property leads to another characterization of Hilbert C^* -modules over C^* -algebras of compact operators.

1. Introduction and preliminaries

Hilbert C^* -modules are straightforward generalization of Hilbert spaces where the field of complex numbers is replaced by a C^* -algebra. The concept was introduced by Kaplansky [10]. The origin of Hilbert C^* -modules is in operator theory, where they serve as a useful tool in areas like KK-theory, quantum groups and several other areas.

Although Hilbert C^* -modules behave like Hilbert spaces in some way, some fundamental and familiar Hilbert space properties do not hold. For example, given a closed submodule W of a Hilbert C^* -module V, we can define W^{\perp} in a natural way. Then W^{\perp} is a closed submodule, but usually $V \neq W \oplus W^{\perp}$ and $W \neq (W^{\perp})^{\perp}$. However, this is always true in the class of Hilbert C^* -modules over a C^* -algebra of (not necessarily all) compact operators on some Hilbert space. Also, many other properties of Hilbert spaces that fail in general Hilbert C^* -modules are proved to be satisfied in Hilbert C^* -modules over C^* -algebras of

Date: Received: 20 March 2010; Accepted: 12 April 2010.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 46C50.

Key words and phrases. C^* -algebra, Hilbert C^* -module, (weakly) compact operator, finite-dimensional C^* -algebra, finite-dimensional Hilbert C^* -module.

compact operators. For results and, in particular, characterizations of this class of Hilbert C^* -modules we refer the reader to [2, 4, 8, 12, 18] and references therein. Also, some interesting properties of Hilbert C^* -modules over finite-dimensional C^* -algebras are obtained in [6, 9].

An interesting subclass consists of finite-dimensional Hilbert C^* -modules. A full Hilbert C^* -module is finite-dimensional if and only if both underlying C^* -algebras are finite-dimensional. We show in Theorem 2.5 that finite-dimensional Hilbert C^* -modules are also characterized by a certain property of bounded sequences of their elements. An analysis of that property combined with results of K. Ylinen ([20], [21]) enables us to obtain a new characterization of Hilbert C^* -modules over C^* -algebras of compact operators.

Before stating the results, we recall the definition of a Hilbert C^* -module and introduce our notation.

A pre-Hilbert C^* -module V over a C^* -algebra \mathcal{A} , or a pre-Hilbert \mathcal{A} -module is a right \mathcal{A} -module together with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathcal{A}$ satisfying the conditions:

- $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ for $x, y, z \in V$, $\alpha, \beta \in \mathbb{C}$,
- $\langle x, ya \rangle = \langle x, y \rangle a \text{ for } x, y \in V, a \in \mathcal{A},$
- $\langle x, y \rangle^* = \langle y, x \rangle$ for $x, y \in V$,
- $\langle x, x \rangle \ge 0$ for $x \in V$,
- $\langle x, x \rangle = 0$ if and only if x = 0.

We can define a norm on V by $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. A pre-Hilbert \mathcal{A} -module V is called a right Hilbert C^* -module over \mathcal{A} (or a right Hilbert \mathcal{A} -module) if it is complete with respect to its norm. The notion of the left Hilbert \mathcal{A} -module is defined in a similar way.

Basic examples of Hilbert C^* -modules are as follows.

- (I) Every Hilbert space is a left Hilbert \mathbb{C} -module.
- (II) Every C^* -algebra \mathcal{A} is a right Hilbert \mathcal{A} -module via $\langle a,b\rangle=a^*b$ for $a,b\in\mathcal{A}$.
- (III) For every pair of Hilbert spaces H_1 and H_2 , the space $\mathbb{B}(H_1, H_2)$ of all bounded linear operators from H_1 to H_2 is a right Hilbert $\mathbb{B}(H_1)$ -module with the inner product $\langle T, S \rangle = T^*S$.

By $\langle V, V \rangle$ we denote the closure of the span of $\{\langle x, y \rangle : x, y \in V\}$. We say that V is full if $\langle V, V \rangle = \mathcal{A}$.

