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Abstract. In this paper we investigate the problem of the Hyers–Ulam sta-
bility of the generalized quadratic functional equation

f(x + y) + f(x− y) = g(x) + g(y),

where f, g are functions defined on a group with values in a linear topological
space.

1. Introduction and preliminaries

S. M. Ulam [16] in 1940 presented the following question concerning the stability
of group homomorphisms.
Let G be a group, G1 a group with a metric d and ε > 0 a given number. Does
there exist a δ > 0 such that if a mapping h : G → G1 satisfies the inequality

d
[
h(xy), h(x)h(y)

]
< δ for x, y ∈ G,

then there exists a homomorphism H : G → G1 with

d
[
h(x), H(x)

]
< ε for x ∈ G?

The first affirmative answer for the Cauchy additive equation under the assump-
tion that G, G1 are Banach spaces, has been done by D.H. Hyers [11].
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The reader can find a lot of references concerning the stability results of functional
equations in the books [3], [4], [13], [14] and papers, e.g. [5], [10], [12], [15].
The problem of the stability of the quadratic functional equation has been inves-
tigated in the papers [1], [2], [7], [8], [9].
Let G be an abelian group and throughout this paper let X be a sequentially
complete locally convex linear topological Hausdorff space. A mapping f : G → X
is said to be quadratic if and only iff it satisfies the following functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ G. (1.1)

Moreover, the above equation is called the quadratic functional equation.
Standard symbols N, Z, Q, R denote the sets of natural, integer, rational and
real numbers, respectively.
Given sets A, B ⊂ X and a number k ∈ R, we define the well known operations

A + B := {x ∈ X : x = a + b, a ∈ A, b ∈ B},
kA := {x ∈ X : x = ka, a ∈ A}.

By conv U we denote the convex hull of a set U ⊂ X and by cl U the sequential
closure of U .

We start with the following lemma [3].

Lemma 1.1. Let Y1 and Y2 be linear spaces over R. If f : Y1 → Y2 is a quadratic
function, then

f(rx) = r2f(x), r ∈ Q, x ∈ Y1.

One can prove (see also [6]) the following lemmas.

Lemma 1.2. If A, B ⊂ X and 0 ≤ α ≤ β, then

αA ⊂ β conv
[
A ∪ {0}

]
,

conv A + conv B = conv(A + B).

Lemma 1.3. For any sets A, B ⊂ X and numbers α, β ∈ R we have

α(A + B) = αA + αB,

(α + β)A ⊂ αA + βA.

Moreover, if A is a convex set and α, β ≥ 0, then

αA + βA = (α + β)A.

Let us recall that a set A ⊂ X is said to be bounded iff for every neighbourhood
U of zero there exists a number α > 0 such that αA ⊂ U .

Lemma 1.4. If A, B ⊂ X are bounded sets, then

A ∪B, A + B, conv A

are also bounded subsets of X.
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Now we shall prove

Lemma 1.5. Let G be an abelian group and let B ⊂ X be a nonempty set. If
functions f, g : G → X satisfy

f(x + y) + f(x− y)− g(x)− g(y) ∈ B, x, y ∈ G, (1.2)

then

f(x + y) + f(x− y) + 2f(0)− 2f(x)− 2f(y) ∈ 2 conv (B −B), (1.3)

g(x + y) + g(x− y) + 2g(0)− 2g(x)− 2g(y) ∈ 2 conv (B −B) (1.4)

for all x, y ∈ G.

Proof. Put x = y = 0 in (1.2). We get

2f(0)− 2g(0) ∈ B. (1.5)

For y = 0 in (1.2), we obtain

2f(x)− g(x)− g(0) ∈ B, x ∈ G. (1.6)

Setting x = y in (1.6), we have

2f(y)− g(y)− g(0) ∈ B, y ∈ G. (1.7)

To prove (1.3) we will use (1.2), (1.5), (1.6) and (1.7). Therefore by Lemma 1.2
and Lemma 1.3 we get

f(x + y) + f(x− y) + 2f(0)− 2f(x)− 2f(y)

=
[
f(x + y) + f(x− y)− g(x)− g(y)

]
+

[
2f(0)− 2g(0)

]
−

[
2f(x)− g(x)− g(0)

]
−

[
2f(y)− g(y)− g(0)

]
∈

[
B + B + (−B) + (−B)

]
⊂

[
conv B + conv B + conv (−B) + conv (−B)

]
= 2 conv B + 2 conv (−B) = 2 conv (B −B), x, y ∈ G.

