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Abstract. In Hilbert spaces, the redundancy property of g-frames is different
from that of frames, and the dilation theory is interesting and important in
many mathematical fields. In this paper, we study the redundancy and dila-
tions of g-frames in Hilbert spaces. First, we characterize g-Riesz bases and
exact g-frames under some constraints, then obtain some dilation results for
(normalized tight) g-frames, and give some properties about them. Finally we
prove some interesting properties on the canonical duals of g-frames.

1. Introduction

Throughout this paper, we use N to denote the set of natural numbers and C
to denote the set of complex numbers.

A sequence {fi}i∈N of elements in a Hilbert space H is called a frame for H if
there are constants A,B > 0 so that

A‖f‖2 ≤
∑
i∈N

|〈f, fi〉|2 ≤ B‖f‖2, for all f ∈ H.

The numbers A and B are called the lower and upper frame bound respectively.
The frame is a tight frame if A = B and a normalized tight frame if A = B = 1.

The concept of frame first appeared in the late 40’s and early 50’s (see [6][21][24]).
The development and study of wavelet theory during the last decades also brought
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new ideas and attentions to frames because of their close connections. There are
many related references on this topic, see [4][7][14][15][19].

In [22], Sun raised the concept of g-frame as follows, which generalizes the
concept of frame extensively. A sequence {Λi ∈ B(H,Hi) : i ∈ N} is called a g-
frame for H with respect to {Hi : i ∈ N}, which is a sequence of closed subspaces
of a Hilbert space K, if there exist two positive constants A and B such that for
any f ∈ H

A‖f‖2 ≤
∑
i∈N

‖Λif‖2 ≤ B‖f‖2,

where A is called the lower frame bound and B is called the upper frame bound.
The largest lower frame bound and the smallest upper frame bound are called the
optimal lower frame bound and the optimal upper frame bound respectively. We
simply call {Λi : i ∈ N} a g-frame for H whenever the space sequence {Hi : i ∈
N} is clear. The tight g-frame, normalized tight g-frame are defined similarly.
We call {Λi : i ∈ N} a g-frame sequence, if it is a g-frame for span{Λ∗i (Hi)}i∈N .
We call {Λi : i ∈ N} a g-Bessel sequence, if only the right inequality is satisfied.
A g-frame {Γj : j ∈ N} for H is called an alternate dual g-frame of {Λj : j ∈ N},
if for every f ∈ H we have

f =
∑
j∈N

Λ∗jΓjf =
∑
j∈N

Γ∗jΛjf.

If {Λj : j ∈ N} is a g-frame for H, then the operator S ∈ B(H) such that

Sf =
∑
j∈N

Λ∗jΛjf, ∀f ∈ H,

is called the fame operator associated with {Λj : j ∈ N}. It is well-known that
{ΛjS

−1 : j ∈ N} is an alternate dual g-frame of {Λj : j ∈ N}, which is also
called the canonical dual g-frame associated with {Λj : j ∈ N} and we denote

it as {Λ̃j : j ∈ N}. Recently, g-frames in Hilbert spaces have been studied
intensively, for more details see [8][16][20][23][25] and the references therein.
G-frames generalize frames in Hilbert spaces extensively. It has been shown

that g-frames and frames share many similar properties. But it was pointed out
in [22] that the redundancy property is one property where g-frames and frames
behave differently. It is well-known that the class of exact frames is same as the
class of Riesz bases in Hilbert spaces, but the class of exact g-frames is different
from the class of g-Riesz bases. So there is an interesting problem: under what
conditions these two classes coincide? Recently, in [18], the authors studied such
problem. And in [26], the authors studied the excess of g-frames. In this paper
we give some new conditions such that the above classes are the same. On the
other hand, dilation theory is one of interesting and active theories in many
branches of mathematics. For general dilation theory see [1][12]. In [5][13][14],
the authors studied the dilation theory on frames in Hilbert spaces and Banach
spaces. In this paper, we also consider the dilations of g-frames in Hilbert spaces.
Finally, we know that the canonical duals of g-frames play an important role in
the analysis and reconstruction of vectors in Hilbert spaces, so we prove some
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important properties of the canonical duals of g-frame at the end section of this
paper.

2. Preliminary definitions and lemmas

In this section, we introduce some basic definitions and lemmas which are
necessary for the following sections.

Definition 2.1. A g-frame {Λj : j ∈ N} with respect to {Hj : j ∈ N} for H is
called an exact g-frame if for any fixed j0 ∈ N , the sequence {Λj : j ∈ N , j 6= j0}
is not a g-frame for H with respect to {Hj : j ∈ N , j 6= j0}.

Definition 2.2. Suppose that Λj,Γj ∈ B(H,Hj) for any j ∈ N . If for any
i, j ∈ N and any gi ∈ Hi, gj ∈ Hj, 〈Λ∗i gi,Γ∗jgj〉 = δi,j〈gi, gj〉, then we call that
{Λj : j ∈ N} and {Γj : j ∈ N} are g-biorthonormal.

Definition 2.3. Let Λi ∈ B(H,Hi), i ∈ N .
(i). If {f : Λif = 0, i ∈ N} = {0}, then we say that {Λi : i ∈ N} is g-complete.
(ii). If {Λi : i ∈ N} is g-complete and there are positive constants A and B such
that for any finite subset J ⊂ N and gj ∈ Hj, j ∈ J ,

A
∑
j∈J

‖gj‖2 ≤ ‖
∑
j∈J

Λ∗jgj‖2 ≤ B
∑
j∈J

‖gj‖2,

then we say that {Λi : i ∈ N} is a g-Riesz basis for H with respect to {Hi : i ∈
N}.
(iii). We say that {Λi : i ∈ N} is a g-orthonormal basis for H with respect to
{Hi : i ∈ N} if it satisfies the following:

〈Λ∗i gi,Λ∗jgj〉 = δij〈gi, gj〉, ∀i, j ∈ N , gi ∈ Hi, gj ∈ Hj,∑
j∈N

‖Λjf‖2 = ‖f‖2, ∀f ∈ H.

Definition 2.4. {Λj ∈ B(H,Hj)}∞j=1 is finitely g-linearly independent with re-
spect to {Hj} if for any n ∈ N ,

∑n
j=1 Λ∗jgj = 0 implies gj = 0, where gj ∈ Hj (j =

1, 2, · · · , n).

Definition 2.5. {Λj ∈ B(H,Hj)}∞j=1 is g-linearly independent with respect to
{Hj} if

∑∞
j=1 Λ∗jgj = 0 implies gj = 0, where gj ∈ Hj (j = 1, 2, · · · ).

Definition 2.6. {Λj ∈ B(H,Hj)}∞j=1 is g-minimal with respect to {Hj} if for
any sequence {gj : j ∈ N} with gj ∈ Hj and any m ∈ N with gm 6= 0, we have
Λ∗mgm /∈ spani 6=m{Λ∗i gi}.

Remark 2.7. It is obvious that any g-frame is g-complete and any g-orthonormal
basis is a normalized tight g-frame.

Definition 2.8. We call {Λj ∈ B(H,Hj)}∞j=1 a g-basis for H with respect to
{Hj} if for any x ∈ H there is a unique sequence {gj} with gj ∈ Hj such that
x =

∑∞
j=1 Λ∗jgj.
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Definition 2.9. Two g-frames {Λj : j ∈ N} and {Γj : j ∈ N} for H are called
similar if there exists an invertible operator T ∈ B(H) such that Λj = ΓjT for
any j ∈ N .

