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ON A HILBERT-TYPE INTEGRAL INEQUALITY IN THE
SUBINTERVAL AND ITS OPERATOR EXPRESSION
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ABSTRACT. In this paper, by using the methods of real analysis and functional
analysis, a Hilbert-type integral inequality in the subinterval (a,o00) (a > 0)
with the homogeneous kernel of —A-degree and a best constant factor and its
operator expression are given. As applications, a few improved results, the
equivalent forms and some new inequalities with the particular kernels are
obtained.

1. INTRODUCTION

If f,9 > 0,f,9 € L*0,00), || f]| = {J;" f*(x)de}s and [|g]| = {[;* g*(x)dz}?,
then we have the following Hllbert S 1ntegral inequality:

/ / fl@ d:r:dy<7erH lgll, (1.1)

where the constant factor = is the best possible. Inequality (1.1) is important

in analysis and its applications (cf. [2, 5]). Define an integral operator T :
L?(0,00) — L?(0,00) as: for f(>0) e L*(0,0),
> [(=)
T = —d . 1.2
Nw = [ s € 0.00) (1.2

Then inequality (1.1) is rewritten as: (T'f,g) < «||f|| - ||g||, where (T'f,g) :=

I £ fy dx)g(y)dy is the inner product of T'f and g. We named of T Hilbert
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HILBERT-TYPE INTEGRAL INEQUALITY IN THE SUBINTERVAL 101

integral operator. By (1.1), we can prove the equivalent form that ||Tf|| < «||f]|,
and conclude that ||T|| = 7; [1].

If we replace $+ry by a bilinear function k(z,y)(> 0) in (1.1), then the problem
is how to make sure the conditions of k(x,y) for giving an integral operator 7'
as (1.2) and the inequality with a best constant factor as (1.1). In recent years,

Yang [7, 8] considered the case of k(z,y) being continuous and symmetric in the
function space LP(0,00), Yang [9, 10, 11] considered the same case of k(x,y) in
the disperse space [P, and Zhong et al. [18] considered the case of k(z,y) in

LP(R"). But their given conditions are not quite simple.
In 1998, by introducing A € (0, 1] and the Beta function B(u,v) as[0]:

o 1
B(u,v) := "Mt (u,v > 0), 1.3
()= [ et > 0) (1.3
Yang [12] gave an extension of (1.1) in the subinterval (a,c0)(a > 0) as

/ / - x+ydxdy g {/ o' f (@) da / T o(@)a P a)dak (1.4)

where ky = B(3,3) and o(z) =1 — 5(%)5. When A = 1,a — 07, inequality (1.4)
deduces to (1.1). In recent years, a number of papers studied some improvements
and extensions of (1.4) (cf. [13, 14, 15, 17]).

In this paper, a simple condition of the homogeneous kernel with —\-degree
(A > 0) is considered. By using the methods of real analysis and functional
analysis, a Hilbert-type integral inequality in the subinterval (a,oc0) with the
homogeneous kernel and a best constant factor and its operator expression are
given. As applications, a few improved results, the equivalent forms and some

new inequalities with the particular kernels are obtained.

2. LEMMAS AND MAIN RESULTS

If A > 0, the function ky,(z,y) is non-negative measurable in (0, 00)x (0, 00),
satisfying ky(uz,uy) = uky(x,y) for any u, z,y > 0, then we call ky(z,y) the
homogeneous function of —A—degree; if for any z,y > 0,k\(x,y) = ka(y, ),
then we call the homogeneous function ky(z,y) is symmetric. Assume that r >
1,2+ L =1. Setting kx(r) and ky(s) as

hn(r) = / o (1, 1)~ Ty (5) 1= / Fa (1, ) ~du,
0 0
then it follows ky(r) = kx(s). In fact, setting v = 1. we obtain

%A(s) = /000 (1, 1) _A+1dv = /000 kx(v,1)vr Ty = k(7).

v v?
Suppose that ky(r) is a positive number. For a > 0,z,y € (a,00), define the
weight functions wy(r,y, a) and wy (s, z,a) as:

A A

wy(r,y,a) ::/ INER y) y —dx,wy(s,x,a) ::/ ka(z,y)——=dy. (2.1)
a T a y s
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Setting u = £ in the integral wy(r,y, a), for any y € (a, o), we find

Yy

wa(r,y,a) = /0 kx(1,u)us Ty < /000 kx(1,u)u’s vy = Ea(s).

