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Abstract. In this paper, we study the stability of the system of functional
equations f(xy) + f(xy−1) = 2f(x) + f(y) + f(y−1) and f(yx) + f(y−1x) =
2f(x) + f(y) + f(y−1) on groups. Here f is a real-valued function that takes
values on a group. Among others we proved the following results: 1) the
system, in general, is not stable on an arbitrary group; 2) the system is stable on
Heisenberg group UT (3,K), where K is a commutative field with characteristic
different from two; 3) the system is stable on certain class of n-Abelian groups;
4) any group can be embedded into a group where this system is stable.

1. Introduction

Given an operator T and a solution class {u} with the property that T (u) = 0,
when does ‖T (v)‖ ≤ δ for a δ > 0 imply that ‖u− v‖ ≤ ε(δ) for some u and for
some ε > 0 ? This problem is called the stability of the functional transformation
(ref. [16]). A great deal of work has been done in connection with the ordinary
and partial differential equations. If f is a function from a normed vector space
into a Banach space, and ‖f(x + y) − f(x) − f(y)‖ ≤ δ, Hyers [8] proved that
there exists an additive function A such that ‖f(x) − A(x)‖ ≤ δ (cf. [15]). If
f(x) is a real continuous function of x over R, and |f(x+ y)− f(x)− f(y)| ≤ δ,
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44 V.A. FAĬZIEV, P.K. SAHOO

it was shown by Hyers and Ulam [10] that there exists a constant k such that
|f(x) − kx| ≤ 2δ. Taking these results into account, we say that the additive
Cauchy equation f(x+y) = f(x)+f(y) is stable in the sense of Hyers and Ulam.
The interested reader should refer to the book by Hyers, Isac and Rassias [9] for
an in depth account on the subject of stability of functional equations.

Drygas [2] obtained a Jordan and von Neumann type characterization theo-
rem for quasi-inner product spaces. In Drygas’s characterization of quasi-inner
product spaces the functional equation

f(x) + f(y) = f(x− y) + 2

{
f

(
x+ y

2

)
− f

(
x− y

2

)}
played an important role. If we replace y by −y in the above functional equation
and add the resulting equation to the above equation, then we obtain

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y). (1.1)

The Drygas functional equation (1.1) on an arbitrary group G takes the form

f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1) = 0 (1.2)

for all x, y ∈ G. The stability of the equation (1.2) was studied in [11] and [17].
In [3] the system of equations

f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1) = 0, f(zyx) = f(zxy) (1.3)

for all x, y, z ∈ G was solved without any regularity assumption on f . It was
shown there that the general solution f : G → K (a commutative field with
characteristic different from two) of the system of functional equations (1.3) is
given by

f(x) = H(x, x) + A(x)

where H : G × G → K is a symmetric bihomomorphism and A : G → K is a
homomorphism.

In this sequel, we will write the arbitrary group G in multiplicative notation
so that 1 will denote the identity element of G. In this paper we consider the
stability of the system of functional equations{

f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1) = 0,

f(yx) + f(y−1x)− 2f(x)− f(y)− f(y−1) = 0
(1.4)

for all x, y ∈ G. Here f : G → R (the set of real numbers) is the unknown
function to be determined. In [6], it was shown that on an arbitrary group G,
the system (1.4) is a generalization of the system (1.3).

This paper is organized as follows: In Section 2, we prove some preliminary
results that will be used for proving stability of the Drygas system of functional
equations (1.4). In Section 3, we investigate the stability of the system (1.4) in
Heisenberg groups, and in a class of n-Abelian groups. In Section 4, we prove an
embedding theorem for the stability of the system (1.4).
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2. Preliminary results

The system (1.4) is said to be stable if for any f satisfying the system of
inequalities {

|f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1)| ≤ δ,

|f(yx) + f(y−1x)− 2f(x)− f(y)− f(y−1)| ≤ δ
(2.1)

for some positive number δ there is a ϕ, a solution of (1.4), and a positive number
ε such that

|f(x)− ϕ(x)| ≤ ε (x ∈ G).