The following lemma tells us that g-Riesz bases for a Hilbert space H are
precisely the sequences of operators which are similar to g-orthonormal bases for
H.

Lemma 2.10. [22] A sequence {Λj : j ∈ N} is a g-Riesz basis for H with respect
to {Hj : j ∈ N} if and only if there is a g-orthonormal basis {θj : j ∈ N} for H
and a bounded invertible linear operator T on H such that Λj = θjT, j ∈ N .

The following lemma is from [9], which establishes a useful identity on g-frames
and some criterions used to verify some redundancy related properties of g-frames.
Since it is published in a Chinese journal, we include its detailed proof for the
sake of convenience.

Lemma 2.11. [9] Suppose {Λj ∈ B(H,Hj) : j ∈ N} is a g-frame for H with
frame bounds A and B, gj ∈ Hj, ∀j ∈ N . Then

(1)
∑

j 6=m ‖Λ̃jΛ
∗
mgm‖2 = 1

2
[‖gm‖2 − ‖Λ̃mΛ∗mgm‖2 − ‖gm − Λ̃mΛ∗mgm‖2].

(2) If Λ̃mΛ∗m = IHm, then Λ̃jΛ
∗
m = 0 for j 6= m. So {Λj : j ∈ N} and {Λ̃j : j ∈

N} are g-biorthonormal if and only if Λ̃mΛ∗m = IHm, ∀m ∈ N .

(3) If ker(IHm − Λ̃mΛ∗m) 6= 0 or range(IHm − Λ̃mΛ∗m) 6= Hm, then {Λj}j 6=m is not
g-complete.

(4) If IHm −ΛmΛ̃∗m is surjective or IHm − Λ̃mΛ∗m is surjective, then {Λj}j 6=m is a
g-frame.

Proof. (1) Since {Λj : j ∈ N} is a g-frame for H, for any x ∈ H, we have

x =
∑
j∈N

Λ∗j Λ̃jx.

So for any m ∈ N and gm ∈ Hm, we have

Λ∗mgm =
∑
j∈N

Λ∗j Λ̃j(Λ
∗
mgm).

But Λ∗mgm =
∑

j∈N Λ∗jδj,mgj. So by [22, Lemma 2.1], we have

‖gm‖2 =
∑
j∈N

‖δj,mgj‖2 =
∑
j∈N

‖Λ̃jΛ
∗
mgm‖2 +

∑
j∈N

‖Λ̃jΛ
∗
mgm − δj,mgj‖2

= ‖Λ̃mΛ∗mgm‖2 +
∑
j 6=m

‖Λ̃jΛ
∗
mgm‖2 + ‖gm − Λ̃mΛ∗mgm‖2 +

∑
j 6=m

‖Λ̃jΛ
∗
mgm‖2.

So
∑

j 6=m ‖Λ̃jΛ
∗
mgm‖2 = 1

2
[‖gm‖2 − ‖Λ̃mΛ∗mgm‖2 − ‖gm − Λ̃mΛ∗mgm‖2].

(2) If Λ̃mΛ∗m = IHm , from (1), we have that ‖Λ̃jΛ
∗
mgm‖2 = 0 for any j 6= m and

any gm ∈ Hm. It implies that Λ̃jΛ
∗
m = 0 for any j 6= m. The second statement is

obvious.
(3) If ker(IHm − Λ̃mΛ∗m) 6= 0, then there exists gm ∈ Hm with gm 6= 0 such

that gm = Λ̃mΛ∗mgm. Then from (1), we have that
∑

j 6=m ‖Λ̃jΛ
∗
mgm‖2 = 0, which
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implies that Λ̃jΛ
∗
mgm = 0 for any j 6= m. So 〈Λ∗mgm, Λ̃∗jgj〉 = 0 for any j 6= m and

any gj ∈ Hj. It follows that Λ∗mgm⊥span{Λ̃∗j(Hj)}j 6=m. But Λ̃mΛ∗mgm = gm 6= 0,

so Λ∗mgm 6= 0. So span{Λ̃∗j(Hj)}j 6=m 6= H, i.e., {Λ̃j}j 6=m is not g-complete. Since

Λ̃j = ΛjS
−1, it is easy to see that {Λj}j 6=m is not g-complete as well. Since

range(IHm − Λ̃mΛ∗m) = ker(IHm − ΛmΛ̃∗m)⊥,

we have that

range(IHm − Λ̃mΛ∗m) 6= Hm ⇔ ker(IHm − ΛmΛ̃∗m) 6= 0.

Since {Λj : j ∈ N} and {Λ̃j : j ∈ N} are canonical dual g-frames for each other,

by interchanging Λj with Λ̃j, the second case can be proved similarly.

(4) Suppose that IHm − Λ̃mΛ∗m is surjective, then there exists an operator T ∈
B(Hm, Hm) such that (IHm− Λ̃mΛ∗m)T = IHm . It follows that T ∗(IHm−ΛmΛ̃∗m) =

IHm . Since for any f ∈ H, we have f =
∑

j∈N Λ̃∗jΛjf , so for any m ∈ N ,

Λmf = Λm

∑
j∈N

Λ̃∗jΛjf =
∑
j∈N

ΛmΛ̃∗jΛjf

=
∑
j 6=m

ΛmΛ̃∗jΛjf + ΛmΛ̃∗mΛmf.

It follows that (IHm − ΛmΛ̃∗m)Λmf =
∑

j 6=m ΛmΛ̃∗jΛjf . Since

‖
∑
j 6=m

ΛmΛ̃∗jΛjf‖2 = sup‖g‖=1|〈
∑
j 6=m

ΛmΛ̃∗jΛjf, g〉|2

= sup‖g‖=1|
∑
j 6=m

〈Λjf, Λ̃jΛ
∗
mg〉|2 ≤

∑
j 6=m

‖Λjf‖2 · sup‖g‖=1

∑
j 6=m

‖Λ̃jΛ
∗
mg‖2

≤
∑
j 6=m

‖Λjf‖2 · sup‖g‖=1

∑
j∈N

‖Λ̃jΛ
∗
mg‖2 ≤

∑
j 6=m

‖Λjf‖2 · 1

A
‖Λ∗mg‖2

≤
∑
j 6=m

‖Λjf‖2 · 1

A
‖Λ∗m‖2,

so we have that

‖Λmf‖2 = ‖T ∗(IHm − ΛmΛ̃∗m)Λmf‖2

≤ ‖T ∗‖2 · ‖(IHm − ΛmΛ̃∗m)Λmf‖2

= ‖T ∗‖2 · ‖
∑
j 6=m

ΛmΛ̃∗jΛjf‖2

≤ ‖T ∗‖2 · 1

A
· ‖Λ∗m‖2 ·

∑
j 6=m

‖Λjf‖2.
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Hence ∑
j∈N

‖Λjf‖2 = ‖Λmf‖2 +
∑
j 6=m

‖Λjf‖2

≤ (1 + ‖T ∗‖2 · 1

A
· ‖Λ∗m‖2) ·

∑
j 6=m

Λjf‖2 = C ·
∑
j 6=m

Λjf‖2,

where C = 1 + ‖T ∗‖2 · 1
A
· ‖Λ∗m‖2. Therefore

A

C
‖f‖2 ≤ 1

C

∑
j∈N

‖Λjf‖2 ≤
∑
j 6=m

‖Λjf‖2 ≤
∑
j∈N

‖Λjf‖2 ≤ B‖f‖2.