A mapping $T: V \to W$ between Hilbert \mathcal{A} -modules V and W is called adjointable if there exists a mapping $T^*: W \to V$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in V$, $y \in W$. It is easy to see that every adjointable operator T is a bounded linear \mathcal{A} -module mapping (that is, T is bounded, linear and satisfies T(xa) = T(x)a for all $x \in V$, $a \in \mathcal{A}$). $\mathbb{B}(V, W)$ will stand for the space of all adjointable mappings from V into W.

By $\mathbb{K}(V, W)$ we denote the closed linear subspace of $\mathbb{B}(V, W)$ spanned by $\{\theta_{x,y} : x \in W, y \in V\}$, where $\theta_{x,y}$ is a mapping in $\mathbb{B}(V, W)$ defined by $\theta_{x,y}(z) = x\langle y, z\rangle$. Elements of $\mathbb{K}(V, W)$ are called 'compact' operators. When we say that a bounded linear operator T between Banach spaces is compact, we mean that it is compact

in topological sense. Elements of $\mathbb{K}(V,W)$ considered as operators between the Banach spaces V and W need not be compact in topological sense.

We shall write $\mathbb{B}(V)$ for $\mathbb{B}(V,V)$, and $\mathbb{K}(V)$ for $\mathbb{K}(V,V)$. It is well known that $\mathbb{B}(V)$ is a C^* -algebra containing $\mathbb{K}(V)$ as a two-sided ideal.

By a finite-dimensional C^* -algebra (resp. Hilbert C^* -module) we understand a C^* -algebra (resp. Hilbert C^* -module) that is finite-dimensional as a vector space.

For a Banach space X, by X^* we denote the set of all bounded linear functionals on X. A sequence (x_n) in the Banach space X is said to be weakly convergent if there is $x_0 \in X$ such that $\lim_{n\to\infty} f(x_n) = f(x_0)$ for all $f \in X^*$. A bounded (anti)linear mapping $T: X \to Y$ between Banach spaces X and Y is weakly compact if for every bounded sequence (x_n) in X, the sequence (Tx_n) has a weakly convergent subsequence in Y.

The basic theory of Hilbert C^* -modules can be found in [11, 13, 16, 19]. (For the general theory of C^* -algebras the reader is referred to [7, 14, 15, 17].)

2. Hilbert C^* -modules over finite-dimensional C^* -algebras

Let $(H, (\cdot, \cdot))$ be a Hilbert space, $\mathbb{B}(H)$ the algebra of all bounded linear operators, and $\mathbb{K}(H)$ the algebra of all compact linear operators acting on it. It is well known that for every bounded sequence (ξ_n) in H there exist a subsequence (ξ_{n_k}) of (ξ_n) and $\xi \in H$ such that

$$\lim_{k \to \infty} ||T\xi_{n_k} - T\xi|| = 0, \quad \forall T \in \mathbb{K}(H).$$

This follows from the fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence, and that compact operators map weakly convergent sequences to the strongly convergent ones.

Suppose now that V is a Hilbert A-module. One can ask whether for every bounded sequence (v_n) in V, there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ for which

$$\lim_{k \to \infty} ||Tv_{n_k} - Tv|| = 0, \quad \forall T \in \mathbb{K}(V).$$

In general, the answer is negative. For example, let $\mathcal{A} = \mathbb{B}(H)$ for some infinitedimensional Hilbert space H, and regard A as a Hilbert C^* -module over itself. Then the identity operator on H will also be 'compact'; however, since H is infinite-dimensional, the above cannot hold.

The following lemma will help us to characterize the class of Hilbert C^* -modules which possess the above property.

Lemma 2.1. Let V be a right Hilbert A-module. For a bounded sequence (v_n) in V and $v \in V$ the following statements are mutually equivalent.

- (i) $\lim_{n\to\infty} \|\langle y, v_n \rangle \langle y, v \rangle\| = 0$ for every $y \in V$. (ii) $\lim_{n\to\infty} \|Tv_n Tv\| = 0$ for every $T \in \mathbb{K}(V)$.