Definition 2.1. The function f : G→ R is said to be a quasidrygas function if
the sets

∆D1 =
{
f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1)

∣∣ ∀x, y ∈ G
}
,

∆D2 =

{
f(yx) + f(y−1x)− 2f(x)− f(y)− f(y−1)

∣∣ ∀x, y ∈ G
}

are bounded. The set of quasidrygas functions will be denoted by KD(G).

Definition 2.2. The function f : G → R is said to be a quasijensen function if
the set

∆J =
{
f(xy) + f(xy−1)− 2f(x)

∣∣ ∀x, y ∈ G
}

is bounded. A quasijensen function f : G → R is said to be a pseudojensen
function if it satisfies the condition f(xn) = nf(x) for all n ∈ Z (the set of
integers). The set of quasijensen functions will be denoted by KJ(G). The set
of pseudojensen functions will be denoted by PJ(G).

Definition 2.3. The function f : G→ R is said to be a quasiquadratic function
if the set

∆Q =
{
f(xy) + f(xy−1)− 2f(x)− 2f(y)

∣∣ ∀x, y ∈ G
}

is bounded. The quasiquadratic function f : G → R that satisfies the condition
f(xn) = n2f(x) for all n ∈ Z will be called a pseudoquadratic function. The set of
quasiquadratic functions will be denoted by KQ(G). The set of pseudoquadratic
functions will be denoted by PQ(G).

Lemma 2.4. If f satisfies (2.1), then ϕ(x) := f(x) + f(x−1) belongs to KQ(G)
and ψ(x) := f(x)− f(x−1) belongs to KJ(G).

Proof. Since

ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(x)
= f(xy) + f(xy−1)− 2f(x)− 2f(y)

+f(y−1x−1) + f(yx−1)− 2f(x−1)− 2f(y−1)
= f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1)

+f(y−1x−1) + f(yx−1)− 2f(x−1)− f(y)− f(y−1),

the set {
ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(x) | ∀x, y ∈ G

}
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is bounded. Thus ϕ ∈ KQ(G). Similarly, since

ψ(xy) + ψ(xy−1)− 2ψ(x)
= f(xy) + f(xy−1)− 2f(x)

−[f(y−1x−1) + f(yx−1)− 2f(x−1)]
= f(xy) + f(xy−1)− 2f(x)− f(y)− f(y−1)

−[f(y−1x−1) + f(yx−1)− 2f(x−1)− f(y)− f(y−1)],

the set {
ψ(xy) + ψ(xy−1)− 2ψ(x) | ∀x, y ∈ G

}
is bounded. Hence ψ ∈ KJ(G), and the proof of the lemma is now complete. �

Lemma 2.5. Every quasidrygas function f : G→ R is representable in the form

f(x) = ϕ(x) + ψ(x), (2.2)

where ϕ ∈ KQ(G) and ψ ∈ KJ(G).

Proof. Indeed, if ϕ(x) = f(x)+ f(x−1) and ψ = f(x)− f(x−1) are functions then
from the previous lemma, we have

f(x) =
1

2
ϕ(x) +

1

2
ψ(x). (2.3)

Clearly if ϕ ∈ KQ(G) and ψ ∈ KJ(G), then 2ϕ ∈ KQ(G) and 2ψ ∈ KJ(G).
Replacing ϕ by 2ϕ and ψ by 2ψ in (2.3), we have the asserted representation for
f . The proof of the lemma is now complete. �

Definition 2.6. A quasidrygas function f : G→ R is said to be a pseudodrygas
function if there is a decomposition (2.2), that is f(x) = ϕ(x) + ψ(x), such that
ϕ ∈ PQ(G) and ψ ∈ PJ(G). The set of pseudodrygas functions on G will be
denoted by PD(G).

We denote the set of bounded functions f : G → R on G by B(G). It is
clear that PQ(G) ∩ PJ(G) = {0}. Thus it follows that the decomposition (2.2)
is uniquely defined.

Lemma 2.7. The linear space PD(G) is a direct sum of linear spaces PJ(G)
and PQ(G), that is

PD(G) = PJ(G)⊕ PQ(G).