It implies that {Λj}j 6=m is a g-frame with frame bounds A
C

and B. For the second

case, by the duality mentioned in (3), by interchanging Λj with Λ̃j, we can proved

similarly that {Λ̃j}j 6=m is a g-frame for H. Since {Λj}j 6=m is similar to {Λ̃j}j 6=m,
it is easy to see that {Λj}j 6=m is a g-frame for H. �

Note that when dimHj < ∞ for all j ∈ N , then ker(IHm − Λ̃mΛ∗m) = 0 ⇔
range(IHm−Λ̃mΛ∗m) = range(IHm−Λ̃mΛ∗m) = H. The following result is obtained
directly from Lemma 2.11 (3) and (4), which was also proved in [18] differently.
It characterizes the exact g-frames under the constraint that dimHj <∞ for all
j ∈ N .

Corollary 2.12. Let Λj ∈ B(H,Hj), and dimHj < ∞ for j ∈ N . Then the
following statements are equivalent:
(1) The sequence {Λj : j ∈ N} is an exact g-frame for H with respect to {Hj :
j ∈ N}.
(2) The sequence {Λj : j ∈ N} is a g-frame for H with respect to {Hj : j ∈ N}
and {Λj : j ∈ N , j 6= j0} is not g-complete for every j0 ∈ N .

The following lemma is from the same Chinese journal as that of Lemma 2.11,
which applies the results of Lemma 2.11 to study the redundancy related prop-
erties of normalized tight g-frames. We include its proof for convenience.

Lemma 2.13. [9] Suppose {Λj : j ∈ N} is a normalized tight g-frame for H.
Then for any m ∈ N , if ker(IHm−ΛmΛ∗m) 6= {0}, then {Λj}j 6=m is not g-complete.
If ker(I − Λ∗mΛm) = {0}, then {Λj}j 6=m is a g-frame for H.

Proof. Since {Λj : j ∈ N} is a normalized tight g-frame for H, the frame operator
associated with {Λj : j ∈ N} is S = I. It implies that the canonical dual g-frame
of {Λj : j ∈ N} is {ΛjS

−1 : j ∈ N} = {Λj : j ∈ N}. For any m ∈ N , if
ker(IHm − ΛmΛ∗m) 6= {0}, then {Λj}j 6=m is not g-complete by Lemma 2.11 (3).
Since f = Sf =

∑
j∈N Λ∗jΛjf for any f ∈ H,

∑
j∈N Λ∗jΛj = I, which implies that

Λ∗mΛm ≤ I. If ker(I − Λ∗mΛm) = {0}, then

‖Λ∗mΛm‖ = sup‖x‖=1〈Λ∗mΛmx, x〉
= 〈Λ∗mΛmx0, x0〉 < 〈x0, x0〉 = 1,

where x0 ∈ {x ∈ H : ‖x‖ = 1}. Hence ‖ΛmΛ∗m‖ = ‖Λ∗mΛm‖ < 1. It implies that
IHm − ΛmΛ∗m is invertible. So {Λj}j 6=m is a g-frame by Lemma 2.11 (4). �
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The following lemma shows that the condition for a sequence of operators to
be a g-Riesz basis is stronger than that for it to be an exact g-frame.

Lemma 2.14. [22] A g-Riesz basis {Λj : j ∈ N} is an exact g-frame. Moreover,

it is g-biorthonormal with its dual {Λ̃j : j ∈ N}.

The following lemma shows that when dimHj < ∞ for any j ∈ N , any finite
sequence of operators is a g-frame for its generating subspace. Since it is from a
Chinese journal, we include its detailed proof for the sake of convenience.

Lemma 2.15. [10] Suppose dimHj <∞, Λj ∈ B(H,Hj). Then for any n ∈ N ,
{Λj}nj=1 is a g-frame for span{Λ∗j(Hj)}nj=1.

Proof. For any f ∈ span{Λ∗j(Hj)}nj=1, we have

n∑
j=1

‖Λjf‖2 ≤
n∑

j=1

‖Λj‖2 · ‖f‖2 = B‖f‖2,

where B =
∑n

j=1 ‖Λj‖2. So {Λj}nj=1 is a g-Bessel sequence with bound B for

span{Λ∗j(Hj)}nj=1. Next, we aim to show the existence of lower frame bound. Let

φ(f) =
n∑

j=1

‖Λjf‖2,∀f ∈ span{Λ∗j(Hj)}nj=1,

then φ is a continuous function on span{Λ∗j(Hj)}nj=1. Since span{Λ∗j(Hj)}nj=1 is
of finite dimensional, its unit circle is a compact set. Hence there exists y ∈
span{Λ∗j(Hj)}nj=1 with ‖y‖ = 1 such that

φ(y) =
n∑

j=1

‖Λjy‖2 = inf{
n∑

j=1

‖Λjf‖2|f ∈ span{Λ∗j(Hj)}nj=1, ‖f‖ = 1}.

Let A = φ(y), then A ≥ 0. But if A = 0, then Λjy = 0 for j = 1, · · · , n. Thus

〈y,Λ∗j(gj)〉 = 〈Λjy, gj〉 = 0,∀gj ∈ Hj, j = 1, · · · , n.
It implies that y⊥span{Λ∗j(Hj)}nj=1. So y = 0, which contradicts with the fact
that ‖y‖ = 1. Therefore A > 0. Since for any f ∈ span{Λ∗j(Hj)}nj=1 and f 6= 0,
we have

n∑
j=1

‖Λjf‖2 =
n∑

j=1

‖Λjf‖2

‖f‖2
· ‖f‖2

= ‖f‖2 ·
n∑

j=1

‖Λj(
f

‖f‖
)‖2 ≥ A · ‖f‖2.

Hence {Λj}nj=1 is a g-frame for span{Λ∗j(Hj)}nj=1 with fame bounds A and B. �

The following lemma characterizes g-Riesz bases from two different viewpoints.

Lemma 2.16. [11] Let Λj ∈ B(H,Hj), j ∈ N . Then the following statements
are equivalent:
(1) The sequence {Λj}j∈N is a g-Riesz basis for H with respect to {Hj}j∈N .
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(2) The sequence {Λj}j∈N is a g-frame for H with respect to {Hj}j∈N and {Λj}j∈N
is g-linearly independent.
(3) The sequence {Λj}j∈N is a g-basis and a g-frame with respect to {Hj}j∈N .

3. Redundancy of g-frames

In this section, we study the redundancy of g-frames in Hilbert spaces.
The following is one of our main results which characterizes g-frames without

any redundancy, i.e., g-Riesz bases.

Theorem 3.1. Let {Λi ∈ B(H,Hi) : i ∈ N} be a g-frame for H with A as its
lower frame bound and B as its upper frame bound. Then the following statements
are equivalent.
(1). {Λi : i ∈ N} is a g-Riesz basis for H.

(2). {Λi : i ∈ N} and {Λ̃i : i ∈ N} are g-biorthonormal.
(3). There exists a sequence {Γi ∈ B(H,Hi) : i ∈ N} which is g-biorthonormal
with {Λi : i ∈ N}.
(4). {Λi : i ∈ N} is g-minimal.
(5). {Λi : i ∈ N} is g-independent.
(6). {Λi : i ∈ N} is a g-basis for H.
In case that dimHj < ∞ for any j ∈ N . Let An denote the optimal lower
frame bound for g-frame sequence {Λj}nj=1. Then the above statements are also
equivalent to the following two statements.
(7). {Λi : i ∈ N} is finitely g-linearly independent and infk∈NAk > 0.
(8). {Λi : i ∈ N} is finitely g-linearly independent and limn→∞An > 0.