Proof. (i) \Rightarrow (ii) From (i) it follows that

$$\lim_{n \to \infty} ||x\langle y, v_n\rangle - x\langle y, v\rangle|| = 0$$

for all $x, y \in V$, that is,

$$\lim_{n \to \infty} \|\theta_{x,y}(v_n) - \theta_{x,y}(v)\| = 0$$

for all $x, y \in V$. Since (v_n) is bounded and every $T \in \mathbb{K}(V)$ is a limit of finite linear combinations of mappings $\theta_{x,y}$, (ii) follows.

(ii) \Rightarrow (i) If (ii) holds, then for all $x \in V$ we have

$$\lim_{n \to \infty} \|\theta_{x,x}(v_n) - \theta_{x,x}(v)\| = 0,$$

that is,

$$\lim_{n \to \infty} \|x\langle x, v_n \rangle - x\langle x, v \rangle\| = 0.$$

This implies, for all $x \in V$,

$$\lim_{n \to \infty} \|\langle x, x \rangle \langle x, v_n \rangle - \langle x, x \rangle \langle x, v \rangle \| = 0,$$

which can be written in an equivalent form

$$\lim_{n \to \infty} \left\| \left\langle x \langle x, x \rangle, v_n \right\rangle - \left\langle x \langle x, x \rangle, v \right\rangle \right\| = 0.$$

To get (i) it remains to note that every $y \in V$ can be written as $y = x\langle x, x \rangle$ for some $x \in V$ (see e.g. [16, Proposition 2.31]).

Remark 2.2. Observe that in the implication (ii) \Rightarrow (i) the sequence (v_n) does not have to be bounded.

In a recent paper [6] on perturbation of the Wigner equation in inner product C^* -modules, the main result is obtained for Hilbert \mathcal{A} -modules with the following property:

[H] for every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that for every $y \in V$

$$\lim_{k \to \infty} \|\langle y, v_{n_k} \rangle - \langle y, v \rangle\| = 0.$$

It was proved in [6, Proposition 2.1] that condition [H] is satisfied in every Hilbert C^* -module over a finite-dimensional C^* -algebra. Later, in [3, Theorem 2.5], it was proved that if a full Hilbert \mathcal{A} -module satisfies condition [H], then \mathcal{A} must be finite-dimensional. Therefore, condition [H] characterizes the class of Hilbert C^* -modules over finite-dimensional C^* -algebras, which, together with Lemma 2.1, gives us another characterization of this class of Hilbert C^* -modules.

Theorem 2.3. Let V be a full right Hilbert A-module. For every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} ||Tv_{n_k} - Tv|| = 0, \quad \forall T \in \mathbb{K}(V)$$

if and only if A is a finite-dimensional C^* -algebra.

Since Theorem 2.3 also holds in the case of left Hilbert C^* -modules, one can reformulate its statement to get a characterization of full right Hilbert \mathcal{A} -modules V such that the C^* -algebra $\mathbb{K}(V)$ is finite-dimensional.

Theorem 2.4. Let V be a full right Hilbert A-module. For every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $w \in V$ such that

$$\lim_{k \to \infty} \|v_{n_k} a - w a\| = 0, \quad \forall a \in \mathcal{A}$$

if and only if $\mathbb{K}(V)$ is a finite-dimensional C^* -algebra.

Proof. Every right Hilbert C^* -module V over a C^* -algebra \mathcal{A} can be regarded as a left Hilbert C^* -module over the C^* -algebra $\mathbb{K}(V)$, where the action of an operator $T \in \mathbb{K}(V)$ on a vector $x \in V$ is given by $T \cdot x = T(x)$, while the inner product is defined as $[x, y] = \theta_{x,y}$. By definition of $\mathbb{K}(V)$, V is full as a left Hilbert $\mathbb{K}(V)$ -module. The ideal of all 'compact' operators acting on a left Hilbert $\mathbb{K}(V)$ -module V is spanned by mappings $\varphi_{x,y}$, $x, y \in V$, where $\varphi_{x,y}(v) = [v, y]x, v \in V$. Since

$$\varphi_{x,y}(v) = [v, y]x = \theta_{v,y}(x) = v\langle y, x \rangle$$

for all $x, y, v \in V$, we deduce that every 'compact' operator on a left Hilbert $\mathbb{K}(V)$ -module V is of the form $v \mapsto va$ for some $a \in \mathcal{A}$. It remains to apply Theorem 2.3.