Similarly, the linear space KD(G) is a direct sum of linear spaces PD(G) and
B(G), that is

KD(G) = PD(G)⊕B(G). (2.4)

Proof. The first part of the lemma is easy to show. Thus we prove only the second
part of the lemma. Let f ∈ KD(G). By Lemma 2.5, we have

f(x) = ϕ(x) + ψ(x), (2.5)

where ϕ ∈ KJ(G) and ψ ∈ KQ(G). It was shown in [4] that

KJ(G) = PJ(G)⊕B(G).

Similarly from [5], we have

KQ(G) = PQ(G)⊕B(G). (2.6)
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Therefore ϕ(x) = ϕ1(x) + σ1 and ψ(x) = ψ1(x) + σ2, where ϕ1 ∈ PJ(G), ψ1 ∈
PQ(G), and σ1, σ2 bounded functions. Thus from (2.5), we have

f(x) = ϕ1(x) + ψ1(x) + σ,

where σ = σ1 + σ2. Hence it is clear that

KD(G) = PJ(G)⊕ PQ(G)⊕B(G) = PD(G)⊕B(G)

and the proof of the lemma is now complete. �

We denote, by D(G), the set of all functions satisfying the system (1.4). By
J(G), we denote the set of all functions satisfying the Jensen equation

f(xy) + f(xy−1)− 2f(x) = 0 (2.7)

for all x ∈ G. The subset of J(G) consisting of all functions f satisfying the
condition f(1) = 0 will be denoted by J0(G). By Q(G), we denote the set of all
functions satisfying the quadratic equation

f(xy) + f(xy−1)− 2f(x)− 2f(y) = 0 (x ∈ G).

The following theorem was established in [6].

Theorem 2.8. The linear space D(G) is a direct sum of J0(G) and Q(G), that
is D(G) = J0(G)⊕Q(G).

Proposition 2.9. The system (1.4) is stable over a group G if and only if
PD(G) = D(G). In other words the system (1.4) is stable if and only if PQ(G) =
Q(G) and PJ(G) = J0(G).

Proof. Suppose that PD(G) = D(G), that is PQ(G) = Q(G) and PJ(G) =
J0(G). Let the function f satisfy (2.1) for some positive number δ. Then f ∈
KD(G) and by Lemma 2.7, f = g+σ, where g ∈ PD(G) = D(G) and σ ∈ B(G).
Thus we see that f − g = σ is a bounded function on G. So the system (1.4) is
stable.

Now suppose that the system of equations (1.4) is stable. Let us show in this
case that PJ(G) = J0(G) and PQ(G) = Q(G). Let us verify that if PQ(G) 6=
Q(G), then the system (1.4) is not stable. Let g ∈ PQ(G) \ Q(G) and suppose
that there is a f ∈ D(G) and a positive number δ such that |g(x) − f(x)| ≤ δ
for any x ∈ G. By Theorem 2.8 there are j ∈ J0(G) and q ∈ Q(G) such that
f(x) = j(x) + q(x). Therefore, we have

|g(x)− f(x)| = |g(x)− j(x)− q(x)| ≤ δ.

Hence g′(x) := g(x) − q(x) ∈ PQ(G) and for some bounded function ξ we have
g′(x) = j(x) + ξ(x). It follows that for any n ∈ N we have

g′(xn) = j(xn) + ξ(xn),

n2g′(x) = nj(x) + ξ(xn),

g′(x) =
1

n
j(x) +

1

n2
ξ(xn).