Similarly, @\ (s, z,a) < k(r) (z € (a,00)). Setting ,(r) and 0y(s) as

O:(r) == /Ollﬁ(u Dur—du, Oy (s) := /Olkm wusdu,

if 0, (r),0,(s) > 0, then for any y > a, we find

y

wy(r,y,a) :/0 Ea(1,u)u’s ~ldy >/O kx(1,u)u’s Ty = Or(s) > 0.

Similarly, @wx(s,z,a) > 0x(r) > 0 (z > a). Hence by (2.1), for fixed y >
a, kx(z,y) > 0 a.e. in (a,00), and for fixed x > a, ky(x,y) > 0 a.e. in (a, c0).

Lemma 2.1. If both kx(1,u), kx(u,1) > 1y > 0,u € (0, 1], then we have

r(ra) < B0 = 557 (0 € (000 (2.2
wi(s,z,a) < ky(r)[l— )\]:j’(\r) (g)g] (x € (a,00)). (2.3)

Proof. Setting u = %, we find

on(rya) = / (i, L)d 't = (1) — / " ea(u, Ly
a 0

v l
< )= [Tw =) =) € (0,0)
0
Hence we have (2.2). Similarly we have (2.3). The lemma is proved. O

Lemma 2.2. If both ky(1,u) and ky(u,1) are derivable decreasing function in
(0, 1], then we have

Ay a) £ Bl 2507 € (.00)) (24)
(s.0) < kil = PG @ € (0,00 (25)
In particular, if kx(z,y) is symmetric, setting ky = kx(2), then
r2.9.0) S b= 5(Dm a0 b1 - 53 @y >a. (20
Proof. Since k\(u,1) < 0,u € (0,1), for y € (0,1), we obtain
%[y /0 ko (u, ur~tdu) = —Ay?/() o (u, 1w~ du + ki (y, 1)y~

Y Y A A Y A
- / b, D + ka(y, Dy~ =y [ K (u, Duddu < 0,
0 0
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and y fo k(u, Dur—tdu > fo kx(u, 1)us~'du = 6,(r). Hence we find

A
P

wi(ry,a) = ka(r) = [(

< ka(r) -

)?/0 o (u, 1)~ (%)

a a
) )
(

Then we obtain (2.4). Similarly, we obtain (2.5). If ky(z,y) is symmetric, then
we find 0,(2) = 0,(2) and

ks = 0,(2) + /10o k(1 w)u? "Ldu = 0,(2) + /0 k(v 1)v2 " do = 20, (2).

Then by (2.4) and (2.5), we have (2.6). The lemma is proved. O

For the measurable function ¢(x) > 0, set the function spaces as:
L2(0,00)i= (b2 03[ = { | ple)P(a)da} < 0} (o = pra)

Theorem 2.3. Assume that p,r > 1,%—# .= 1,% —l—% =1, A >0, kx(z,y) is
a homogeneous function of —A—degree in (0,00)x (0,00), satisfying kx(r), 0x(r)
and 0, (s) are positive numbers. For a > 0, there exist measurable functions k(y)
and pi(x), such that 0 < k(y), u(x) <1 and

wa(r,y, a) < ka(r)s(y), wals, 2, a) < kx(r)p(z)(z,y € (a,00)). (2.7)
If ¢, (z) = 2P0=D1 4 (z) := 290- D"z € (a,00)), f € LY (a,00),9 € Ly (a,00),

I flp.ors 119]lgee > 0, then we have the equivalent inequalities as

/l/bwy Yo(w)dzdy < k()| fllpzollollons:  (28)

= v h x x)dx)P L
A@%—l L[ b @iy < O, @9

where the constant factors ky(r) and kY(r) are the best possible.
In particular, for k(y) = p(z) = 1, we have the equivalent inequalities as:

Aw»<mwn/mﬂ@**#«@ﬂﬁ«/wwwﬂ*w%w@ﬁ; (2.10)

a

/OoypsA (/OO kx(z, ) f(z)dx)Pdy < K2 (r) /oo DT (@) de. (2.10)

Proof. Since 0 < 0)(r)/kx(r) < k(y) < kx(r),0 < 0x\(s)/kx(r) < p(z) < ka(r)
(x,y € (a,00)), it is obvious that the condition 0 < ||f||p.6.: ||9]lgw, < 00 is
equivalent to the condition 0 < ||f||p¢.: ||9]]grw. < 00

By Hélder’s inequality [3], in view of (2.1) and Fubini’s theorem [!], we find

21-2)/q y(1=2)/p
o=/ [ Mxyﬁlwg<mw%wmmw@
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s

X{/ / ) E— (1_7 - 9%(y)dady} s

T

~ / (s, 2, a) by (2) f7(x)d} | / (s @) (y)g* () dy} . (2.12)

If inequality (2.12) keeps the form of equality, then [3] there exist constants A
and B, such that they are not all zero and

2= (-1 y(l—%)(q—l) .
yl—_%fp(x) = Bqu(y) a.e. in (a,00) x (a,00).
It follows AzP(1=2) f7(z) = By‘J( ~Dgi(y) ae. in (a, oo) X (@, 00). Assuming that
A # 0, there exists y > a, 2P~ fP(z) = [By?1- )gq(y)]L a.e. in z € (a,00).
This contradicts the fact that 0 <|[fllp,6, < 00. Then inequality (2.12) keeps the
strict form and inequality (2.12) is valid by using (2.7).
Jn

For z € (a,0), setting a bounded measurable function [f(z
- 7). for f2) <
@) = minff(o)np = { 10 DI
since || f||ps, > 0, there exists no € N, such that [ ¢, (z [f(m)]ﬁd:v > 0(n > nyg),
and then [ fi(z)¢,(x)[f(z)]hdz > 0. Setting g,(y) as

< {/ / k) )f(ﬁc)dxdy}%

~ Yy " T T )P~ a,n);n=>mnm
) = 2| e @daP ™ (0 € (a.m)in > ).
then by (2.8), we have
' = ' y%_l ' x x )P
0 < / () ()T )y = K},_wy)(/a b o ) [F ()l Py

< () / DPdab ([ )00} < o023

0< / R () ()3 (9)dy < KL(r) / A(2)6r (@) [P (@)de < 0o, (2.14)

It follows 0 < ||g||gkwp, < 00 and 0 < ||g||gp. < 00. For n — oo, by (2.8), both
(2.13) and (2.14) still keep the forms of strict inequality. Hence we have (2.9).
On the other-hand, suppose that (2.9) is valid. By Holder’s inequality,

In(a) = / TR () / " ke, y) F(@)da] [ (0)ys > g(w)]dy

s{/fﬁlﬁ/jw NI R 25
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In view of (2.9), we have (2.8). Hence (2.8) is equivalent to (2.9).

. A1
AFolr n € N,n > max{2,2}, setting fn,gn as: fo(z) = zv w Lgnlz) =

x5 m ' for & € (a,00), if there exists 0 < K < ky(r) = ka(s), such that
(2. 8) is still valid if we replace ky(r) by K, then we have

K
/ / (@, 9) Fu (2)0 (W) dzdy < K| fullpos, [gallas, = o: (2.16)

Iﬁn)(‘”‘/ [/ k(e y)amly s daldy

Yy

u:y/m/ y‘l_i[/ ka(1, u)us - L du)dy
a 0

1 - u
= ﬁl kx(1, u)us " du+/ y_l_flt/ ka(1, u)us e dudy
anr Jo a 1

1 oo

- % ka(1, u)us w5 du+/ (/ 7175dy)k,\(1 u)us+np Ldu
ar Jo 1 au
n ! Ayl o0 N

= _1[/ ka1, w)us " me~ du+/ Ea(1,u)us~ na— du. (2.17)
an Jo 1

Hence by (2.16) and (2.17), we have

1 00
/ ka(1, u)u np du+/ Ea(1, u)u Ly < K,
0 1

and by Fatou’s lemma [1], it follows

1 [e’e)
B = [ i b s [T e
0 1

. 1 o
< lim [/ ]{3)\(]. u)us np du—i—/ k)\(l U)U,S nq du] < K.
0 1

n—o0

Therefore K = ky(r) is the best constant factor of (2.8). If the constant factor
in (2.9) is not the best possible, then by (2.15), we can get a contradiction that
the constant factor in (2.8) is not the best possible. The theorem is proved. [