Finite-dimensional Hilbert C^* -modules can be now completely described in terms of the convergence of certain sequences.

Theorem 2.5. Let V be a full right Hilbert A-module. The following statements are mutually equivalent.

- (1) V is finite-dimensional.
- (2) \mathcal{A} and $\mathbb{K}(V)$ are finite-dimensional.
- (3) For every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} ||v_{n_k} a - v a|| = 0, \quad \forall a \in \mathcal{A},$$

$$\lim_{k \to \infty} \|\langle y, v_{n_k} \rangle - \langle y, v \rangle\| = 0, \quad \forall y \in V.$$

(4) $\mathbb{K}(V)$ is a unital C^* -algebra, and for every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} \|\langle y, v_{n_k} \rangle - \langle y, v \rangle\| = 0, \quad \forall y \in V.$$

(5) \mathcal{A} is a unital C^* -algebra, and for every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} ||v_{n_k} a - v a|| = 0, \quad \forall a \in \mathcal{A}.$$

Proof. Obviously, $(1)\Rightarrow(2)$. To prove $(2)\Rightarrow(1)$, first notice: when $\mathbb{K}(V)$ is finite-dimensional, it is necessarily unital and hence V is algebraically finitely generated. This, together with the assumption that \mathcal{A} is finite-dimensional, immediately implies (1).

By [3, Theorem 2.5] and Theorem 2.4, (3) \Rightarrow (2). If (5) holds, then putting a = e in the second condition of (5) we get that every bounded sequence in V has a convergent subsequence, so (1) holds. Similarly, (4) \Rightarrow (1). (2) \Rightarrow (4) and

 $(2)\Rightarrow(5)$ follow from [6, Proposition 2.1], resp. Theorem 2.4, and the fact that finite-dimensional C^* -algebras are unital.

Suppose that (2) holds. Then for every bounded sequence (v_n) there are a subsequence (v_{n_k}) of (v_n) and $v, w \in V$ such that

$$\lim_{k \to \infty} \|\langle y, v_{n_k} \rangle - \langle y, v \rangle\| = 0, \quad \forall y \in V,$$

$$\lim_{k \to \infty} ||v_{n_k} a - w a|| = 0, \quad \forall a \in \mathcal{A}.$$

Then for every $a \in \mathcal{A}$ and $y \in V$ we have

$$\lim_{k \to \infty} \|\langle y, v_{n_k} a \rangle - \langle y, v a \rangle \| = 0,$$

$$\lim_{k \to \infty} \|\langle y, v_{n_k} a \rangle - \langle y, wa \rangle \| = 0.$$

Therefore $\langle y, va \rangle = \langle y, wa \rangle$ for all $a \in \mathcal{A}$ and $y \in V$, so v = w. This gives (3). \square

If a C^* -algebra \mathcal{A} is considered as a Hilbert C^* -module over itself, then conditions from the statement (3) of Theorem 2.5 coincide, and we have the following corollary.

Corollary 2.6. A C^* -algebra \mathcal{A} is finite-dimensional if and only if for every bounded sequence (a_n) in \mathcal{A} there are a subsequence (a_{n_k}) of (a_n) and $a \in \mathcal{A}$ such that

$$\lim_{k \to \infty} a_{n_k} b = ab, \quad \forall b \in \mathcal{A}.$$

Remark 2.7. Observe that if a full right Hilbert A-module V satisfies the following two conditions:

- (i) mappings $v \mapsto va$ from V into V are compact for all $a \in \mathcal{A}$;
- (ii) for every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} \|\langle y, v_{n_k} \rangle - \langle y, v \rangle\| = 0, \quad \forall y \in V,$$

then V must be finite-dimensional. (Namely, (ii) means that the C^* -algebra \mathcal{A} is finite-dimensional, so \mathcal{A} is unital. From (i) it follows now then the identity operator on V is compact, that is, V is finite-dimensional.)