So we see that g′(x) ≡ 0. Hence g(x) = q(x) for all x ∈ G, and we came to a
contradiction with the assumption about g. So PQ(G) = Q(G).
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Now let g ∈ PJ(G) \ J0(G). Suppose there is a f ∈ D(G) and a positive
number δ such that |g(x)− f(x)| ≤ δ for any x ∈ G. Then by Theorem 2.8 there
are j ∈ J0(G) and q ∈ Q(G) such that f(x) = j(x) + q(x). Therefore we have

|g(x)− f(x)| = |g(x)− j(x)− q(x)| ≤ δ. (2.8)

Let g1(x) = g(x)−j(x) then g1 ∈ PJ(G)\J0(G) and from (2.8) we see that there
is a bounded function σ such that g1(x) = q(x) + σ(x). Thus, for any n ∈ N, we
get

g1(x
n) = q(xn) + σ(xn),

ng1(x) = n2q(x) + σ(xn),

q(x) =
1

n
g1(x)−

1

n2
σ(xn).

Hence, q(x) ≡ 0, and we get

|g(x)− f(x)| = |g(x)− j(x)| ≤ δ.

It follows that f(x) ≡ j(x), and thus PJ(G) = J0(G). Hence we came to a
contradiction about the assumption on g. Therefore if the system (1.4) is stable
then PQ(G) = Q(G) and PJ(G) = J0(G), and PD(G) = D(G). This completes
the proof of the theorem. �

Remark 2.10. In the paper [4], we have shown that if a group G has nontrivial
pseudocharacter (for exampleG is a nonabelian free group), then PJ(G) 6= J0(G).
Hence by Proposition 2.9 the system 1.4 is not stable over such a group G. So,
in general, the system (1.4) is not stable.

Proposition 2.11. Let G be an arbitrary group and f ∈ PQ(G). Then
1. f(1) = 0;
2. f(x−1) = f(x), and
3. f is invariant relative to inner automorphisms of G.

Proof. Let f ∈ PQ(G), then we have

|f(xy) + f(xy−1)− 2f(x)− 2f(y)| ≤ δ (x, y ∈ G) (2.9)

for some δ > 0.

1. If we let x = y = 1, then from (2.9), we obtain |f(1)| ≤ 1
2
δ. Since f ∈

PQ(G), for any n ∈ N we have n2|f(1)| = |f(1n)| ≤ 1
2
δ. Hence it follows that

f(1) = 0.

2. If x = 1, then from (2.9) we have

|f(y) + f(y−1)− 2f(1)− 2f(y)| ≤ δ

and

|f(y−1)− f(y)| ≤ δ (y ∈ G).

From the last relation it follows that for any n ∈ N

|f(y−n)− f(yn)| ≤ δ.
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So

n2|f(y−1)− f(y)| = |f(y−n)− f(yn)| ≤ δ,

and thus f(y−1) = f(y) for all y ∈ G.

3. Taking into account that f(yx−1) = f(xy−1) the following relations

|f(xy) + f(xy−1)− 2f(x)− 2f(y)| ≤ δ,
|f(yx) + f(yx−1)− 2f(x)− 2f(y)| ≤ δ

imply that

|f(xy)− f(yx)| ≤ 2δ.

Substituting yx−1 for y in the last inequality, we get

|f(xyx−1)− f(y)| ≤ 2δ.

Since f ∈ PQ(G), now for any n ∈ N we have

n2|f(xyx−1)− f(y))| = |f(xynx−1)− f(yn))| ≤ 2δ.

The last relation is possible only if f(xyx−1) = f(y). Thus f is invariant relative
to inner automorphisms of G. �

3. Stability

In this section, we establish the stability of the system (1.4) on noncommuta-
tive group UT (3, K), and on a subclass Kn of n-Abelian groups. Here K is a
commutative field and n is a positive integer greater than or equal to 2.

Let n be an integer. A group G is said to be an n-Abelian group if (xy)n = xnyn

for every x and y in G. For more on n-Abelian groups the interested reader should
refer to [12], [1], [7], and [13]. For any n ∈ N (the set of natural numbers), let Kn

denote the class of groups G satisfying the relation

(xy)n = xnyn = ynxn (3.1)

for any x, y ∈ G. Obviously, the class Kn is a subclass of the class of n-Abelian
groups. For n ∈ N, let Gn be the subgroup of G generated by the set { xn | x ∈
G}. The subspace of J0(G) consisting of real additive characters will be denoted
by X(G). The following theorem was proved in [5].