Define an operator Ty, : L%, (a,00) — Lz};_p(a, 00) as: for f € L (a,00),

(T.f)(y) = / k() f(@)da(y € (a,00)).

In view of (2.11), it follows T, f € L?, ,(a,00). For g € Lj, (a,00), define the
formal inner of T, f and g as:

(Tuf, q) / / kx(z,y) f (2)g(y)dzdy.

Hence the equivalent inequalities (2.10) and (2.11) may be rewritten as

(Tat, 9) < kx(O[ o gllgws; I Taf Ml yi-0 < Fa(Flp.o0
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where the constant factor is the best possible, Ty, is obviously bounded and ||T,|| =
kx(r). We call T, Hilbert-type integral operator with the homogeneous kernel of
—\-degree in the subinterval (a, o).

Corollary 2.4. Let the assumptions of Theorem 2.3 be fulfilled and additionally
both kx(1,u), kx(u,1) > 1y > 0, u € (0,1]. Then we have the following equivalent
mequalities:

x{/ - A,;“ g)iws@)g%y)dy}é; (2.18)

/aoo - lef_l /\]p—l (/aoo kx(z,y) f(x)dx)Pdy

X () ()"

< B0 [T1- s G e @, (2.19)

where the constant factors kx(r) and k(1) are the best possible. We still have the
following two pairs of equivalent inequalities:

Tut.g) <k [ 1= s P @l (220
ITA yor <) [ 1= =GP0 P@dn (221
(Tuf.9) < b0 1l (|11 - A/;l?m W wyte,  (222)

s>

h y?_l - p pr p
| & e ([ sy < RO, (22

N

Proof. By Lemma 2.1, setting x(y) =1 — Akk(r)(%)% and p(x) =1— /\,:i? )(%)A in
(2.8) and (2.9), we have (2.18) and (2.19). Since x(y) < 1, by (2.18) and (2.19),
we have (2.20) and (2.21). Similarly, since g(z) < 1, we have (2.22) and (2.23).
The corollary is proved. O

Corollary 2.5. Let the assumptions of Theorem 2.3 be fulfilled and additionally
both kx(1,u) and kx(u, 1) are derivable decreasing function in (0, 1]. Then we have
the following equivalent inequalities with the best constant factors:

Tig) < W[ 1= PO P
<[ 1= 2B e ) (2:24)
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[ st s
P(r 00—5)‘(8)2% x) fP(x)dx
< K [ 1= PE G0 @ (2.25)
If kx(z,y) is symmetric and o(x) = 1 — %(%)% s (1.4), then we have the

equivalent inequalities as:

) <hl [ o) @ ([ ot i 220

OO y%il P > OOUx x) fP(x)dx
/a W(/@ kx(z,y) f(z)dx) dy<kA/a (2)do() fP(2)dz.  (2.27)
)*

Proof. By Lemma 2.2, setting x(y) = 1 — 0*(7")(5)% and i(x) =1 — GA S)(9
e (2.2 )

kx(r)
and (2.27). The corollary is proved. O

(2.8) and (2.9), we have (2.24) and (2.25). For r = s = 2, by (2.6) we hav

3. APPLICATIONS TO SOME PARTICULAR KERNELS

In the following, we assume that a, A > 0 p,r > 1, 1—1-1 =1,241=1,¢.(z) :=

Ay Ay
=D (@) == 2900 o (2) = 1= H(2)2, £,9 20,0 < [|fllps llgllgw. <
0o. Some words that the constants are the best p0s51ble are omitted.

