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ABSTRACT. We study in a unitary way the Schur-convexity or concavity of the
Stolarsky and Gini means D, (z,y) and Sq (x,y), for fixed z,y > 0,  # y.

1. INTRODUCTION

Let z,y > 0,  # y. The Stolarsky means D, ;(x,y), introduced in [I5] [16], are
defined for a,b € R and x > 0, y > 0 by

( b(ﬂ?a _ya) 1/(a—b)
[a_(xb _yb)} , ab(a —b) # 0
1 “Inx —y1
exp(——+x Ty ny)) a=b+#0
Da,b(xvy) = a xa_ya (11)
a a 1/a
=Y
S b —
{a(lnx—lny)] ’ a7 0, 0
L V7Y, a=1b=0.

Means (/1.1]) are sometimes called the “difference means”, or “extended means”
(see, e.g. [3, 6] 7]).
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The identric, logarithmic, and power means of order a (a # 0) will be denoted
by I,, L, and A,, respectively. They are all contained in the above family of
means. We have I, = D,,; Ly = Dy, and A, = Ds,,. When a = 1, we
write I, L, and A instead of I;, L; and A;, obtaining the identric, logarithmic,
and arithmetic means (see e.g. |10, [I3]). There is a simple relationship between
means of order a (a # 1) and those of order one. Namely, we have

L(w,y) = (I(z",y")" (1.2)
with similar formulas for the remaining means mentioned above. Note that for
the geometric mean of x and y, \/zy = G(z,y) we have G(z,y) = Doo(z,y).

The second family of bivariate means studied here was introduced by C. Gini
[2]. They are defined as follows:

( Ia_i_ya 1/(a—b) a#b
b 4 b ’
Sap(x,y) = a] a] 1.3
o) = ) g (ZE LI oy g (1.3
xa+ya
L V2, a=b=0

Gini means are also called the “sum means”. It follows from (1.3]) that S 1 = H
- the harmonic mean, Spo = G, and 519 = A. The mean S, ; denoted by Sy 1 = J
will play an important role in what follows. Put

Ja(,y) = (J(a,y) (1.4)
The basic properties of these means, as well as their comparison theorems, and
inequalities are studied in papers [2, 3 5] ], 15]. See also the survey monograph
on inequalities [17].
The following integral representations will be important in what follows:

Lemma 1.1. If a # b, then

1 b
InD,p = 2 / In I;dt, (1.5)

and
1 b
ln Sa,b = m i ln Jtdt (16)

Formula (1.5 is derived in [I5], while the proof of (|1.6)) is an elementary exercise
in calculus. See also [3].

Recall now the definition of Schur-convex functions. Let I be an interval with
nonempty interior, and let f : I™ — R. Then f is called Schur-convex on I"
(n > 2)if f(z) < f(y) for each two n-tuples x = (z1,...,2,) and y = (y1,...,Yn)
of I, such that x < y holds. The relationship of majorization x < y means that

n k n n
Zl’m < Zym’ me = Zym:
=1 =1 i=1 =1

where 1 < k <n — 1, and x; denotes the ith largest component of z.
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A function f is called Schur-concave if —f is Schur-convex. The following two
characterizations are often used in the theory of Schur-convex functions.

Lemma 1.2. Let I be an open interval. Then a continuously differentiable func-
tion f : I? — R is Schur-convez iff it is symmetric and satisfies the relation

(%_%) (y—x)>0 forallz,y€l, x#y.

See e.g. [4, [9] for more general results, with applications.
The next result appears in [1]:

Lemma 1.3. Let f be a continuous function on I. Then F : I? — R, defined by
1

/bf(t)dt, a#b

F(a,b)=< b—a (1.7)
f(a), a=">

is Schur-convex on I? iff f is convex on I.

2. MAIN RESULTS

In a recent paper, F. Qi [7] has proved the following result:

Theorem 2.1. For fized x,y with x,y > 0, x # y, the mean values D, p(x,y)
are Schur-concave on R% = [0,4+00) X [0,400), and Schur-convex on R? =
(—00,0] X (—00,0], with respect to (a,b).

Our aim in what follows is to offer a new proof of a more complete result:

Theorem 2.2. For fived x,y with v,y > 0, x # y, the mean values D,;(x,y)
and Sqp(x,y) are Schur-concave on Ri, and Schur-convex on R% | with respect to

(a,b).

Proof. In paper [12] it is proved (by using certain inequalities established in [10])
that the function t — I; of is log-concave for ¢ > 0 and log-convex for ¢ < 0.
The similar property of the function ¢t — J; of has been proved in paper [5].
Now, Lemma 1, combined with Lemma 3 and the above results, imply that In D,
and In S, ;, are Schur-concave for a,b > 0, and Schur-convex for a,b < 0 (for fixed
x,y > 0, x # y). This in turn implies Theorem 2, as In D(a,b) is Schur-convex
(concave) iff D(a,b) is Schur-convex (concave), etc. O

Remark 2.3. (1) The Schur-convexity problem of D,;(z,y) for fixed a,b with
respect to z,y > 0 is considered in [8, [I4]. In this case the results are not so nice
as in Theorem 1, 2. The similar problems for S, ;(z,y) are still open.

(2) As a corollary of Theorem 1, in [7] the following inequality is stated: For
x,y >0, x # y one has when r > 0:

1 y2r _ £L'2T 1/2r < 1
2r lny—Inzx

< ey ) 1)
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For r < 0, inequality ({2.1)) reverses. We wish to note here that these reduce
in fact to known inequalities. Indeed, for » > 0, (2.1) becomes L(z*",y*") <
(I(2",y7))% or by letting 2" = u, y" = v:

L(u?,v*) < (I(u,v))? (2.2)

It is easy to see that, by homogeneity considerations, for r < 0, (2.1) reduces
again to (12.2)).
Since L(u?,v?) = L(u,v)A(u,v) (see e.g. [1I] for such identities), inequality

(2.2)) reduces to
VL-A<I (2.3)

This is a consequence of relation 1' of [10], namely: VL-A < Ayz < 1.
For other refinements of (2.3)) (involving e.g. the arithmetic-geometric mean of
Gauss), see [13] [15].
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