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A NOTE ON THE VON NEUMANN ALGEBRA UNDERLYING
SOME UNIVERSAL COMPACT QUANTUM GROUPS

KENNY DE COMMER

Communicated by M. Skeide

Abstract. We show that for F ∈ GL(2, C), the von Neumann algebra asso-
ciated to the universal compact quantum group Au(F ) is a free Araki-Woods
factor.

Introduction

It is a classical theorem that any compact Lie group is a closed subgroup of some
U(n). In [4], a class of quantum groups was introduced which plays the same
rôle with respect to the compact matrix quantum groups (introduced in [6], but
there called compact matrix pseudogroups). These universal quantum groups
were denoted Au(F ), where the parameter F takes values in invertible matrices
over C. In [1], the representation theory of the Au(F ) was investigated, and it
was shown that the irreducible representations are naturally labeled by the free
monoid with two generators. Also on the level of the ‘function algebra’ of Au(F ),
freeness manifests itself: it was shown in [1] that the (normalized) trace of the
fundamental representation is a circular element w.r.t. the Haar state (in the
sense of Voiculescu, see [5]). Furthermore, the von Neumann algebra associated
to Au(I2), where I2 is the unit matrix in GL(2,C), is actually isomorphic to the
free group factor L (F2).

In this note, we generalize this last result by showing that for 0 < q ≤ 1, the
von Neumann algebra underlying the universal quantum group Au(F ) with F =
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1 0
0 q

)
is a free Araki-Woods factor ([3]), namely the one associated to the

orthogonal representation

t→
(

cos(t ln q2) − sin(t ln q2)
sin(t ln q2) cos(t ln q2)

)
of R on R2. The proof of this fact uses a technique similar to the one of Banica for
the case F = I2, combined with results from [2] (which are based on the matrix
model techniques from [3]). Since

Au(F ) = Au(λU |F |U∗)

for any λ ∈ R+
0 and any unitary U (see [1]), we obtain that all Au(F ) with

F ∈ GL(2,C) have free Araki-Woods factors as their associated von Neumann
algebras. We remark that for higher-dimensional F , even F = I3, much less
is known about the concrete form of the associated von Neumann algebra, and
probably different techniques than the ones used in this paper will be necessary
to probe their structure.

Remarks on notation:

• If M is a von Neumann algebra and x1, x2, . . . are elements in M , we
denote by W ∗(x1, x2, . . .) the von Neumann subalgebra of M which is the
σ-weak closure of the unital ∗-algebra generated by the xi.
• Matrix units of B(l2(N)) w.r.t. the canonical basis of l2(N) are written eij.
• For 0 < q < 1, we write ωq for the normal state ωq(eij) = δi,j(1 − q2)q2i

on B(l2(N)).
• We denote by S ∈ L (Z) the shift operator ξk → ξk+1 on l2(Z). Since

we will at times need different copies of L (Z), we will sometimes use an
index for emphasis, using the same index symbol for the generator S (for
example, L (Z)I and SI , or L (Z)H and SH).
• We denote by τ the state on L (Z) which makes S into a Haar unitary

with respect to it (i.e. τ(Sn) = 0 for n ∈ Z0). We then use the same index
convention as in the previous point.

1. Preliminaries

In this preliminary section, we will give, for the sake of economy, ad hoc defini-
tions of the von Neumann algebras associated to the Au(F ) and Ao(F ) quantum
groups ([4]), and of the free Araki-Woods factors ([3]), for special values of their
parameters.

Throughout this section, we fix a number 0 < q < 1.

Definition 1.1. We define the C∗-algebra Cu(H) as the universal enveloping
C∗-algebra of the unital ∗-algebra generated by elements a and b, with defining
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relations  a∗a+ b∗b = 1 ab = qba
aa∗ + q2bb∗ = 1 a∗b = q−1ba∗

bb∗ = b∗b.

Remark 1.2. Cu(H) is the (universal) C∗-algebra associated with the quantum
group H = SUq(2). In [1], Proposition 5, it is shown that this equals the quantum

group Ao(

(
0 1
−q−1 0

)
).

The following fact is found in [7].

Lemma 1.3. Let H be the Hilbert space l2(N) ⊗ l2(Z), whose canonical basis
elements we denote as ξn,k (and with the convention ξn,k = 0 when n < 0). Then
there exists a faithful unital ∗-representation of Cu(H) on H , determined by{

π(a) ξn,k =
√

1− q2n ξn−1,k,
π(b)ξn,k = qn ξn,k+1.

Note that π(a) is an amplification of a weighted unilateral shift with all weights
different, and that π(b) is a normal operator, being the tensor product of a diag-
onal operator (with all eigenvalues of multiplicity one) and a bilateral shift. As
such, one can obtain, for n ∈ N and m ∈ Z, the elements enn ⊗ Sm ∈ π(Cu(H))′′

by applying Borel calculus to π(b), while we have emn ⊗ 1 ∈ π(Cu(H))′′ for all
m,n ∈ N by multiplying π(a)|m−n| or π(a∗)|m−n| to the right with (a scalar mul-
tiple of) enn ⊗ 1.