Proof. (1) ⇒ (2) : This implication is already proved in [22], here we include
a different argument which is more directly. Since {Λi : i ∈ N} is a g-Riesz
basis for H, there exists a g-orthonormal basis {Qi : i ∈ N} and a bounded
invertible operator T ∈ B(H) such that Λj = QjT for any j ∈ N by Lemma
2.10. Let S denote the frame operator associated with {Λj : j ∈ N}. Then Sf =∑

j∈N Λ∗jΛjf , ∀f ∈ H. So Sf =
∑

j∈N T
∗Q∗jQjTf , ∀f ∈ H. So (T ∗)−1Sf =∑

j∈N Q
∗
jQjTf , ∀f ∈ H. It follows that (T ∗)−1ST−1 =

∑
j∈N Q

∗
jQj = I. Hence

S = T ∗T . So Λ̃j = ΛjS
−1 = ΛjT

−1(T ∗)−1, ∀j ∈ N . Then

Λ̃jΛ
∗
j = ΛjT

−1(T ∗)−1T ∗Q∗j = ΛjT
−1Q∗j = QjQ

∗
j = IHj

,∀j ∈ N .

So {Λ̃j : j ∈ N} is g-biorthonormal with {Λj : j ∈ N} by Lemma 2.11 (2).
(2)⇒ (3) is obvious.
(3) ⇒ (4) : Given m ∈ N , gm ∈ Hm with gm 6= 0, since {Γj : j ∈ N} is
g-biorthogonal with {Λj : j ∈ N}, for any j ∈ N with j 6= m, gj ∈ Hj,
we have 〈Γ∗mgm,Λ∗jgj〉 = 0. So Γ∗mgm ⊥ spanj 6=m{Λ∗jgj : gj ∈ Hj}. But

〈Γ∗mgm,Λ∗mgm〉 = ‖gm‖2 6= 0. It follows that Λ∗mgm /∈ spanj 6=m{Λ∗jgj : gj ∈ Hj},
so {Λj : j ∈ N} is g-minimal.
(4)⇒ (5) : Suppose that

∑
j∈N Λ∗jgj = 0. If there exists k ∈ N such that gk 6= 0,

then Λ∗kgk = −
∑

j∈N ,j 6=k Λ∗jgj. So Λ∗kgk ∈ spanj 6=k{Λ∗jgj : gj ∈ Hj}, which con-

tradicts with the fact that {Λj : j ∈ N} is g-minimal.
(5)⇒ (6) : Since {Λj : j ∈ N} is a g-frame, for every vector f ∈ H, there exists



REDUNDANCY, DILATIONS AND DUALS OF g-FRAMES 89

a sequence {gj ∈ Hj : j ∈ N} such that f =
∑

j∈N Λ∗jgj. Since {Λj : j ∈ N} is

g-linearly independent, the representation is unique. So {Λj : j ∈ N} is a g-basis
for H.
(6)⇒ (1) : By Lemma 2.16, it is true.

In case that dimHj <∞ for any j ∈ N . We will show that (6)⇒ (7)⇒ (8)⇒
(1). Since (1) ⇒ (6) has already been shown, all the statements are equivalent
as required.
(6) ⇒ (7) : Since {Λj : j ∈ N} is a g-basis for H, {Λj : j ∈ N} is finitely
g-linearly independent. Since {Λj : j ∈ N} is a g-basis and a g-frame for H,
{Λj : j ∈ N} is a g-Riesz basis for H. So for any n ∈ N , {Λj}nj=1 is a g-Riesz
sequence by Lemma 2.15. Since the optimal lower frame bound of {Λj}nj=1 is An,
we have An ≥ A. Hence infk∈NAk > 0.
(7) ⇒ (8) : It suffices to show that limn→∞An > 0. Since An is the optimal
lower frame bound for {Λj}nj=1, we have that An ≥ An+1 ≥ infk∈NAk > 0. So
limn→∞An exists and limn→∞An = infk∈NAk > 0.
(8)⇒ (1) : Since {Λj}nj=1 is g-linearly independent for any n ∈ N , hence {Λj}nj=1

is a g-Riesz basis for span{Λ∗jgj : gj ∈ Hj, j = 1, · · · , n} by Lemma 2.15 and
A0 = infk∈NAk = limn→∞An > 0 is a lower frame bound for {Λj}nj=1. So for any

{gj}nj=1 we have A0

∑n
j=1 ‖gj‖2 ≤ ‖

∑n
j=1 Λ∗jgj‖2. Let B be the upper frame bound

for {Λj : j ∈ N}. Then ‖
∑n

j=1 Λ∗jgj‖2 ≤ B
∑n

j=1 ‖gj‖2. So A0

∑n
j=1 ‖gj‖2 ≤

‖
∑n

j=1 Λ∗jgj‖2 ≤ B
∑n

j=1 ‖gj‖2 for any finite set {gj : gj ∈ Hj, j = 1, · · · , n}.
Since {Λj : j ∈ N} is a g-frame, {Λj : j ∈ N} is g-complete. It follows that
{Λj : j ∈ N} is a g-Riesz basis for H. �

The following result gives a necessary condition for a normalized tight g-frame
to be exact.

Theorem 3.2. Suppose that {Λj : j ∈ N} is a normalized tight g-frame for H.
If {Λj : j ∈ N} is an exact g-frame then ‖Λj‖ = 1 for ∀j ∈ N .

Proof. Since {Λj : j ∈ N} is a normalized tight g-frame for H,
∑

j∈N ‖Λjf‖2 =

‖f‖2 for any f ∈ H. So ‖Λjf‖ ≤ ‖f‖ for any j ∈ N and any f ∈ H. It follows
that ‖Λj‖ ≤ 1 for any j ∈ N . If there exists some k ∈ N such that ‖Λk‖ < 1,
then ‖Λ∗kΛk‖ < 1. So I − Λ∗kΛk is invertible. Hence {Λj : j ∈ N , j 6= k} is a
g-frame by Lemma 2.13, which contradicts with the fact that {Λj : j ∈ N} is
exact. So ‖Λj‖ = 1 for all j ∈ N . �

As an application of Theorem 3.2, we give a complete characterization for a
normalized tight frame to be exact as follows. This result is already shown in [3],
but here we prove it by the viewpoint of g-frames.

Corollary 3.3. Suppose that {fj : j ∈ N} is a normalized tight frame for H.
Then {fj : j ∈ N} is an exact frame if and only if {fj : j ∈ N} is an orthonormal
basis for H.

Proof. The sufficient condition is obvious. Now we move to prove the necessary
condition. Suppose that {fj : j ∈ N} is an exact frame. Let Λfj(f) = 〈f, fj〉
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for each f ∈ H and each j ∈ N . Then
∑

j∈N ‖Λfjf‖2 =
∑

j∈N |〈f, fj〉|2. So

{fj : j ∈ N} is an exact frame for H if and only if {Λfj : j ∈ N} is an exact
g-frame for H with respect to {Hj : j ∈ N} where Hj = C for all j ∈ N . So
{Λfj : j ∈ N} is an exact g-frame for H. By Theorem 3.2 we know that ‖Λfj‖ = 1
for each j ∈ N . Since ‖Λfj‖ = ‖fj‖ for each j ∈ N , therefore ‖fj‖ = 1 for each
j ∈ N . Since for any f ∈ H we have that ‖f‖2 =

∑
j∈N |〈f, fj〉|2, in particular,

for any k ∈ N we have ‖fk‖2 =
∑

j∈N |〈fk, fj〉|2 = |〈fk, fk〉|2 +
∑

j 6=k |〈fk, fj〉|2.