In a similar way we deduce that a full right Hilbert A-module V satisfying the following two conditions:

(i) for every bounded sequence (v_n) in V there are a subsequence (v_{n_k}) of (v_n) and $v \in V$ such that

$$\lim_{k \to \infty} ||v_{n_k} a - v a|| = 0, \quad \forall a \in \mathcal{A};$$

(ii) mappings $v \mapsto \langle y, v \rangle$ are compact from V into \mathcal{A} for all $y \in V$, must also be finite-dimensional.

However, if a full right Hilbert A-module V satisfies conditions

- (i) mappings $v \mapsto va$ from V into V are compact for all $a \in \mathcal{A}$, and
- (ii) mappings $v \mapsto \langle y, v \rangle$ are compact from V into \mathcal{A} for all $y \in V$,

then V does not have to be finite-dimensional. To see this, let H be a separable infinite-dimensional Hilbert space, and $\mathcal{A} \subset \mathbb{K}(H)$ the C^* -algebra of all diagonal (with respect to a fixed orthonormal basis) operators with diagonal entries converging to zero. Let us regard \mathcal{A} as a Hilbert C^* -module over itself. Clearly, \mathcal{A} is infinite-dimensional as a vector space. On the other hand, the mappings $v \mapsto va$, that is, $v \mapsto \langle y, v \rangle = y^*v = vy^*$, from \mathcal{A} into \mathcal{A} are compact for all $a, y \in \mathcal{A}$. (For details see Remark 2.6 of [3].)

3. Hilbert C^* -modules over C^* -algebras of compact operators

In this section we study Hilbert C^* -modules with the property that mappings $v \mapsto \langle y, v \rangle$ from V into \mathcal{A} are weakly compact for all $y \in V$. We first consider some other mappings (related to every Hilbert C^* -module) whose weak (or norm) compactness is equivalent to the weak compactness of the mapping $v \mapsto \langle y, v \rangle$. We use results from [20] and [21] obtained in the setting of C^* -algebras. Combining this with results from [2], we get some new characterizations of Hilbert C^* -modules over compact operators.

Since we shall use linking algebras, we first recall relevant definitions.

Given a Hilbert C^* -module V over a C^* -algebra \mathcal{A} , the linking algebra $\mathcal{L}(V)$ is defined as the matrix algebra of the form

$$\mathcal{L}(V) = \left[\begin{array}{cc} \mathbb{K}(\mathcal{A}) & \mathbb{K}(V, \mathcal{A}) \\ \mathbb{K}(\mathcal{A}, V) & \mathbb{K}(V) \end{array} \right].$$

Observe that $\mathcal{L}(V)$ is in fact the C^* -algebra of all 'compact' operators acting on the Hilbert C^* -module $\mathcal{A} \oplus V$ over \mathcal{A} . Each $v \in V$ induces the mappings $r_v \in \mathbb{B}(\mathcal{A}, V)$ and $l_v \in \mathbb{B}(V, \mathcal{A})$ given by $r_v(a) = va$ and $l_v(w) = \langle v, w \rangle$ such that $l_v^* = r_v$. The mapping $v \mapsto l_v$ is an isometric conjugate linear isomorphism from V to $\mathbb{K}(V, \mathcal{A})$, and $v \mapsto r_v$ is an isometric linear isomorphism from V to $\mathbb{K}(\mathcal{A}, V)$. Furthermore, every $a \in \mathcal{A}$ induces the mapping $T_a \in \mathbb{K}(\mathcal{A})$ given by $T_a(b) = ab$, and the mapping $a \mapsto T_a$ defines an isomorphism of C^* -algebras \mathcal{A} and $\mathbb{K}(\mathcal{A})$. Therefore, we may write

$$\mathcal{L}(V) = \{ \left[\begin{array}{cc} T_a & l_y \\ r_x & T \end{array} \right] : a \in \mathcal{A}, x, y \in V, T \in \mathbb{K}(V) \}$$

and identify:

$$\begin{split} \mathbb{K}(\mathcal{A}) &= \mathbb{K}(\mathcal{A} \oplus 0) \subseteq \mathbb{K}(\mathcal{A} \oplus V) = \mathcal{L}(V), \\ \mathbb{K}(V) &= \mathbb{K}(0 \oplus V) \subseteq \mathbb{K}(\mathcal{A} \oplus V) = \mathcal{L}(V). \end{split}$$

For details about linking algebras we refer to [16, 1, 5].