Definition 1.4. In the notation of the previous lemma, denote by ψ the state

ψ(x) = (1− q2)
∑
n∈N

q2n〈π(x)ξn,0, ξn,0〉

on Cu(H). Then ψ is called the Haar state on Cu(H).

Of course, this name is motivated by the further compact quantum group struc-
ture on Cu(H), which we will however not need in the following.

Definition 1.5. The von Neumann algebra L∞(H) is defined to be the σ-weak
closure of Cu(H) in its GNS-representation with respect to the Haar state ψ.

We then continue to write ψ for the extension of ψ to a normal state on L∞(H).

We will use the terminology ‘W∗-probability space’ when talking about a von
Neumann algebra with some fixed normal state on it. An isomorphism between
two W∗-probability spaces is then a ∗-isomorphism between the underlying von
Neumann algebras, preserving the associated fixed states.

Lemma 1.6. There is a natural isomorphism

(L∞(H), ψ)→ (B(l2(N))⊗̄L (Z)H , ωq ⊗ τH)

of W∗-probability spaces.
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Proof. We first prove that π(Cu(H))′′ equals B(l2(N))⊗̄L (Z)H . Clearly, we have
that π(Cu(H))′′ ⊆ B(l2(N))⊗̄L (Z)H by the explicit forms of the generators
π(a) and π(b) of π(Cu(H)). By functional calculus on π(a) and π(b), we have
eij ⊗ Sn ∈ π(Cu(H))′′ for all i, j ∈ N and n ∈ Z (see the remark after Lemma
1.3), so in fact equality holds.

Now ψ equals the composition of π with the state ωq ⊗ ωδ0 on B(l2(N)⊗̄l2(Z)),
where ωδ0 is the pure state w.r.t. δ0 ∈ l2(Z). So we have a natural normal unital
∗-homomorphism π(Cu(H))′′ → L∞(H), which restricts to π−1 on π(Cu(H)).
Since the restriction ωq ⊗ τH of ωq ⊗ ωδ0 to B(l2(N))⊗̄L (Z)H = π(Cu(H))′′ is
faithful, this homomorphism is an isomorphism. �

In the following, we then simply identify the W∗-probability spaces appearing in
the previous lemma (by the isomorphism appearing in its proof).

Definition 1.7. The W∗-probability space (L∞(G), ϕ) is defined as

(W ∗(SIa, SIb, SIa
∗, SIb

∗), (τI ∗ ψ)|L∞(G)) ⊆ (L (Z)I , τI) ∗ (L∞(H), ψ).

Remark 1.8. By [1], Théorème 1.(iv), the von Neumann algebra L∞(G) will
coincide with the von Neumann algebra associated with the universal quantum

group Au(

(
1 0
0 q

)
), and ϕ with its Haar state.

Recall that the state ωq was introduced at the end of the introduction.

Definition 1.9. ([3], Corollary 4.9) By a free Araki-Woods factor (at parameter
q2), we mean a W∗-probability space (M,φ) isomorphic to the free product W∗-
probability space (L (Z), τ) ∗ (B(l2(N)), ωq).

We end this section with a small alteration of Lemme 8 of [1].

Lemma 1.10. Let (A, φ) be a unital ∗-algebra together with a functional φ on
it. Let B ⊆ A be a unital sub-∗-algebra, and d ∈ B a unitary in the center of B
such that φ(d) = φ(d∗) = 0. Let u ∈ A be a Haar unitary which is ∗-free from B
w.r.t. φ. Then ud is a Haar unitary which is ∗-free from B w.r.t. φ.

Proof. This is precisely Lemme 8 of [1], with the condition ‘φ is a trace’ replaced
by ‘d is in the center of B’. However, the proof of that lemma still applies
verbatim. �

2. L∞(G) is a free Araki-Woods factor

Throughout this section, we again fix a number 0 < q < 1. We also continue to
use the notations introduced in the previous section.

We proceed to prove the following theorem.

Theorem 2.1. The W∗-probability space (L∞(G), ϕ) is a free Araki-Woods fac-
tor at parameter q2.
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By the remark after Definition 1.7 and the remarks in the introduction, this will
imply that if F ∈ GL(2,C), then the von Neumann algebra associated to Au(F )
is the free Araki-Woods factor at parameter λ1

λ2
, where λ1 ≤ λ2 are the eigenvalues

of F ∗F (where we take L (F2) to be the free Araki-Woods factor at parameter 1).

The proof of Theorem 2.1 will be preceded by three lemmas. Consider the fol-
lowing von Neumann subalgebras of (L (Z)I , τI) ∗ (L∞(H), ψ):

(M1, ϕ1) = (W ∗(SI(1⊗ SH)), (τI ∗ ψ)|M1)

and

(M2, ϕ2) = (W ∗((1⊗ S∗H)a, (1⊗ S∗H)b, (1⊗ S∗H)a∗, (1⊗ S∗H)b∗), (τI ∗ ψ)|M2).