It follows that 〈fi, fj〉 = δi,j. So {fj : j ∈ N} is an orthonormal basis for H. �

The following corollary gives a complete characterization for a normalized tight
g-frame to be a g-orthonormal basis.

Corollary 3.4. Suppose that {Λj : j ∈ N} is a normalized tight g-frame for
H. Then {Λj : j ∈ N} is a g-orthonormal basis for H if and only if Λj is a
co-isometry for any j ∈ N .

Proof. ⇒: This direction is straightforward and we can also find its proof in [20,
Proposition 2.14].
⇐: One proof for this direction is given in [17, Corollary 2.6], but here we give
a new different proof by using Lemma 2.11. Since Λm is a co-isometry for any
m ∈ N , hence ΛmΛ∗m = IHm for each m ∈ N . So {Λj : j ∈ N} is g-biothogonal
with itself by Lemma 2.11(2), which means that 〈Λ∗i gi,Λ∗jgj〉 = δi,j〈gi, gj〉 for
any i, j ∈ N and any gi ∈ Hi, gj ∈ Hj. Since {Λj : j ∈ N} is a normalized
tight g-frame for H, we have that ‖f‖2 =

∑
j∈N ‖Λjf‖2. So {Λj : j ∈ N} is a

g-orthonormal basis for H. �

The following result is one of our main results which gives a complete charac-
terization such that the class of g-Riesz bases is the same as the class of exact
g-frames under the restriction that all Hj are finite dimensional.

Theorem 3.5. Let H,K be Hilbert spaces, {Hj : j ∈ N} be a sequence of closed
subspaces of K with dimHj <∞ for any j ∈ N . Then {Λj : j ∈ N} is an exact
g-frame for H with respect to {Hj : j ∈ N} is equivalent that {Λj : j ∈ N} is a
g-Riesz basis for H with respect to {Hj : j ∈ N} if and only if dimHj = 1 for
any j ∈ N .

Proof. ⇒: Suppose that {Λj : j ∈ N} is an exact g-frame for H is equivalent that

{Λj : j ∈ N} is a g-Riesz basis for H. If for any m ∈ N , range(IHm − Λ̃mΛ∗m) =

range(IHm − Λ̃mΛ∗m) 6= Hm, then {Λj : j ∈ N , j 6= m} is not g-complete by
Lemma 2.11 (3), hence {Λj : j ∈ N} is an exact g-frame. It implies that {Λj :
j ∈ N} is a g-Riesz basis. It follows that {Λj : j ∈ N} is g-biorthogonal with

{Λ̃j : j ∈ N} by Lemma 2.14. Hence for any m ∈ N , we have that Λ̃mΛ∗m = IHm

by Lemma 2.11 (2). So IHm − Λ̃mΛ∗m = 0 for any m ∈ N . So we get that

range(IHm − Λ̃mΛ∗m) 6= Hm if and only if IHm − Λ̃mΛ∗m = 0 for any m ∈ N . It
follows that dimHj = 1 for any j ∈ N . In fact, if there exists j0 ∈ N such that

dimHj0 > 1, then range(IHj0
− Λ̃j0Λ

∗
j0

) 6= Hj0 ; IHj0
− Λ̃j0Λ

∗
j0

= 0.
⇐: One proof of this direction was given by [18, Corollary 2.7]. Now we give a



REDUNDANCY, DILATIONS AND DUALS OF g-FRAMES 91

different new proof. Since dimHj = 1 for any j ∈ N , range(IHm − Λ̃mΛ∗m) =

range(IHm − Λ̃mΛ∗m). By the dimension formula, we have that

1 = dim(range(IHm − Λ̃mΛ∗m)) + dim(ker((IHm − Λ̃mΛ∗m)).

So dim(range(IHm − Λ̃mΛ∗m)) = 0 if and only if dim(ker(IHm − Λ̃mΛ∗m)) = 1 for

any m ∈ N . It follows that ker(IHm − Λ̃mΛ∗m) = Hm if and only if range(IHm −
Λ̃mΛ∗m) = 0 for any m ∈ N . Since dimHm = 1, range(IHm − Λ̃mΛ∗m) = 0 or

range(IHm − Λ̃mΛ∗m) = Hm. Thus for any m ∈ N , we have that Λ̃mΛ∗m = IHm if

and only if range(IHm − Λ̃mΛ∗m) 6= Hm. It implies that {Λj : j ∈ N} is an exact
g-frame if and only if {Λj : j ∈ N} is a g-Riesz basis for H by Lemma 2.11 (2)
and (3). �

In the last result of this section, we consider the extension of normalized tight
g-frames preserving the normalization property.

Theorem 3.6. Suppose that {Λj : j ∈ N} is a normalized tight g-frame for H.
Then
(1) ΛmΛ∗m ≤ IHm for any m ∈ N .
(2) The only way to enlarge {Λj : j ∈ N} in such a way that it remains to be a
normalized tight g-frame is to add zero operators.

Proof. (1) Since {Λj : j ∈ N} is a normalized tight g-frame for H, we have that
‖g‖2 =

∑
j∈N ‖Λjg‖2 for any g ∈ H. Thus for any m ∈ N and f ∈ Hm, we have

‖Λ∗mf‖2 =
∑
j∈N

‖ΛjΛ
∗
mf‖2 = ‖ΛmΛ∗mf‖2 +

∑
j∈N ,j 6=m

‖ΛjΛ
∗
mf‖2.

So ‖Λ∗mf‖2 ≥ ‖ΛmΛ∗mf‖2, i.e.,

〈Λ∗mf,Λ∗mf〉 ≥ 〈ΛmΛ∗mf,ΛmΛ∗mf〉,

so 〈f,ΛmΛ∗mf〉 ≥ 〈f, (ΛmΛ∗m)2f〉. Hence ΛmΛ∗m ≥ (ΛmΛ∗m)2. It follows that

ΛmΛ∗m(IHm − ΛmΛ∗m) ≥ 0.

Since ΛmΛ∗m ≥ 0, IHm − ΛmΛ∗m ≥ 0, i.e., ΛmΛ∗m ≤ IHm , ∀m ∈ N .
(2). Suppose {Λj : j ∈ ∆} is a subset of {Λj : j ∈ N} and it is also a normalized
tight g-frame for H. If j /∈ ∆ and f ∈ Hj, then

‖Λ∗jf‖2 =
∑
i∈N

‖ΛiΛ
∗
jf‖2 =

∑
k∈∆

‖ΛkΛ∗jf‖2.

Thus
∑

i/∈∆ ‖ΛiΛ
∗
j‖2 = 0, ∀f ∈ H. So ΛiΛ

∗
jf = 0 for all i /∈ ∆, in particular,

ΛjΛ
∗
jf = 0. It follows that Λ∗jf = 0, ∀f ∈ Hj. Hence Λ∗j = 0, so Λj = 0 for all

j /∈ ∆, which implies that the only way to enlarge a normalized tight g-frame so
that it remains to be a normalized tight g-frame is to add zero operators. �
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4. Dilations of g-frames

In this section, the dilations of g-frames are studied.
Before we introduce the main results of this section we need the following

lemma.