If we replace x by x + y and x by x− y in (1.6), respectively, then we obtain

2f(x + y)− g(x + y)− g(0) ∈ B, x, y ∈ G, (1.8)

2f(x− y)− g(x− y)− g(0) ∈ B, x, y ∈ G. (1.9)

To prove (1.4) we will use (1.2), (1.8) and (1.9). Therefore

g(x + y) + g(x− y) + 2g(0)− 2g(x)− 2g(y)

=
[
2f(x + y) + 2f(x− y)− 2g(x)− 2g(y)

]
−

[
2f(x + y)− g(x + y)− g(0)

]
−

[
2f(x− y)− g(x− y)− g(0)

]
∈

[
2B + (−B) + (−B)

]
⊂

[
conv 2B + conv (−B) + conv (−B)

]
= 2 conv B + 2 conv (−B) = 2 conv (B −B), x, y ∈ G.

The prove is complete. �

Remark 1.6. A trivial observation is that 0 ∈ conv (B − B), which will play an
essential role in the further considerations.



248 M. ADAM, S. CZERWIK

2. Main result

Now we shall prove the main result of the paper.

Theorem 2.1. Let G be an abelian 2-divisible group and let B ⊂ X be a nonempty
bounded set. If functions f, g : G → X satisfy

f(x + y) + f(x− y)− g(x)− g(y) ∈ B, x, y ∈ G,

then there exists exactly one quadratic function Q : G → X such that

Q(x) + f(0)− f(x) ∈ 2

3
cl conv (B −B), x ∈ G, (2.1)

2Q(x) + g(0)− g(x) ∈ 2

3
cl conv (B −B), x ∈ G. (2.2)

Moreover, the function Q is given by the formulae

Q(x) = lim
n→∞

fn(x) =
1

2
lim

n→∞
gn(x), x ∈ G, (2.3)

where

fn(x) =
1

22n
f(2nx), gn(x) =

1

22n
g(2nx), n ∈ N, x ∈ G

and the convergence is uniform on G.

Proof. Define a set C := 2 conv (B −B). Then from (1.3) we have

f(x + y) + f(x− y)− 2f(x)− 2f(y) ∈
(
C − 2f(0)

)
, x, y ∈ G. (2.4)

Setting y = x in (2.4), we obtain

f(2x)− 4f(x) ∈
(
C − 3f(0)

)
, x ∈ G.

Define a set C̃ := C − 3f(0). Then we have

1

22
f(2x)− f(x) ∈ 1

4
C̃ ⊂ 1

4
conv C̃, x ∈ G. (2.5)

By the induction we can prove that

1

22n
f(2nx)− f(x) ∈ 1

3

(
1− 1

22n

)
conv C̃, n ∈ N, x ∈ G. (2.6)

For n = 1 we get (2.5), obviously. Now, let us assume that (2.6) is satisfied for
some n ∈ N. Then for n + 1 on account of Lemma 1.3 we have

1

22(n+1)
f(2(n+1)x)− f(x) =

[
1

22(n+1)
f(2(n+1)x)− 1

22
f(2x)

]
+

[
1

22
f(2x)− f(x)

]
=

1

22

[
1

22n
f(2n · 2x)− f(2x)

]
+

[
1

22
f(2x)− f(x)

]
∈ 1

22
· 1

3

(
1− 1

22n

)
conv C̃ +

1

4
conv C̃ =

1

3

(
1− 1

22(n+1)

)
conv C̃,

which proves (2.6) for all n ∈ N and x ∈ G.
Define

Q1
n(x) :=

1

22n
f(2nx), n ∈ N, x ∈ G. (2.7)
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For all m, n ∈ N and x ∈ G, we have by (2.6)

Q1
m+n(x)−Q1

n(x) =
1

22(m+n)
f(2(m+n)x)− 1

22n
f(2nx)

=
1

22n

[
1

22m
f(2m · 2nx)− f(2nx)

]
∈ 1

22n
· 1

3

(
1− 1

22m

)
conv C̃.