Example 3.1. Let ky(z,y) = W (o > 0), which is symmetric. Since both

kx(1,u) and ky(u, 1) are derivable decreasing in (0, 1], and kj(u,1) =
I\ = ﬁ (u € (0,1]), setting v = u®, by (1.3), we have

~ urdu 1 ver dv 1 A A
b= [T [T e 2
o (wr+1a aJo (v+1)a « ar as
By (2.18), (2.19) and (2.26), (2.27), we have two pairs of equivalent inequalities
as:
_/°° /°° f(x)g(y)dxdy
a
< k / —
Sl 2 )\kA )
[ 1= =GP s
24 )\k:A (r) ¥y

) y%_l @) dx)Pd
/a H—%gﬁ]p—l[/ﬁb @ ryi W

2>‘/0‘)\k)\(7“

- ki(r)/a STy

1
e 2

2
s

6, (2) f? () dar} »

w >

[ () [P () d



108 B. YANG, TH.M. RASSIAS

o) <h@([ o [ snmswa,  6)

h y%*l —f(.ilﬁ)d p p olx z) fP(x)dx
‘l =il <Wy)dew()/a (2)¢a(x) f*(2)d

Example 3.2. Let ky(z,y) = ln§x/ yA, which is symmetric. We find that both
kx(1,u) and ky(u, 1) are derivable decreasmg in (0,1], [16] and ky(u,1) = 2 >
Irx=1 (ue(0,1]). Setting v = u*, we obtain [2]

* (Inw)ur > (Inv)vr ! T
k)\(r):/o S du:/o mdv:[m].

By (2.18), (2.19) and (2.26), (2.27), we have two pairs of equivalent inequalities
as:

.  In(%) f(x
LBy L

{/ z)po(z) f7(x)dr}r {/ (y)g"(y)dy} 1,

/aoo o [/:O 1n(§)f(f)dx]pdy< (gyp/a o () do(2) f7(z)dx.

o~ H(y) =y
Example 3.3. Let ky(z,y) = W, which is symmetric. Since both k) (1, u)

and ky(u, 1) are derivable decreasing in (0, 1], and ky(u,1) =1y =1 (u € (0,1]),
we have

00 ur—1 T 00 471 rs
)= | — —du= [ uld du="2
A7) /0 (max{u, 1})* Y /0 Y u+/1 u? Y A

Then by (2.18) and (2 19) we have two equlvalent inequalities as follows:

/ / max{x (jj};dy 7“5{/ (v) p(x)d:c}?

<[ —§§ Ua0)g" )y},
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- y's ! *  flx)dr
/a 1= [/a (s, g3
< Gr [ -1

Example 3.4. Let ky(x,y) = %, which is symmetric. We find that

I | In wur 'du
b0 = | ety

1 < (] 2.1 24 g2
= /0(—lnu) du~|—/1 %duzr )\28;

2
s

0 () fP(2)de

SHES

ur

> | Inufur! r? 4 52 / A
_ du — _ | Y1y
wx(r,y, a) /z (masc{u, 11 u 2 i (—Inu)u u

Y

2 2 @ 2 2
_ T ts —f/y(—lnu)duigT +8/<J(y),
0

<o

A2 A A2
r? a.x
= 1—— —)r:
W) = 1=
r2+s2 s a.a

@i(s,@,a) < TM(@,M@) =1- m(—)s-

Then by (2.8) and (2.9), we have two equivalent inequalities as follows:

L lhznax{:c y})@) ey

< S TQHQ (2) 100 (o) 7 ()}
{ / - (O ) s}

I@
w [>

y's ! < |In(7)|f(z)dx
/a 11— = (ﬁ)i]pl[/a (max{z,y})* ]dy

< (5 /mu (Y36 () P (2)de

r2 482 g

Remark 3.5. (i) For « = 1,p = ¢ = 2, inequality (3.1) deduces to (1.2). (ii)
Inequality (2.8) is a refinement of (2.10), because of

In(a) < k() fllpzorll9llanve < B Fllpors [19]lg0.-
(iii) When a — 07, (2.10) deduces to a Hilbert-type integral inequality in (0, co)
with a best constant factor ky(r) as:

1(0) < a(r {/ 00 () 7 () da} {/ $a(0)g )y}
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