Lemma 4.1. [2] Let {Λi ∈ B(H,Hi) : i ∈ N} be a normalized tight g-frame for
H with respect to {Hi : i ∈ N}. Then there exists a Hilbert space K ⊇ H and a
g-orthonormal basis {θi ∈ B(K, Hi) : i ∈ N} for K with respect to {Hi : i ∈ N}
such that ΛiP = θiP , where P is the orthogonal projection from K onto H.

The following result tells us that normalized tight g-frame can be dilated to a
g-orthonormal basis.

Theorem 4.2. A set {Λi : i ∈ N} is a normalized tight g-frame for a Hilbert
space H with respect to {Hi : i ∈ N} if and only if there exists a Hilbert space M
and a normalized tight g-frame {Γj : j ∈ N} for M such that {Λj ⊕ Γj : j ∈ N}
is a g-orthnormal basis for H ⊕M .

Proof. ⇒: Since {Λi : i ∈ N} is a normalized tight g-frame for Hilbert space
H with respect to {Hi : i ∈ N}, by Lemma 4.1, there is a larger Hilbert space
K ⊇ H and a g-orthonormal basis {θj : j ∈ N} for K such that ΛjP = θjP
for each j ∈ N , where P is the orthogonal projection from K onto H. Let
M = (I − P )K and Γj ∈ B(M,Hj) such that Γj(I − P ) = θj(I − P ), ∀j ∈ N .
Then {Γj : j ∈ N} is a normalized tight g-frame for M and {Λj ⊕ Γj : j ∈ N} =
{θjP ⊕ θj(I − P ) : j ∈ N}. It is easy to see that {θjP ⊕ θj(I − P ) : j ∈ N} is a
g-orthonormal basis for H ⊕M by a simple computation.
⇐: This direction is obvious. �

Moreover, the following result shows that the above dilation is unique in the
sense of unitary equivalence.

Theorem 4.3. The extension of a normalized tight g-frame to a g-orthonormal
basis described in the statement of above is unique up to unitary equivalence. That
is if N is another Hilbert space and {Lj : j ∈ N} is a normalized tight g-frame
for N such that {Λj ⊕ Lj : j ∈ N} is a g-orthonormal basis for H ⊕ N , then
there is a unitary transformation U mapping M onto N such that ΓjU

∗ = Lj for
all j ∈ N .

Proof. Since {Λj ⊕ Γj : j ∈ N} and {Λj ⊕ Lj : j ∈ N} are g-orthonormal bases
for H ⊕M and H ⊕ N respectively, {(Λj ⊕ Γj)

∗gj : gj ∈ Hj, j ∈ N} is dense in
H ⊕M , {(Λj ⊕ Lj)

∗gj : gj ∈ Hj, j ∈ N} is dense in H ⊕ N . Define a unitary

operator Ũ : H ⊕M → H ⊕N by

Ũ(Λj ⊕ Γj)
∗gj = (Λj ⊕ Lj)

∗gj,

and the values of all other points are defined by linearity and continuity of Ũ .
Since for any n ∈ N , we have

(Λn ⊕ Γn)(Λ∗jgj ⊕ 0M) = ΛnΛ∗jgj + Γn0M = ΛnΛ∗jgj

= ΛnΛ∗jgj + Ln0N = (Λn ⊕ Ln)(Λ∗jgj ⊕ 0N),
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and

Λ∗jgj ⊕ 0M =
∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(Λ∗jgj ⊕ 0M)

Λ∗jgj ⊕ 0N =
∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(Λ∗jgj ⊕ 0N)

It follows that

Ũ(Λ∗jgj ⊕ 0M) = Ũ
∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(Λ∗jgj ⊕ 0M)

=
∑
n∈N

(Λn ⊕ Ln)∗(Λn ⊕ Γn)(Λ∗jgj ⊕ 0M)

=
∑
n∈N

(Λn ⊕ Ln)∗(Λn ⊕ Ln)(Λ∗jgj ⊕ 0N)

= Λ∗jgj ⊕ 0N .

Thus Ũ = I ⊕ U , where I is the identity operator in B(H) and U is a unitary
operator in B(M,N). So

Ũ(Λj ⊕ Γj)
∗gj = (I ⊕ U)(Λj ⊕ Γj)

∗gj = (I ⊕ U)(Λ∗j ⊕ Γ∗j)gj

= (Λ∗j ⊕ UΓ∗j)gj.

But Ũ(Λj ⊕ Γj)
∗gj = (Λj ⊕ Lj)

∗gj = (Λ∗j ⊕ L∗j)gj by the definition of Ũ . Hence
UΓ∗j = L∗j , which implies that Lj = ΓjU

∗, ∀j ∈ N . �

In order to establish the dilation results on general g-frames, we need the
following simple fact, which can be proved straightforwardly, so we omit the
details.

Lemma 4.4. A g-frame is precisely the image of a normalized tight g-frame
under the right multiplying by a bounded invertible operator.

By using the dilations about normalized tight g-frames and the above lemma,
we get the following dilation about g-frames.

Theorem 4.5. Suppose {Λj : j ∈ N} is a g-frame for H. Then there exists a
Hilbert space M and a normalized tight g-frame {Γj : j ∈ N} for M such that
{Λj ⊕ Γj : j ∈ N} is a g-Riesz basis for H ⊕M .

Proof. By Lemma 4.4, there exists a normalized tight g-frame {Lj : j ∈ N} for H
and an invertible operator T in B(H) such that Λj = LjT , ∀j ∈ N . By Theorem
4.2, there is a Hilbert space M and a normalized tight g-frame {Γj : j ∈ N} for M
such that {Lj⊕Γj : j ∈ N} is a g-orthonormal basis for H⊕M . Then T ⊕I is an
invertible operator in B(H⊕M) such that (Lj⊕Γj)(T⊕I) = LjT⊕Γj = Λj⊕Γj,
∀j ∈ N . So {Λj ⊕ Γj : j ∈ N} is a g-Riesz basis for H ⊕M . �

The following theorem is a collection of simple but useful facts about g-frames
which we may need in the sequel. Since most of them can be proved straightfor-
wardly, we only give the proofs of the last two statements.
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Theorem 4.6. (i) If {Λj : j ∈ N} is a g-frame and T is a co-isometry (that is
T ∗ is an isometry), then {ΛjT

∗ : j ∈ N} is a g-frame. Moreover, {ΛjT
∗ : j ∈ N}

is a normalized tight g-frame if {Λj : j ∈ N} is.
(ii) Suppose that {Λj : j ∈ N} and {Γj : j ∈ N} are normalized tight g-frames
and suppose that T is a linearly bounded operator which satisfies Γj = ΛjT

∗,
∀j ∈ N . Then T is a co-isometry. If T is invertible, then it is unitary.
(iii) If {Λj : j ∈ N} and {Γj : j ∈ N} are normalized tight g-frames for Hilbert
spaces H and M respectively and {Λj ⊕ Γj : j ∈ N} is a normalized tight g-
frame for H ⊕M . If {Lj : j ∈ N} is a normalized tight g-frame for M which is
unitarily equivalent to {Γj : j ∈ N}, then {Λj ⊕ Lj : j ∈ N is also a normalized
tight g-frame for H ⊕M .
(iv) If {Λj : j ∈ N} is a g-frame which is also a g-basis, then it is a g-Riesz
basis.
(v) If {Λj : j ∈ N} is both a g-Riesz basis and a normalized tight g-frame, then
it is a g-orthonormal basis.

