

Banach J. Math. Anal. 9 (2015), no. 4, 395-404
http://doi.org/10.15352/bjma/09-4-20
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

POSITIONS IN ℓ_{1}

JESÚS M. F. CASTILLO ${ }^{1}$, MARILDA A. SIMÕES ${ }^{2}$
Communicated by M. Gonzalez Ortiz

Abstract

We treat several questions related to the positions of subspaces of ℓ_{1}. Among them, we show that all quotients ℓ_{1} / ℓ_{1} have the Schur property and that a nontrivial twisted sum of ℓ_{1} and c_{0} cannot be isomorphic to the direct product $\ell_{1} \oplus c_{0}$.

1. Introduction

This paper can be considered a spin-off of [11] motivated by a question of Pełczyński: Inside ℓ_{1} there are complemented copies of ℓ_{1} that yield quotients isomorphic to ℓ_{1}. On the other hand, after Bourgain's paper [3], we know that ℓ_{1} contains uncomplemented copies of itself and that the quotient space $\mathcal{B}^{*}=\ell_{1} / \ell_{1}$ thus obtained is not even an \mathcal{L}_{1}-space. How many different quotients ℓ_{1} / ℓ_{1} are there?

Let us put the question in proper context. Let Y and X be Banach spaces. An embedding $i: Y \rightarrow X$ is an into isomorphism with infinite codimensional range; i.e., $X / i(Y)$ is infinite dimensional. A position of Y in X comes defined by a given embedding $i: Y \rightarrow X$.

Definition 1. Two positions $a: Y \rightarrow X$ and $b: Y \rightarrow X$ are said to be equivalent if there exists an automorphism $\sigma: X \rightarrow X$ such that $\sigma a=b$.

This definition has an homological root. Recall that an exact sequence

$$
\begin{equation*}
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

Date: Received: Dec. 7, 2014; Revised: Mar. 20, 2015; Accepted: Mar. 30, 2015.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 46A22; Secondary 46B04, 46B08, 46B26.
Key words and phrases. Dunford-Pettis property, positions in Banach spaces, twisted sum of Banach spaces.
is a diagram formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding. Which, thanks to the open mapping theorem, is a rather visual form of saying that Y is isomorphic to a subspace of X so that the corresponding quotient $X / j(Y)$ is isomorphic to Z. The exact sequence above is said to split, or trivial, if $j(Y)$ is complemented in X; and it is said to be non-trivial if it does not split. The middle space X is usually called a twisted sum of Y and Z. When the sequence splits then X is isomorphic to the product space $Y \oplus Z$ something we write as $X \simeq Y \oplus Z$. When the sequence is nontrivial the twisted sum space is usually called $Y \oplus_{\Omega} Z$, to indicate that the direct sum space is "twisted" in some way Ω. We use the notation $\operatorname{Ext}(Z, Y)=0$ to mean that every exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ splits.

Equivalent embeddings corresponds to the existence of isomorphisms σ, γ making commutative the diagram

The definition of equivalent positions corresponds to Kalton's notion of "strongly equivalent" embeddings [15], and is consistent with Moreno's notion of automorphy index introduced in [20] as an attempt to quantify the problem of how many equivalent positions Y admits in X.

Definition 2. Two positions a, b of Y into X are said to be isomorphic if there is an automorphism σ in X such that $\sigma(a Y)=b Y$.