Lemma 2.2. The von Neumann algebras M1 and M2 are free with respect to each
other, and L∞(G) is the smallest von Neumann subalgebra of L (Z)I ∗L∞(H)
which contains them.

Proof. The proof is similar to the one of Théorème 6 in [1]. First of all, remark
that SI(1 ⊗ SH) is the unitary part in the polar decomposition of SIb, so that
SI(1⊗ SH) is in L∞(G). Then of course

(1⊗ S∗H)a = (1⊗ S∗H)S∗I · SIa

is in L∞(G), and similarly for the other generators of M2. Hence M1 and M2

indeed generate L∞(G).

We now apply Lemma 1.10 to get that SI(1 ⊗ SH) is ∗-free w.r.t. L∞(H), by
taking (A, φ) = (L (Z)I , τI)∗ (L∞(H), ψ), B = L∞(H), d = 1⊗SH and u = SI .
A fortiori, we will then have M1 free w.r.t. M2. �

Lemma 2.3. We have

(M1, ϕ1) ∼= (L (Z), τ)

and

(M2, ϕ2) ∼= (B(l2(N))⊗̄L (Z), ωq ⊗ τ).

Proof. The fact that (M1, ϕ1) ∼= (L (Z), τ) is of course trivial. We want to show
that (M2, ϕ2) ∼= (B(l2(N))⊗̄L (Z), ωq ⊗ τ).

We have that 1 ⊗ S2
H is in M2, since this is the adjoint of the unitary part of

the polar decomposition of (1 ⊗ S∗H)b∗ (recall that b = D ⊗ SH with D some
diagonal positive operator). Also all eii ⊗ 1 are in M2, by functional calculus on
the positive part of this polar decomposition. Hence, by multiplying (1 ⊗ S∗H)a
or (1⊗ S∗H)a∗ to the left with the eii ⊗ 1, and possibly multiplying with 1⊗ S2

H ,
we conclude that the eij ⊗ Si−jH with |i − j| = 1 are in M2. But then also the

matrix units fij = eij ⊗ Si−jH with i, j ∈ N are in M2, and it is not hard to see
that in fact M2 = W ∗(fij, (1 ⊗ S2

H)). An easy calculation further shows that
ψ(fij(1⊗ S2

H)n) = (ωq ⊗ τ)(eij ⊗ Sn). Hence the assignment

fij(1⊗ S2
H)n → eij ⊗ Sn
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extends (uniquely) to an isomorphism between the W∗-probability spaces (M2, ϕ2)
and (B(l2(N))⊗̄L (Z), ωq ⊗ τ). �

Lemma 2.4. We have that (M,φ) := (L (Z), τ) ∗ (L (Z)⊗̄B(l2(N)), τ ⊗ ωq) is a
free Araki-Woods factor at parameter q2.

Proof. The proof is similar to the one of Theorem 3.1 in [2]. Denote (N, θ) =
(L (Z), τ) ∗ (B(l2(N)), ωq), and denote φ0 = 1

1−q2φ and θ0 = 1
1−q2 θ. Then by

Proposition 3.10 of [2], we will have that

(e00Me00, φ0) ∼= (L (Z), τ) ∗ (e00Ne00, θ0).

By Proposition 2.7 in [2] (which is based on the proof of Theorem 5.4 and Propo-
sition 6.3 in [3]) and the remark before it, we know that (e00Ne00, θ0) as well as
(N, θ) ∼= (e00Ne00, θ0)⊗̄(B(l2(N)), ωq) are free Araki-Woods factors at parameter
q2. By the free absorption property ([3], Corollary 5.5), (e00Me00, φ0) is a free
Araki-Woods factor at parameter q2, and hence also

(M,φ) ∼= (e00Me00, φ0)⊗̄(B(l2(N)), ωq)

is a free Araki-Woods factor at parameter q2.
�

Proof (of Theorem 2.1). By Lemmas 2.2 and 2.3, (L∞(G), ϕ) is isomorphic to
the free product of (L (Z), τ) with (B(l2(N))⊗̄L (Z), ωq ⊗ τ), which by Lemma
2.4 is a free Araki-Woods factor at parameter q2. �
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Mathematics 92, Birkhäuser, Boston (1990).

6. S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.
7. S.L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential cal-

culus, Publ. RIMS, Kyoto University 23 (1987), 117–181.

Research Assistant of the Research Foundation - Flanders (FWO - Vlaan-
deren); Department of Mathematics, K.U. Leuven, Celestijnenlaan 200B, 3001
Heverlee, Belgium.

E-mail address: kenny.decommer@wis.kuleuven.be


	Introduction
	1. Preliminaries
	2. L(G) is a free Araki-Woods factor
	References