Proof. (iv) This statement has been proved in [11, Lemma 2.16]. Now we give
a different new proof by using the dilation results. By Theorem 4.5, there is a
normalized tight g-frame {Γj : j ∈ N} for a Hilbert space M such that {Λj⊕Γj :
j ∈ N} is a g-Riesz basis for H ⊕M . Let P be the orthogonal projection from
H ⊕M onto H and let z ∈ M . Since 0H ⊕ z ∈ H ⊕M , there exists a sequence
{gj : j ∈ N} with gj ∈ Hj, ∀j ∈ N , such that 0H ⊕ z =

∑
j∈N (Λj ⊕Γj)

∗gj. Then

0H = P (0H ⊕ z) = P
∑
j∈N

(Λj ⊕ Γj)
∗gj =

∑
j∈N

Λ∗jgj.

Since {Λj : j ∈ N} is a g-basis for H, gj = 0 for any j ∈ N . So z = 0. Hence
M = {0} which implies that {Λj : j ∈ N} is a g-Riesz basis for H.
(v) By Lemma 2.10, there is an invertible operator A in B(H) such that {ΛjA :
j ∈ N} is a g-orthonormal basis for H. Since {Λj : j ∈ N} is a normalized tight
g-frame for H, by (ii) we know that A is a unitary operator. Thus {Λj : j ∈ N}
is a g-orthonormal basis for H. �

The following result shows that in general the dilation of a g-frame is unique
in the sense of similarity.

Theorem 4.7. Let {Λj : j ∈ N} be a g-frame for H. Suppose that {Γj : j ∈ N}
is a g-frame for Hilbert space M and {Lj : j ∈ N} is a g-frame for Hilbert
space N such that {Λj ⊕ Γj : j ∈ N} and {Λj ⊕ Lj : j ∈ N} are similar to a
g-orthonormal basis for H ⊕M and H ⊕ N respectively. Then there exists an
invertible operator A ∈ B(M,N) such that Lj = ΓjA, ∀j ∈ N .

Proof. Let T1, T2, S1, S2 be invertible operators such that {(Λj ⊕ Γj)(T1 ⊕ T2) :
j ∈ N} and {(Λj ⊕ Lj)(S1 ⊕ S2) : j ∈ N} are g-orthonormal bases for H ⊕M
and H ⊕ N respectively. For any j ∈ N let ΛjT1 = Fj, ΓjT2 = Gj, ΛjS1 = Ej,
LjS2 = Kj. Then {Fj : j ∈ N}, {Gj : j ∈ N}, {Ej : j ∈ N}, {Kj : j ∈ N}
are normalized tight g-frames. Since Fj = ΛjT1 = (EjS

−1
1 )T1 = Ej(S

−1
1 T1),

{Fj : j ∈ N} is similar to {Ej : j ∈ N}. By Theorem 4.6 (ii), we know that
U = S−1

1 T1 is unitary. Thus Fj⊕Kj = (Ej⊕Kj)(U⊕I). Since U⊕I is a unitary
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operator on H ⊕N , {Fj ⊕Kj : j ∈ N} is a g-orthonormal basis for H ⊕N . By
Theorem 4.3, there exists a unitary operator V ∈ B(M,N) such that Kj = GjV
for any j ∈ N . Thus LjS2 = ΓjT2V for any j ∈ N . Let A = T2V S

−1
2 , then

Lj = ΓjA for any j ∈ N . �

The last two results in this section are two interesting results which are closely
related to the dilations of normalized tight g-frames.

Theorem 4.8. Let {Λj : j ∈ N} and {Γj : j ∈ N} be normalized tight g-frames
for Hilbert spaces H and K respectively. If {Λj : j ∈ N} and {Γj : j ∈ N} are
unitarily equivalent, then {Λj ⊕ Γj : j ∈ N} is not g-complete in H ⊕ K with
respect to {Hj : j ∈ N}.
Proof. Let U ∈ B(H,K) be a unitary operator such that ΛjU = Γj for any
j ∈ N . Then U ⊕ I is a unitary operator from H ⊕ K onto K ⊕ K. Since
(Λj ⊕ Γj)(U ⊕ I) = ΛjU ⊕ ΓjI = Γj ⊕ Γj for any j ∈ N and {Γj ⊕ Γj : j ∈ N}
is not g-complete in K ⊕K since x⊕ (−x)⊥span{(Γj ⊕ Γj)

∗gj : gj ∈ Hj, j ∈ N}
for any x ∈ K and x 6= 0. It follows that {Λj ⊕ Γj : j ∈ N} is not g-complete in
H ⊕K. �

Theorem 4.9. Suppose that {Λj : j ∈ N} and {Γj : j ∈ N} are normalized
tight g-frames for Hilbert spaces H and K respectively. If {Λj ⊕ Γj : j ∈ N}
is a normalized tight g-frame sequence, i.e., it is a normalized tight g-frame for
span{(Λj ⊕Γj)

∗gj : gj ∈ Hj, j ∈ N}, then it is in fact a normalized tight g-frame
for H ⊕K.

Proof. Since {Λj ⊕ Γj : j ∈ N} is a normalized tight g-frame for span{(Λj ⊕
Γj)
∗gj : gj ∈ Hj, j ∈ N}, for any fixed j ∈ N and gj ∈ Hj, we have

(Λj ⊕ Γj)
∗gj =

∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(Λj ⊕ Γj)
∗gj

=
∑
n∈N

(Λn ⊕ Γn)∗(ΛnΛ∗j ⊕ ΓnΓ∗j)gj

=
∑
n∈N

(Λ∗n ⊕ Γ∗n)(ΛnΛ∗jgj + ΓnΓ∗jgj)

=
∑
n∈N

Λ∗n(ΛnΛ∗jgj + ΓnΓ∗jgj)⊕
∑
n∈N

Γ∗n(ΛnΛ∗jgj + ΓnΓ∗jgj).

Since {Λj : j ∈ N} and {Γj : j ∈ N} are normalized tight g-frames for H and K
respectively, for ∀j ∈ N and gj ∈ Hj, we have

Λ∗jgj =
∑
n∈N

Λ∗nΛnΛ∗jgj and Γ∗jgj =
∑
n∈N

Γ∗nΓnΓ∗jgj.

So

Λ∗jgj ⊕ Γ∗jgj =
∑
n∈N

Λ∗nΛnΛ∗jgj ⊕
∑
n∈N

Γ∗nΓnΓ∗jgj.

It follows that ∑
n∈N

Λ∗nΓnΓ∗jgj = 0 and
∑
n∈N

Γ∗nΛnΛ∗jgj = 0.
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So, for ∀j ∈ N and gj ∈ Hj, we have

Λ∗jgj ⊕ 0K =
∑
n∈N

Λ∗nΛnΛ∗jgj ⊕
∑
n∈N

Γ∗nΛnΛ∗jgj

=
∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(Λ∗jgj ⊕ 0K).

and

0H ⊕ Γ∗jgj =
∑
n∈N

Λ∗nΓnΓ∗jgj ⊕
∑
n∈N

Γ∗nΓnΓ∗jgj

=
∑
n∈N

(Λn ⊕ Γn)∗(Λn ⊕ Γn)(0H ⊕ Λ∗jgj).