This definition corresponds to Kalton's notion [15] of "equivalent embeddings". Or else, in the language of [10], that the two exact sequences in (1.3) are isomorphically equivalent; i.e., : there exist isomorphisms α, σ, γ making commutative the diagram

It is thus clear that equivalent positions are isomorphic, although isomorphic positions can be non-equivalent:

An example of two isomorphically equivalent but not equivalent sequences. Consider $\imath: \ell_{1} \rightarrow \ell_{1}$ the identity and $u: \ell_{1} \rightarrow \ell_{1}$ an embedding providing an uncomplemented copy of ℓ_{1} in ℓ_{1}. The exact sequences

$$
0 \longrightarrow \ell_{1} \oplus \ell_{1} \xrightarrow{\imath, u} \ell_{1} \oplus \ell_{1} \longrightarrow Z \longrightarrow 0
$$

and

$$
0 \longrightarrow \ell_{1} \oplus \ell_{1} \xrightarrow{u, i} \ell_{1} \oplus \ell_{1} \longrightarrow Z \longrightarrow 0
$$

are isomorphically equivalent: the isomorphism $\sigma(x, y)=(y, x)$ makes the diagram

commutative. The sequences are not equivalent since no automorphism $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ of $\ell_{1} \oplus \ell_{1}$ can verify $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)(\imath, u)=(u, \imath)$, since this means

$$
\alpha \imath x+\beta u y=u x
$$

$$
\gamma \imath x+\delta u y=\imath y
$$

Taking $x=0$ one gets $\delta u=\imath$, so there is a projection through u, against the hypothesis.

2. Preliminaries

We will need a few facts concerning the behavior of exact sequences and commutative diagrams. The first of them is that given an exact sequence $0 \rightarrow Y \rightarrow$ $X \rightarrow Z \rightarrow 0$ and an operator $t: Y \rightarrow B$ there is a commutative diagram (usually called a push-out diagram)

In a push-out diagram, the lower exact sequence splits if and only if t can be extended to an operator $X \rightarrow B$; that is, there is an operator $T: X \rightarrow B$ so that $T_{\mid Y}=t$ [9]. Since every separable Banach space Z admits a quotient map $q: \ell_{1} \rightarrow Z$, the standard lifting properties of ℓ_{1} yield that every exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is part of a push-out diagram

and thus the exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ splits if and only if t can be extended to an operator $\ell_{1} \rightarrow Y$. The second fact we will need is the diagonal principle obtained in [10]
Proposition 2.1. Let $\imath: Y \rightarrow X$ and $j: Y \rightarrow X^{\prime}$ be into isomorphisms between Banach spaces. If there exist operators $I: X^{\prime} \rightarrow X$ and $J: X \rightarrow X^{\prime}$ such that $I j=\imath$ and $J_{\imath}=j$ then the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow Y \longrightarrow X \oplus X^{\prime} \longrightarrow(X / Y) \oplus X^{\prime} \longrightarrow 0 \\
& \| \longrightarrow Y \longrightarrow X^{\prime} \oplus X \longrightarrow\left(X^{\prime} / Y\right) \oplus X \longrightarrow 0
\end{aligned}
$$

are isomorphically equivalent.
See [10] for a homological proof and [2] for a proof in the classical language.

3. Peeczyński's Problem about positions in ℓ_{1}

Given two spaces Y, X it is apparently unknown whether the fact that all positions of Y into X are isomorphic implies that all of them are equivalent. It is also clear that a complemented and ancomplemented copy of Y inside X are in non-isomorphic positions. This -in combination with Bourgain's construction of an uncomplemented copy of ℓ_{1} inside $\ell_{1}-$ give form to what is probably the most interesting open problem, formulated by Pełczyński [21]: Are there other "different" copies of ℓ_{1} inside ℓ_{1} ? Which can thus be transformed in: How many non-isomorphic positions does ℓ_{1} admit in ℓ_{1} ? Recall that in [11, Cor. 3.16] it was proved that there is a continuum of non-equivalent positions of ℓ_{1} inside ℓ_{1}. One has:

Lemma 3.1. Two isomorphic subspaces A, B of ℓ_{1} are in isomorphic positions if and only if ℓ_{1} / A and ℓ_{1} / B are isomorphic

Proof. Let $i: Y \rightarrow \ell_{1}$ be a position of Y into ℓ_{1} and let $j: Y \rightarrow \ell_{1}$ be another. It is clear that if they are isomorphic then $\ell_{1} / i Y$ is isomorphic to $\ell_{1} / j Y$. Conversely: As it is well known, every separable Banach space X admits a quotient map $q: \ell_{1} \rightarrow X$, and its kernel $\operatorname{ker} q$ is uniquely defined up to isomorphisms [19, Thm. 2.f.8]. Moreover, it can be proved that all the kernels of all quotients $\ell_{1} \rightarrow X$ are in isomorphic positions [8]. This concludes the proof.