Theorem 3.1. Let V be a full right Hilbert A-module. For every $y \in V$ the following statements are mutually equivalent.

- (1) $v \mapsto y\langle v, y \rangle$ is a compact mapping on V.
- (2) $v \mapsto y\langle v, y \rangle$ is a weakly compact mapping on V.
- (3) $v \mapsto \langle v, y \rangle$ is a weakly compact mapping from V into A.
- (4) $T \mapsto Ty$ is a weakly compact mapping from $\mathbb{K}(V)$ into V.
- (5) $a \mapsto ya$ is a weakly compact mapping from A into V.

(6) $v \mapsto \theta_{y,v}$ is a weakly compact mapping from V into $\mathbb{K}(V)$.

Proof. Let us take an arbitrary $y \in V$ and define $Y = \begin{bmatrix} 0 & 0 \\ r_y & 0 \end{bmatrix} \in \mathcal{L}(V)$. Then $v \mapsto y \langle v, y \rangle$ is a compact mapping on V if and only if the mapping $X \mapsto YXY$ is compact on $\mathcal{L}(V)$ (see the proof of Proposition 2 in [2]). Furthermore, by [21, Theorem 3.1], the mapping $X \mapsto YXY$ is compact on $\mathcal{L}(V)$ if and only if $X \mapsto XY$ is weakly compact on $\mathcal{L}(V)$ if and only if $X \mapsto XY$ is weakly compact on $\mathcal{L}(V)$. Writing $X \in \mathcal{L}(V)$ as $\begin{bmatrix} T_a & l_v \\ r_u & S \end{bmatrix}$ we have

$$XY = \left[\begin{array}{cc} T_{\langle v,y \rangle} & 0 \\ r_{Sy} & 0 \end{array} \right].$$

We will now prove that the weak compactness of $X \mapsto XY$ on $\mathcal{L}(V)$ implies (3) and (4).

So, suppose that $X \mapsto XY$ is weakly compact on $\mathcal{L}(V)$. Let (v_n) and (S_n) be bounded sequences in V and $\mathbb{K}(V)$, respectively. Then $X_n = \begin{bmatrix} 0 & l_{v_n} \\ 0 & S_n \end{bmatrix}$ is a bounded sequence in $\mathcal{L}(V)$, so, by assumption, there are a subsequence (X_{n_k}) of (X_n) and $X_0 = \begin{bmatrix} T_{a_0} & l_{v_0} \\ r_{u_0} & S_0 \end{bmatrix} \in \mathcal{L}(V)$ such that

$$\lim_{k \to \infty} F(X_{n_k}Y) = \lim_{k \to \infty} F\left(\begin{bmatrix} T_{\langle v_{n_k}, y \rangle} & 0 \\ r_{S_{n_k}y} & 0 \end{bmatrix}\right) = F(X_0), \quad \forall F \in \mathcal{L}(V)^*.$$

In particular, for $F \in \mathcal{L}(V)^*$ defined by $F(\begin{bmatrix} T_a & l_v \\ r_u & S \end{bmatrix}) = f(a)$, where $f \in \mathcal{A}^*$, we get that $f(\langle v_{n_k}, y \rangle)$ converges to $f(a_0)$ for every $f \in \mathcal{A}^*$, i.e., $v \mapsto \langle v, y \rangle$ is a weakly compact mapping from V into A. This proves that $(1) \Rightarrow (3)$. Similarly, if we take $F \in \mathcal{L}(V)^*$ defined by $F(\begin{bmatrix} T_a & l_v \\ r_u & T \end{bmatrix}) = g(u)$, where $g \in V^*$, we get that $g(S_{n_k}y)$ converges to $g(u_0)$ for every $g \in V^*$, i.e., $T \mapsto Ty$ is a weakly compact mapping from $\mathbb{K}(V)$ into V, which gives $(1) \Rightarrow (4)$. Since

$$YX = \left[\begin{array}{cc} 0 & 0 \\ r_{ya} & \theta_{y,v} \end{array} \right],$$

one can prove in the same way that the weak compactness of $X \mapsto YX$ implies (5) and (6), i.e., (1) \Rightarrow (5) and (1) \Rightarrow (6).