It follows that

Λ∗jgj ⊕ 0K , 0H ⊕ Γ∗jgj ∈ span{(Λn ⊕ Γn)∗gn : n ∈ N}.

Now suppose that x ∈ H, y ∈ K and x ⊕ y ⊥ span{(Λn ⊕ Γn)∗gn : gn ∈ Hn, n ∈
N}. Then x ⊕ y ⊥ Λ∗jgj ⊕ 0K and x ⊕ y ⊥ 0H ⊕ Γ∗jgj, ∀gj ∈ Hj and ∀j ∈ N .
So 〈x,Λ∗jgj〉 = 0 and 〈y,Γ∗jgj〉 = 0, ∀gj ∈ Hj and ∀j ∈ N . But span{Λ∗jgj : gj ∈
Hj, j ∈ N} = H and span{Γ∗jgj : gj ∈ Hj, j ∈ N} = K since {Λj : j ∈ N} and
{Γj : j ∈ N} are g-frames for H and K respectively. Hence x = 0H and y = 0K .
So x⊕y = 0H⊕0K . It implies that span{(Λn⊕Γn)∗gn : gn ∈ Hn, n ∈ N} = H⊕K.
So {Λn ⊕ Γn : n ∈ N} is a normalized tight g-frame for H ⊕K. �

5. Some properties of canonical duals of g-frames

In this section, we study the canonical duals of g-frames in Hilbert spaces.
Some interesting properties are established.

The following result is the main result in this section, which gives a general
method to compute the canonical duals of g-frames.

Theorem 5.1. Let {Λj : j ∈ N} be a g-frame for H. Then there exists a
unique operator S ∈ B(H) such that f =

∑
j∈N Λ∗jΛjSf for all f ∈ H. An

explicit formula for S is given by S = A∗A, where A is any invertible operator
in B(H,K) for some Hilbert space K with the property that {ΛjA

∗ : j ∈ N} is a
normalized tight g-frame for K. In particular, S is an invertible positive operator.

( We will denote ΛjS as Λ̃j in the sequel)

Proof. Let A be any invertible operator in B(H,K) for some Hilbert space K
with the property that {ΛjA

∗ : j ∈ N} is a normalized tight g-frame for K. Let
Γj = ΛjA

∗, ∀j ∈ N , and let S = A∗A ∈ B(H). Then∑
j∈N

Λ∗jΛjA
∗Af =

∑
j∈N

Λ∗jΓjAf =
∑
j∈N

(A−1Γ∗j)ΓjAf

= A−1
∑
j∈N

Γ∗jΓjAf = A−1(Af) = f.
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So S = A∗A satisfies the requirement. For the uniqueness, suppose that T ∈
B(H) satisfies that for any f ∈ H, f =

∑
j∈N Λ∗jΛjTf . Then

f =
∑
j∈N

Λ∗jΛjTf =
∑
j∈N

(A−1Γ∗j)(Γj(A
∗)−1)Tf

= A−1
∑
j∈N

Γ∗jΓj(A
∗)−1Tf = A−1((A∗)−1Tf).

It follows that A−1(A∗)−1T = I. So T = A∗A = S. �

All the following results can be viewed as some applications of the above the-
orem.

Corollary 5.2. Suppose that {Λj : j ∈ N} is a g-frame for K and T : H → K

is an invertible operator. Then Λ̃jT = Λ̃j(T
−1)∗ for any j ∈ N . If T is a unitary

operator then Λ̃jT = Λ̃jT for any j ∈ N .

Proof. Let S ∈ B(H) such that Λ̃j = ΛjS, ∀j ∈ N . Then for any f ∈ H, we
have

f =
∑
j∈N

Λ∗j Λ̃jf =
∑
j∈N

Λ∗jΛjSf =
∑
j∈N

Λ∗jΛj(TT
−1)Sf.

So

T ∗f = T ∗
∑
j∈N

Λ∗jΛj(TT
−1)Sf

=
∑
j∈N

T ∗Λ∗jΛj(TT
−1)Sf =

∑
j∈N

(ΛjT )∗(ΛjT )T−1Sf.

Hence f =
∑

j∈N (ΛjT )∗(ΛjT )T−1S(T ∗)−1f . It follows that

Λ̃jT = ΛjT (T−1S(T ∗)−1) = ΛjS(T ∗)−1 = Λ̃j(T
∗)−1,∀j ∈ N .

In the case that T is unitary, we have that T ∗ = T−1. So (T ∗)−1 = T and then

Λ̃jT = Λ̃jT for any j ∈ N . �

Theorem 5.3. Let {Λj : j ∈ N} be a g-frame for H and let S be the unique

positive operator in B(H) such that ΛjS = Λ̃j for any j ∈ N . Let P be an

orthogonal projection in B(H). Then Λ̃jP = Λ̃jP for any j ∈ N if and only if
PS = SP .

Proof. ⇒: Since {ΛjP : j ∈ N} is a g-frame for PH, by Theorem 5.1, there exists

a unique positive operator T ∈ B(PH) such that ΛjP ·T = Λ̃jP for every j ∈ N .

Since Λ̃jP = Λ̃jP , we have

ΛjP · T = Λ̃jP = Λ̃jP = ΛjSP, ∀j ∈ N .
So (PT )∗Λ∗j = (SP )∗Λ∗j , ∀j ∈ N . Since {Λj : j ∈ N} is a g-frame for H,
span{Λ∗j(Hj) : j ∈ N} = H. It implies that (PT )∗ = (SP )∗. Hence PT = SP .
It follows that PT = PSP . Thus PSP = SP . Taking adjoint on both sides, we
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get PSP = PS. Hence PS = SP .
⇐: Since SP = PS, for any f ∈ PH we have

f =
∑
j∈N

Λ∗j Λ̃jf.

So

f = Pf =
∑
j∈N

PΛ∗j Λ̃jf =
∑
j∈N

PΛ∗j Λ̃jPf

=
∑
j∈N

(ΛjP )∗(ΛjS)Pf =
∑
j∈N

(ΛjP )∗(ΛjP )Sf.

So Λ̃jP = ΛjPS = ΛjSP = Λ̃jP , ∀j ∈ N . �

The following corollary is obvious, we leave the details to readers.

Corollary 5.4. Let {Λj : j ∈ N} be a g-frame for H. Then {Λj : j ∈ N} is a

tight g-frame if and only if Λ̃jP = Λ̃jP , ∀j ∈ N and for all orthogonal projections
P ∈ B(H).

The last result reveals an interesting property about the duals of a g-frame,
i.e., different duals of a g-frame are never similar.

Theorem 5.5. Suppose that {Λj : j ∈ N} is a g-frame and {Γj : j ∈ N} is an
alternate dual g-frame for {Λj : j ∈ N}. If T ∈ B(H) is an invertible operator
such that {ΓjT : j ∈ N} is also a dual g-frame of {Λj : j ∈ N}, then T = I. So
different dual g-frames of a given g-frame never similar.

Proof. Since for every f ∈ H, we have

Tf =
∑
j∈N

Λ∗jΓjTf = f.

The first equality is based on the fact that {Γj : j ∈ N} is a dual g-frame of
{Λj : j ∈ N}. The second equality is based on the fact that {ΓjT : j ∈ N} is a
dual g-frame of {Λj : j ∈ N}. So T = I. �
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