Thus, Pełczyński's question can be reformulated as:
Problem 1. How many non-isomorphic quotients ℓ_{1} / ℓ_{1} do there exist?
Since the kernel $\operatorname{ker} q$ of a quotient $\operatorname{map} q: \ell_{1} \rightarrow X$ is uniquely defined, let us therefore call it $K(X)$. This space $K(X)$ can however admit different positions in ℓ_{1}. Actually, it is tempting to conjecture that no infinite dimensional closed subspace of ℓ_{1} admits a unique isomorphic position. If one, additionally fixes some condition on the quotient, there is a nice result of Lindenstrauss [18], see also [10], asserting:
Proposition 3.2. Let X, Y be two separable \mathcal{L}_{1}-spaces. Then $K(X) \simeq K(Y)$ if and only if $X \simeq Y$.

Since there are [18, 12] actually $2^{\aleph_{0}}$ non-isomorphic separable \mathcal{L}_{1} spaces, there are $2^{\aleph_{0}}$ non-isomorphic subspaces of ℓ_{1} in a "restrictedly unique" (whatever this could mean) isomorphic position. But, as Bourgain's example shows, ℓ_{1} admits two non-isomorphic positions; in one of them the quotient space is ℓ_{1} and in the other it cannot be even an \mathcal{L}_{1}-space.

Thus, an approach to the problem would be to study which properties of the quotient space could distinguish two copies of ℓ_{1} inside ℓ_{1}. The two currently known examples of quotients ℓ_{1} / ℓ_{1} are both duals of subspaces of c_{0}, hence they have the Schur property. Actually one has:

Proposition 3.3. Every quotient ℓ_{1} / ℓ_{1} has the Schur property.
Proof. This is a combination of two beautiful results of Kalton: The first one is [13, Prop.5.1], asserting that if $\operatorname{Ext}(X, C[0,1])=0$ then X has the Schur property. This can be reformulated as: if every operator t in a push-out diagram

can be extended to a linear continuous operator $\ell_{1} \rightarrow C(K)$ then X has the Schur property. The second one is [14, Cor. 10.2] asserting that given an embedding $\ell_{1} \rightarrow E$ of ℓ_{1} into a separable space E, any operator $\ell_{1} \rightarrow C[0,1]$ can be extended to an operator $E \rightarrow C[0,1]$. Consider now an embedding $j: \ell_{1} \rightarrow \ell_{1}$ and an exact sequence

$$
0 \longrightarrow C[0,1] \longrightarrow X \longrightarrow \ell_{1} / j \ell_{1} \longrightarrow 0 .
$$

Form the push-out diagram

and observe that t admits an extension $\ell_{1} \rightarrow C[0,1]$; which immediately implies that the lower sequence splits and thus $\ell_{1} / j \ell_{1}$ has the Schur property.

A similar argument yields a partial solution to [10, Problem B and Conjecture $\mathrm{C}]$: Does $C[0,1] / \ell_{1}$ have the Dunford-Pettis property? Recall that a Banach space X is said to have the Dunford-Pettis property (in short, DPP) if weakly compact operators $X \rightarrow c_{0}$ are completely continuous. Two simple facts about the DPP that we need to know are that complemented subspaces and products of spaces with DPP have DPP and that spaces with the Schur property have DPP. The simplest examples of spaces having DPP are the \mathcal{L}_{1} and \mathcal{L}_{∞} spaces. Observe that $C[0,1] / \ell_{1}$ is not a space uniquely defined since it depends on the position of ℓ_{1} inside $C[0,1]$. One however has:

Proposition 3.4. All quotients $C[0,1] / \ell_{1}$ have or fail the DPP simultaneously.
Proof. Indeed, consider two positions i, j of ℓ_{1} inside $C[0,1]$ and look at the diagram

By the above mentioned result in [14], j admits an extension to an operator $\phi_{j}: C[0,1] \rightarrow C[0,1]$ through i, and i has an extension $\phi_{i}: C[0,1] \rightarrow C[0,1]$
through j. In that situation, the diagonal principle [10, Thm.2] applies to get a commutative diagram

in which both β, γ are isomorphisms. So $C[0,1] / i \ell_{1} \oplus C[0,1] \simeq C[0,1] / j \ell_{1} \oplus$ $C[0,1]$ and since the DPP is stable by products and complemented subspaces the conclusion is clear.

This completes the results in [10]:
Corollary 3.5. $C[0,1] / \ell_{1}$ has $D P P$ if and only if ℓ_{∞} / ℓ_{1} has $D P P$.
Proof. Indeed, from [10, Prop. 4.3 (2)] it follows that if ℓ_{∞} / ℓ_{1} has DPP then also $C[0,1] / \ell_{1}$ has DPP (regardless of the embedding $\ell_{1} \rightarrow C[0,1]$). For the converse implication apply $(3) \Rightarrow(1)$ in $[10$, Prop. 4.4$]$ with the choice $X=c_{0}$.

Which is interesting since the space ℓ_{∞} / ℓ_{1} is uniquely defined [19, Thm.2.f.12]. Let us moreover observe that the role of $C[0,1]$ in the results above cannot be played by an arbitrary \mathcal{L}_{∞}-space since not every operator $\ell_{1} \rightarrow \mathcal{L}_{\infty}$ extends to separable superspaces: Following [4], there is an embedding $j: \ell_{1} \rightarrow \mathcal{L}_{\infty}\left(\ell_{1}\right)$ of ℓ_{1} into an \mathcal{L}_{∞}-space having the Schur property. Consider any embedding $i: \ell_{1} \rightarrow C[0,1]$ and form the diagram

$$
\begin{aligned}
& \ell_{1} \xrightarrow{i} C[0,1] \\
& \| \\
& \ell_{1} \xrightarrow[j]{\longrightarrow} \mathcal{L}_{\infty}\left(\ell_{1}\right) .
\end{aligned}
$$

The operator j cannot be extended through i since operators $C[0,1] \rightarrow \mathcal{L}_{\infty}\left(\ell_{1}\right)$ must be compact.

4. SUBSPACES OF ℓ_{1} IN DIFFERENT NON-ISOMORPHIC POSITIONS

In general, it is clear that for any Banach space X not containing ℓ_{1} complemented, $K(X)$ admits at least two non isomorphic positions: one gives X as quotient and the other $X \oplus \ell_{1}$. A specially interesting case is that of $X=c_{0}$. In this case a position of $K\left(c_{0}\right)$ yields as quotient c_{0}, and other yields $\ell_{1} \oplus c_{0}$. We will show below that $K\left(c_{0}\right) \simeq K\left(\ell_{1} \oplus_{\Omega} c_{0}\right)$ for all twisted sum spaces $\ell_{1} \oplus_{\Omega} c_{0}$. Moreover, while no current method is nowadays able to decide when two twisted sum spaces $Y \oplus_{\Omega} Z$ and $Y \oplus_{\omega} Z$ are isomorphic, we are able to show:

Proposition 4.1. A nontrivial twisted sum $\ell_{1} \oplus_{\Omega} c_{0}$ cannot be isomorphic to $A_{1} \oplus A_{0}$ with $A_{1} \simeq \ell_{1}$ and $A_{0} \simeq c_{0}$.