Theorem 3.1. If G is n-Abelian group then PQ(G) = Q(G), and any element
f in Q(G) can be represented in the form f(x) = 1

n2ϕ(xn), where ϕ ∈ Q(Gn).

Theorem 3.2. If G ∈ Kn then the system (1.4) is stable on G, and any element
f in PD(G) can be represented in the form f = j + q, where j ∈ X(G) and
q ∈ Q(G).

Proof. From Proposition 2.9 and Theorem 3.1 it follows that we need only to
establish the relation PJ(G) = J(G). Let us verify it. The subgroup Gn is
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abelian. Hence by Theorem 3.11 from [4] we have PJ(Gn) = J0(G
n) = X(Gn).

Now let f ∈ PJ(G), then for any x the element xn belongs to Gn. Then we have

f(xy) = 1
n
· nf(xy)

= 1
n
f((xy)n)

= 1
n
f(xnyn)

= 1
n
f(xn) + 1

n
f(yn)

= f(x) + f(y).

So
PJ(G) = X(G) = J(G).

�

Next, we examine stability of the system (1.4) on the noncommutative groups
UT (3, K) of 3-by-3 upper triangular matrices. Let K be an arbitrary commuta-
tive field. Let K∗ be the set nonzero elements of K with operation of multipli-
cation. Let UT (3, K) be a group consisting of upper triangular matrices of the
form  1 y t

0 1 x
0 0 1


for all x, y, t ∈ K. The group UT (3, K) is called the Heisenberg group. We
proceed to examine the stability of the system (1.4) on the group UT (3, K).

Let G be an arbitrary group and a, b ∈ G. Then the commutator [a, b] of a and
b is defined as [a, b] = a−1b−1ab.

Definition 3.3. A group G is said to be a metabelian group if [[x, y], z] = 1 for
any x, y, z ∈ G .

It is clear that if [x, y] = 1, then [[x, y], z] = 1, that is, every Abelian group is
metabelian. Let G := UT (3, K). Then it is easy to check that G is a metabelian
group. It was shown in [4] that the Jensen functional equation is stable on any
metabelian group. So to establish stability of the system (1.4) we need to show
that PQ(G) = Q(G). Denote by A,B,C subgroups of G consisting matrices of
the form 1 0 0

0 1 a
0 0 1

 ,
 1 b 0

0 1 0
0 0 1

 ,
 1 0 c

0 1 0
0 0 1

 (a, b, c ∈ K) ,

respectively. Let H be the subgroup of G generated by B and C.

Proposition 3.4. If ϕ ∈ PQ(G), then ϕ can be represented in the form ϕ(x) =
q(τ(x)), where τ : G→ K ×K is a homomorphism defined by the rule

τ :

 1 b c
0 1 a
0 0 1

 → (a, b)

and q ∈ Q(K ×K). Therefore PQ(G) = Q(G).



STABILITY OF DRYGAS FUNCTIONAL EQUATION 51

Proof. Let ϕ ∈ PQ(G). By Proposition 2.11, the map ϕ is invariant relative to
inner automorphisms of G. From the relation 1 b1 c1

0 1 a1

0 0 1

−1  1 b c
0 1 a
0 0 1

 1 b1 c1
0 1 a1

0 0 1

 =

 1 b ba1 − b1a+ c
0 1 a
0 0 1


it follows that

ϕ

 1 b c
0 1 a
0 0 1

 = ϕ

 1 b ba1 − b1a+ c
0 1 a
0 0 1

 . (3.2)

Let us verify that ϕ
∣∣
C
≡ 0. Let δ be a positive number such that

|ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(y) | ≤ δ (x, y ∈ H).