Observe that the mapping $v \mapsto y\langle v, y\rangle$ from V into V can be written as a composition of the bounded mappings $v \mapsto \langle v, y\rangle$ from V into A and $a \mapsto ya$ from A into V. Since the composition of a bounded operator and a weakly compact operator is weakly compact, we conclude that $(3)\Rightarrow(2)$ and $(5)\Rightarrow(2)$. Another way to get the mapping $v \mapsto y\langle v, y\rangle$ is to compose bounded mappings from (4) and (6), so we analogously conclude that $(4)\Rightarrow(2)$ and $(6)\Rightarrow(2)$.

Since obviously $(1)\Rightarrow(2)$, it only remains to show $(2)\Rightarrow(1)$, that is, (2) implies compactness of the mapping $X\mapsto YXY$ on $\mathcal{L}(V)$. For this, it is enough to prove

that (2) implies weak compactness of $X \mapsto YXY$ on $\mathcal{L}(V)$ since, by Theorem 3.1 of [20], such a mapping will be compact as well.

Observe that

$$YXY = \left[\begin{array}{cc} 0 & 0 \\ r_{y\langle v,y\rangle} & 0 \end{array} \right].$$

Let (X_n) be a bounded sequence in $\mathcal{L}(V)$ and let $X_n = \begin{bmatrix} T_{a_n} & l_{v_n} \\ r_{u_n} & S_n \end{bmatrix}$ for $n \in \mathbb{N}$.

Then (v_n) is a bounded sequences in V. If $v \mapsto y\langle v, y \rangle$ is weakly compact, then there are a subsequence (v_{n_k}) of (v_n) and $u_0 \in \mathcal{A}$ such that

$$\lim_{k \to \infty} g(y\langle v_{n_k}, y \rangle) = g(u_0), \quad \forall g \in V^*.$$

Then for $X_0 = \begin{bmatrix} 0 & 0 \\ r_{u_0} & 0 \end{bmatrix}$ we have

$$\lim_{k \to \infty} F(YX_{n_k}Y) = F(X_0), \quad \forall F \in \mathcal{L}(V)^*.$$

Indeed, every $F \in \mathcal{L}(V)^*$ can be written as

$$F\left(\left[\begin{array}{cc} T_a & l_v \\ r_u & S \end{array}\right]\right) = f_1(a) + \overline{f_2(v)} + f_3(u) + f_4(S),$$

where $f_1 \in \mathcal{A}^*$, $f_2, f_3 \in V^*$, $f_4 \in \mathbb{K}(V)^*$ are defined by

$$f_1(a) = F(\begin{bmatrix} T_a & 0 \\ 0 & 0 \end{bmatrix}), \quad \overline{f_2(v)} = F(\begin{bmatrix} 0 & l_v \\ 0 & 0 \end{bmatrix}),$$

$$f_3(u) = F(\begin{bmatrix} 0 & 0 \\ r_u & 0 \end{bmatrix}), \quad f_4(S) = F(\begin{bmatrix} 0 & 0 \\ 0 & S \end{bmatrix}),$$

where $\bar{}$ in the definition of f_2 stands for complex conjugation. We now have

$$\lim_{k \to \infty} F(YX_{n_k}Y) = \lim_{k \to \infty} F(\begin{bmatrix} 0 & 0 \\ r_{y\langle v_{n_k}, y \rangle} & 0 \end{bmatrix})$$
$$= \lim_{k \to \infty} f_3(y\langle v_{n_k}, y \rangle)$$
$$= f_3(u_0) = F(X_0)$$

which shows that $X \mapsto YXY$ is weakly compact on $\mathcal{L}(V)$.

Observe that if we regard a C^* -algebra as a Hilbert C^* -module over itself, we get generalizations of [21, Theorem 3.1] and [20, Theorem 3.1].

As an immediate consequence of the preceding theorem and [2, Proposition 2], we obtain another characterization of Hilbert C^* -modules over compact operators.

Corollary 3.2. Let V be a full right Hilbert A-module. The following statements are mutually equivalent.