Proof. Otherwise, the exact sequence $0 \rightarrow \ell_{1} \rightarrow \ell_{1} \oplus_{\Omega} c_{0} \rightarrow c_{0} \rightarrow 0$ adopts the form $0 \rightarrow \ell_{1} \rightarrow A_{1} \oplus A_{0} \rightarrow c_{0} \rightarrow 0$. The following claim implies that the sequence
splits:
Claim A subspace Y of $\ell_{1} \oplus c_{0}$ isomorphic to ℓ_{1} such that $\left(\ell_{1} \oplus c_{0}\right) / Y$ is isomorphic to c_{0} is complemented.

Proof of the Claim. Let p be the canonical projection of $\ell_{1} \oplus c_{0}$ onto ℓ_{1}. Since Y and c_{0} are incomparable, any common subspace is finite dimensional and thus we can assume it is 0 . So the restriction of p to Y is an into isomorphism ϕ. We therefore get the commutative diagram

where q is surjective, so H is isomorphic to a subspace of c_{0}. Since Y is isomorphic to ℓ_{1}, we will conclude observing that a sequence $0 \rightarrow \ell_{1} \rightarrow \ell_{1} \rightarrow H \rightarrow 0$ cannot exist when H is an infinite dimensional subspace of c_{0}, which is clear after Proposition 3.3. Thus, it only remains the possibility that H is finite dimensional; in which case $\phi(Y)$ is complemented in ℓ_{1} by a projection P, what makes Y complemented in $\ell_{1} \oplus c_{0}$ by $\phi^{-1} P p$. This concludes the proof of the claim, and that of the theorem.

We now show that $K\left(c_{0}\right) \simeq K\left(\ell_{1} \oplus c_{0}\right) \simeq K\left(\ell_{1} \oplus_{\Omega} c_{0}\right)$ for every twisted sum of ℓ_{1} and c_{0} : indeed, let $0 \rightarrow \ell_{1} \rightarrow \ell_{1} \oplus_{\Omega} c_{0} \xrightarrow{\pi} c_{0} \rightarrow 0$ be an exact sequence with quotient map π, and let $q: \ell_{1} \rightarrow c_{0}$ be a quotient map. Observe the following commutative diagram:

in which Q is a lifting of q through π (i.e., $\pi Q=q$) and $(i d \oplus Q)(x, y)=x+Q y$. The standard use of the snake's lemma [8] allows one to complete the diagram with a new exact sequence formed by the kernels of the vertical maps. This yields
the commutative diagram

Therefore the arrow $K\left(\ell_{1} \oplus_{\Omega} c_{0}\right) \rightarrow K\left(c_{0}\right)$ is an isomorphism. This shows that the subspace $K\left(c_{0}\right) \simeq K\left(\ell_{1} \oplus c_{0}\right) \simeq K\left(\ell_{1} \oplus_{\Omega} c_{0}\right)$ admits three non-isomorphic positions in ℓ_{1}.

A different type of non-isomorphic position can be obtained as follows: Bourgain's construction [3] of an uncomplemented copy of ℓ_{1} inside ℓ_{1} has a local nature and what in fact provides is an uncomplemented subspace \mathcal{B} of c_{0} so that $c_{0} / \mathcal{B}=c_{0}$, which by duality provides the nontrivial exact sequence $0 \rightarrow \ell_{1} \rightarrow \ell_{1} \rightarrow \mathcal{B}^{*} \rightarrow 0$. Observe that \mathcal{B}^{*} cannot be an \mathcal{L}_{1} space, so \mathcal{B} cannot be an \mathcal{L}_{∞} space. The commutative diagram