Then for any β ∈ B and γ ∈ C we have

|ϕ(γβ2) + ϕ(γ)− 2ϕ(γβ)− 2ϕ(β)| ≤ δ. (3.3)

Let

β =

 1 b 0
0 1 0
0 0 1

 , γ =

 1 0 c
0 1 0
0 0 1


and b 6= 0. Then from (3.2) it follows that

ϕ

 1 b 0
0 1 0
0 0 1

 = ϕ

 1 b c
0 1 0
0 0 1

 (3.4)

for any c ∈ K. So, ϕ(γβ2) = ϕ(β2) and from (3.3) we get

|ϕ(β2) + ϕ(γ)− 2ϕ(β)− 2ϕ(β)| ≤ δ,
|4ϕ(β) + ϕ(γ)− 2ϕ(β)− 2ϕ(β)| ≤ δ,
|ϕ(γ)| ≤ δ.

So we see that ϕ is bounded on C. Hence

ϕ
∣∣
C
≡ 0. (3.5)

Now from the relations (3.2) and (3.5) it follows that ϕ is constant on any coset
C of G. Therefore there is a q ∈ Q(K × K) such that ϕ(x) = q(τ(x)), and we
see that ϕ ∈ Q(G). The proof of the proposition is now complete. �

From Proposition 3.4 and the discussion immediately prior to Proposition 3.4,
we see that the Drygas system (1.4) is stable on Heisenberg groups.

4. An embedding theorem for stability

Denote by G∗ a group with two generators a and b and one defining relation
a−1ba = bm, where m ≥ 2 is an integer.

Lemma 4.1. If ψ ∈ PJ(G∗), then ψ(b) = 0, and PJ(G∗) = J(G∗) = X(G∗).
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Proof. Denote by A and B the subgroups of G∗ generated by b and bm, re-
spectively. Then we see that G∗ is an HNN–extension, where an isomorphism
ϕ : A→ B is given by the rule ϕ(b) = bm. (For more information about HNN–
extensions see [14].) We have A = 1 ·A, and A = B∪ bB∪ b2B · · ·∪ bm−1B cosets
A by A, and A by B respectively. Let x0 = b, x1 = ax0a

−1, · · · , xk+1 = axka
−1.

Then we have

xm
1 = x0, · · · , xm

k+1 = xk (4.1)

for any k ∈ N. It is clear that the normal closure H of A in G∗ is generated by
the set {xk | k ∈ N}. Let Xk be a subgroup of G∗ generated by xk. From the
relations (4.1) we see that

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xk ⊂ Xk+1 ⊂ · · ·
All the groups X1, X2, · · · , Xk, Xk+1, · · · are cyclic. Hence H is a locally cyclic
group. And we have a semidirect product G∗ = A · H, where A acts on H as
follows: xa

k+1 = xk, k ∈ N and xa
o = xm

o .

Let us note that the map τ : A · H → A defined by the rule τ(au) = τ(a)
is an epimorphism and the corresponding mapping τ ∗ : X(A) → X(G∗) such
that τ ∗(ξ) → ξ∗, where ξ∗(au) = ξ(a) is an embedding of X(A) into X(G∗). So,
if ψ ∈ PJ(G∗) and ψ(a) = α we can construct a character ξ of G∗ such that
ξ(a) = α. Now if we consider f = ψ − ξ we have f

∣∣
A
≡ 0.

Now let us show that f(b) = 0. Let δ be a nonnegative number such that

|f(xy) + f(xy−1)− 2f(x)| ≤ δ, (x, y ∈ G∗).

Let x = cu, y = dv, where c, d ∈ A and u, v ∈ H. Then we have xy =
cdudv, xy−1 = cd−1ud−1

(v−1)d−1
. Hence

|f(xy) + f(xy−1)− 2f(x)|
= |f(cdudv) + f(cd−1ud−1

(v−1)d−1
)− 2f(cu)| ≤ δ.

If u = 1 and c = d, we get

|f(c2v) + f((v−1)c−1
)| ≤ δ,

that is

|f(c2v)− f(vc−1

)| ≤ δ. (4.2)

For any n ∈ N we have (c2v)n = c2nvc2(n−1)
vc2(n−2) · · · vc2v. From (4.2) it follows

|f(c2nvc2(n−1)
vc2(n−2) · · · vc2v)− f(vc2(n−1)−n

vc2(n−2)−n · · · vc2−n
vc−n

)| ≤ δ.