From boundedness of the set conv C̃ (see the Lemma 1.4) we have that
{
Q1

n

}
n∈N

is a Cauchy sequence of elements of X. Since we have assumed the sequential
completeness of X, the sequence (2.7) is convergent for all x ∈ G and the con-
vergence is uniform on G.
Define

Q1(x) := lim
n→∞

Q1
n(x), x ∈ G.

Thus from (2.6) and the definition of the set C̃, we have for n →∞

Q1(x) + f(0)− f(x) ∈ 2

3
cl conv (B −B), x ∈ G. (2.8)

We shall check that Q1 is a quadratic function. Substituting 2nx, 2ny instead of
x and y in (2.4), respectively, we get

1

22n
f
(
2n(x + y)

)
+

1

22n
f
(
2n(x− y)

)
− 2

1

22n
f(2nx)− 2

1

22n
f(2ny)

∈ 1

22n

(
C − 2f(0)

)
, x, y ∈ G.

Since by Lemma 1.4 the set C − 2f(0) is bounded, letting n →∞ we obtain

Q1(x + y) + Q1(x− y)− 2Q1(x)− 2Q1(y) = 0, x, y ∈ G,

i.e. Q1 is a quadratic function satisfying (2.8).
Define

Q2
n(x) :=

1

22n
g(2nx), n ∈ N, x ∈ G.

Similarly as before applying (1.4) we shall check that

1

22n
g(2nx)− g(x) ∈ 1

3

(
1− 1

22n

)
conv D, n ∈ N, x ∈ G, (2.9)

where D := C − 3g(0). Then
{
Q2

n

}
n∈N is a Cauchy sequence of elements of X

uniformly convergent on G. Denote

Q2(x) := lim
n→∞

Q2
n(x), x ∈ G.

Letting n →∞ in (2.9), one gets

Q2(x) + g(0)− g(x) ∈ 2

3
cl conv (B −B), x ∈ G. (2.10)

Similarly as in a previous case we can check that Q2 is a quadratic function
satisfying (2.10).
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Now we prove the equality 2Q1 = Q2. Applying (1.6), (2.8) and (2.10) we consider
the following difference

2Q1(x)−Q2(x) =
[
2Q1(x)− 2f(x)

]
−

[
Q2(x)− g(x)

]
+

[
2f(x)− g(x)

]
∈

[
2 cl conv (B −B) + B − 2f(0) + 2g(0)

]
=: M,

i.e.

2Q1(x)−Q2(x) ∈ M, x ∈ G.

In view of Lemma 1.4 the set M is bounded. Then

2
1

22n
Q1(x)− 1

22n
Q2(x) ∈ 1

22n
M, x ∈ G.

Replacing x by 2nx in the above condition we get

2
1

22n
Q1(2nx)− 1

22n
Q2(2nx) ∈ 1

22n
M, x ∈ G.

We have by Lemma 1.1

2Q1(x)−Q2(x) ∈ 1

22n
M, x ∈ G.

Letting n →∞ we obtain

2Q1(x)−Q2(x) = 0, x ∈ G,

i.e. 2Q1 = Q2. Assuming Q := Q1, we can see that the conditions (2.1), (2.2)
and (2.3) are satisfied.
To prove the uniqueness assume that there exists another quadratic function

Q̃ : G → X satisfying the condition

Q̃(x) + f(0)− f(x) ∈ 2

3
cl conv (B −B), x ∈ G

and for the contrary suppose that there exists a y ∈ G such that c := Q̃(y) −
Q(y) 6= 0. Then we have

Q̃(x)−Q(x) = Q̃(x)− f(x)−
[
Q(x)− f(x)

]
∈ 4

3
cl conv (B −B) =: M̃,

i.e.

Q̃(x)−Q(x) ∈ M̃, x ∈ G.

Applying the same method as before we get

Q̃(x)−Q(x) = 0, x ∈ G,

i.e. Q̃ = Q, which contradicts c 6= 0. The contradiction implies that c = 0, which
completes the proof. �
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