in which the lower sequence splits by Sobczyk's theorem, shows that $K\left(c_{0}\right) \simeq$ $K\left(c_{0} \oplus \mathcal{B}^{*}\right)$. The space \mathcal{B}^{*} is a dual of a subspace of c_{0}, and thus has the Schur property; hence $c_{0} \oplus \mathcal{B}^{*}$ cannot be c_{0} since it does not contain Schur subspaces. Now, $c_{0} \oplus \mathcal{B}^{*}$ cannot be either $c_{0} \oplus \ell_{1}$: Otherwise, \mathcal{B}^{*} would be a complemented subspace of $c_{0} \oplus \ell_{1}$; since these two spaces are incomparable, by [19], $\mathcal{B}^{*}=A \oplus B$, where A is a complemented subspace of c_{0} and B a complemented subspace of
ℓ_{1}; i.e., ℓ_{1}. Since \mathcal{B}^{*} is Schur, A must be finite dimensional, so $\mathcal{B}^{*}=\ell_{1}$, which is impossible since \mathcal{B}^{*} is not an \mathcal{L}_{1}-space.

Let us show that $c_{0} \oplus \mathcal{B}^{*}$ cannot be any other twisted sum space $\ell_{1} \oplus_{\Omega} c_{0}$ either. Assume the contrary: that $c_{0} \oplus \mathcal{B}=\ell_{1} \oplus_{\Omega} c_{0}$. Let p be the canonical projection of $c_{0} \oplus \mathcal{B}^{*}$ onto \mathcal{B}^{*}. Since ℓ_{1} and c_{0} are incomparable, we can assume again that their intersection is 0 . So the restriction of p to ℓ_{1} is an isomorphism. We therefore get the commutative diagram

where q is surjective, so H is isomorphic to a subspace of c_{0} by [1]. We will show below that a sequence $0 \rightarrow \ell_{1} \rightarrow \mathcal{B}^{*} \rightarrow H \rightarrow 0$ cannot exist unless H is finite dimensional. In that case, $\mathcal{B}^{*} \simeq \ell_{1}$, which is impossible. To show that a sequence $0 \rightarrow \ell_{1} \rightarrow \mathcal{B}^{*} \rightarrow H \rightarrow 0$ cannot exist, let us recall that Kalton and Pełczyński considered in [16] those Banach spaces X for which $\operatorname{Ext}\left(X, \ell_{2}\right)=0$; and, accordingly, let us say that a Banach space X is a Kalton-Pełczyński space (in short, KP) if $\operatorname{Ext}\left(X, \ell_{2}\right)=0$. The most prominent examples of KP-spaces are the \mathcal{L}_{1}-spaces. One can show:

Lemma 4.2. The quotient of a $K P$ space by an \mathcal{L}_{1}-space is a $K P$ space.
Proof. Let X be a KP-space and let $0 \rightarrow \mathcal{L}_{1} \rightarrow X \xrightarrow{q} Q \rightarrow 0$ be an exact sequence. An application of [10] yields that given an exact sequence $0 \rightarrow \ell_{2} \rightarrow E \rightarrow Q \rightarrow 0$ there is a commutative diagram

Since every operator $\mathcal{L}_{1} \rightarrow \ell_{2}$ is 2 -summing, it can be extended anywhere, which means that the lower sequence splits.

We conclude with the proof that no exact sequence $0 \rightarrow \ell_{1} \rightarrow \mathcal{B}^{*} \rightarrow H \rightarrow 0$ exists: In such a sequence the space H must be a KP-space. But, as we show now, $\operatorname{Ext}\left(H, \ell_{2}\right) \neq 0$ for every infinite dimensional subspace H of c_{0} : As it is wellknown (see [6, 4.2]) there exist nontrivial exact sequences $0 \rightarrow \ell_{2} \rightarrow E \rightarrow c_{0} \rightarrow 0$. Since H must contain c_{0}, and complemented, we can assume $H=c_{0} \oplus H$, thus $0 \rightarrow \ell_{2} \rightarrow E \oplus H \rightarrow H \rightarrow 0$ is the desired nontrivial exact sequence. We conjecture that there is an uncountable quantity of non-isomorphic twisted sums $\ell_{1} \oplus_{\Omega} c_{0}$, which would immediately imply that $K\left(c_{0}\right)$ can be placed in uncountably many non-isomorphic positions in ℓ_{1}. The problem here is that no current method is known to obtain a twisted sum $\ell_{1} \oplus_{\Omega} c_{0}$, apart from its existence. Indeed, those obtained in $[5,6,7]$ are actually non-constructive. Moreover, as we have already said, no current method is known to decide when two twisted sum
spaces are isomorphic.
Acknowledgement. The research of the first author has been supported in part by project MTM2013-C2-1-P.