Hence

|nf(c2v)− f(vc2(n−1)−n
vc2(n−2)−n · · · vc2−n

vc−n
)| ≤ δ.

If v = b, c = a then the latter inequality implies

|nf(a2b)− f(ba
2(n−1)−n

ba
2(n−2)−n · · · ba2−n

ba
−n

)| ≤ δ,

or

|nf(a2b)− f(ba
n−2
ba

n−4 · · · ban−2(n−1)
ba

n−2n
)| ≤ δ,
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or ∣∣∣∣nf(a2b)−
n∑

i=1

f(ba
n−2i

)

∣∣∣∣ ≤ δ.

If f(b) = λ, then

f(ba) = f(bm) = mf(b) = mλ,

f(ba
2
) = f(bm

2
) = m2f(b) = m2λ,

...
...

...
...

f(ba
n
) = f(bm

n
) = mnf(b) = mnλ.

Hence ∣∣∣∣∣nf(a2b)−
n∑

i=1

f(ba
n−2i

)

∣∣∣∣∣ =

∣∣∣∣∣nf(a2b)−
n∑

i=1

mn−2iλ

∣∣∣∣∣
=

∣∣∣∣∣nf(a2b)− λ
n∑

i=1

mn−2i

∣∣∣∣∣
≤ δ.

Therefore ∣∣∣∣f(a2b)− λ 1
n

n∑
i=1

mn−2i

∣∣∣∣ ≤ δ

n
→ 0 as n→∞.

Since 1
n

∑n
i=1m

n−2i →∞ as n→∞ we see that the previous relation is possible

only if λ = 0. So we have the relation f(b) = 0. It follows that f
∣∣
H
≡ 0.

Now we have

| f(akaku) + f(ak(aku)−1)− 2f(ak) |
= | f(akaku) + f((u−1)a−k

)− 2f(ak) |
= | f(a2ku) | ≤ δ.

Therefore, f is bounded on subgroup G2 generated by a2 and H. Hence f
∣∣
G2
≡ 0.

Now if g is an arbitrary element of G∗ then g2 ∈ G2 and we get f(g) = 1
2
f(g2) = 0.

Therefore f ≡ 0 on G∗. It follows that ψ ∈ X(A) and PJ(G∗) = X(G∗) = X(A).
The proof of the lemma is now complete. �

In the following theorem we show that any group G can be embedded into a
group G̃ where the Drygas system (1.4) is stable.

Theorem 4.2. Any group G can be embedded into a group G̃ such that PD(G̃) =
D(G).

Proof. Using the construction of HNN-extension [14], we can construct a group
G̃ containing the group G such that for any c ∈ G̃ there is an element d ∈ G̃ such
that d−1cd = cm, where m ≥ 2. Let G̃(c, d) denote a subgroup of G̃ generated by
c and d. It is clear that the mapping π : a → d, π : b → c can be extended
as an epimorphism of the group G∗ =< a, b | a−1ba = bm > onto G̃(c, d). Now
let ϕ ∈ PJ(G̃) and ϕ̃ = ϕ

∣∣
G̃(c,d)

∈ PJ(G̃(c, d)). Then the function ϕ∗ defined

by the rule ϕ∗(x) = ϕ̃(π(x)) is an element of PJ(G∗). By Lemma 4.1 we have
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ϕ∗(b) = 0. This relation implies ϕ̃(c) = ϕ̃(π(b)) = ϕ∗(b) = 0. So ϕ(c) = 0 for any
c ∈ G̃. Therefore PJ(G̃) = 0.

Now let us verify that PQ(G̃) = 0. Let ϕ ∈ PQ(G̃). As we know any pseudo-
quadratic function is constant on every class of conjugate elements. Using this
fact and the relation d−1cd = cm we get ϕ(c) = ϕ(d−1cd) = ϕ(cm) = m2ϕ(c).
It follows that ϕ(c) = 0. So PQ(G̃) = 0. Now from Proposition 2.9 we have
PD(G̃) = 0 and the system (1.4) is stable on G̃. The proof of the theorem is now
finished. �
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