- (1) There is a faithful representation $\pi : \mathcal{A} \to \mathbb{B}(H)$ such that $\pi(\mathcal{A}) \subseteq \mathbb{K}(H)$.
- (2) For every $y \in V$ the mapping $v \mapsto y\langle v, y \rangle$ is compact on V.
- (3) For every $y \in V$ the mapping $v \mapsto y\langle v, y \rangle$ is weakly compact on V.
- (4) For every $y \in V$ the mapping $v \mapsto \langle v, y \rangle$ is weakly compact from V into A.

- (5) For every $y \in V$ the mapping $T \mapsto Ty$ is weakly compact from $\mathbb{K}(V)$ into V.
- (6) For every $y \in V$ the mapping $a \mapsto ya$ is weakly compact from A into V.
- (7) For every $y \in V$ the mapping $v \mapsto \theta_{y,v}$ is weakly compact from V into $\mathbb{K}(V)$.

Acknowledgement. The authors are thankful to the referee for several useful comments.

References

- 1. Lj. Arambašić, Irreducible representations of Hilbert C*-modules, Math. Proc. R. Ir. Acad. **105A** (2005), no. 2, 11–24.
- 2. Lj. Arambašić, Another characterization of Hilbert C^* -modules over compact operators, J. Math. Anal. Appl. **344** (2008), 735–740.
- 3. Lj. Arambašić, D. Bakić and M.S. Moslehian, A characterization of Hilbert C*-modules over finite dimensional C*-algebras, Oper. Matrices 3 (2009), no. 2, 235–240.
- 4. D. Bakić and B. Guljaš, *Hilbert C*-modules over C*-algebras of compact operators*, Acta Sci. Math. (Szeged) **68** (2002), no. 1-2, 249–269.
- 5. D. Bakić and B. Guljaš, On a class of module maps of Hilbert C*-modules, Math. Commun. 7 (2002), no. 2, 177–192.
- 6. J. Chmieliński, D. Ilišević, M.S. Moslehian and Gh. Sadeghi, *Perturbation of the Wigner equation in inner product C*-modules*, J. Math. Phys. **49** (2008), no. 3, 033519.
- 7. J. Dixmier, C^* -Algebras, North-Holland, Amsterdam, 1981.
- 8. M. Frank, Characterizing C*-algebras of compact operators by generic categorical properties of Hilbert C*-modules, J. K-theory 2 (2008), no. 3, 453–462.
- 9. M. Frank and A.A. Pavlov, Banach-Saks properties of C*-algebras and Hilbert C*-modules, Banach J. Math. Anal. 3 (2009), no. 2, 91–102.
- 10. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839–858.
- 11. C. Lance, *Hilbert C*-Modules*, London Math. Soc. Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
- 12. B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997), no. 3, 849–852.
- 13. V.M. Manuilov and E.V. Troitsky, *Hilbert C*-Modules*, Translations of Mathematical Monographs 226, American Mathematical Society, Providence, RI, 2005.
- 14. J.G. Murphy, Operator Theory and C*-Algebras, Academic Press, San Diego, 1990.
- 15. G.K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, New York, 1990.
- I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs. 60. Providence, RI: American Mathematical Society (AMS), 1998.
- 17. S. Sakai, C^* -Algebras and W^* -Algebras, Springer, Berlin, 1971.
- 18. J. Schweizer, A description of Hilbert C*-modules in which all closed submodules are orthogonally closed, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2123–2125.
- 19. N.E. Wegge-Olsen, K-Theory and C*-Algebras a friendly approach, Oxford University Press, Oxford, 1993.
- 20. K. Ylinen, Dual C*-algebras, weakly semi-completely continuous elements, and the extreme rays of the positive cone, Ann. Acad. Sci. Fenn. Ser. A I Math. No. **599** (1975), 9 pp.
- 21. K. Ylinen, Weakly completely continuous elements of C*-algebras, Proc. Amer. Math. Soc. **52** (1975), 323–326.

 1,2 Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.

E-mail address: arambas@math.hr E-mail address: bakic@math.hr

 3 Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

E-mail address: rajna.rajic@zg.t-com.hr