References

1. D.E. Alspach, Quotients of c_{0} are almost isometric to subspaces of c_{0}, Proc. Amer. Math. Soc. 76 (1979) 285-289.
2. A. Avilés, F. Cabello, J.M.F. Castillo, M. González, Y. Moreno, Separably injective Banach spaces. Lecture Notes in Math. 2132, Springer; in press.
3. J. Bourgain, A counterexample to a complementation problem, Compo. Math. 43 (1981) 133-144.
4. J. Bourgain and G. Pisier, A construction of \mathcal{L}_{∞}-spaces and related Banach spaces, Bol. Soc. Bras. Mat. 14 (1983) 109-123.
5. Y.A. Brudnyi, and N. J. Kalton, Polynomial approximation on convex subsets of R^{n}. Constr. Approx. 16 (2000) 161-199.
6. F. Cabello Sánchez and J.M.F. Castillo, Uniform boundedness and twisted sums of Banach spaces, Houston J. Math. 30 (2004) 523-536.
7. F. Cabello Sánchez, J.M.F. Castillo, N.J. Kalton and D.T. Yost, Twisted sums with $C(K)$ spaces, Trans. Amer. Math. Soc. 355 (2003) 4523-4541.
8. J.M.F. Castillo, Banach spaces, à la recherche du temps perdu, Extracta Math. 15 (2000) 291-334.
9. J.M.F. Castillo and M. González, Three-space problems in Banach space theory, Lecture Notes in Math. 1667 (1997), Springer.
10. J.M.F. Castillo and Y. Moreno, On the Lindenstrauss-Rosenthal theorem, Israel J. Math. 140 (2004) 253-270.
11. J.M.F. Castillo and A. Plichko, Banach spaces in various positions. J. Funct. Anal. 259 (2010) 2098-2138.
12. W.B. Johnson and J. Lindenstrauss, Examples of \mathcal{L}_{1} spaces, Ark. Mat. 18 (1980) 101-106.
13. N.J. Kalton, On subspaces of c_{0} and extension of operators into $C(K)$-spaces, Q. J. Oxford 52 (2001) 313-328.
14. N.J. Kalton, Extension of linear operators and Lipschitz maps into $\mathcal{C}(K)$-spaces, New York J. Math. 13 (2007) 317-381.
15. N. Kalton, Automorphisms of $\mathcal{C}(K)$ spaces and extension of linear operators, Illinois J. Math. 52 (2008) 279-317.
16. N.J. Kalton, A. Pełczyński, Kernels of surjections from \mathcal{L}_{1}-spaces with an application to Sidon sets, Math. Ann. 309 (1997) 135-158.
17. J. Lindenstrauss, On a certain subspace of l_{1}, Bull. Polish Acad. Sci. 12 (1964) 539-542.
18. J. Lindenstrauss, A remark on \mathcal{L}_{1}-spaces Israel J. Math. 8 (1970), 80-82.
19. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin 1977.
20. Y. Moreno, The diagonal functors, Appl. Cat. Struct. 16 (2008) 617-627.
21. A. Pełczyński, personal communication.
${ }^{1}$ Departamento de Matematicas, Universidad de Extremadura, 06071 Badajoz, Spain.

E-mail address: castillo@unex.es
${ }^{2}$ Dipartimento di Matematica "G. Castelnuovo", Universitá di Roma "La Sapienza", P.le A. Moro 2, 00185 Roma, Italia.

E-mail address: simoes@mat.uniroma1.it

