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Abstract. Let Φ = (φn) be a Musielak-Orlicz function, X be a real Banach
space and A be any infinite matrix. In this paper, a generalized vector-valued
Musielak-Orlicz sequence space lAΦ(X) is introduced. It is shown that the space
is a complete normed linear space under certain conditions on the matrix A. It
is also shown that lAΦ(X) is a σ-Dedekind complete whenever X is so. We have
discussed some geometric properties, namely, uniformly monotone, uniform
Opial property for this space. Using the sequence of s-number (in the sense of
Pietsch), the operators of s-type lAΦ and operator ideals under certain conditions
on the matrix A are discussed.

1. Introduction

The theory of sequence spaces has several important applications in many branches
of mathematical analysis. The classical sequence space l2 is extended to lp, 1 <
p <∞ (p 6= 2) by Reisz [23], and further its generalizations to Lorentz sequence
space lp,q, for 0 < p, q < ∞ due to Hardy and Littlewood [8]. W. Orlicz [18]
has generalized the sequence space lp to Orlicz sequence space lφ with the help
of Orlicz function φ while Woo [26] has generalized the Orlicz sequence space to
modular sequence space. In recent years, many mathematicians are interested to
study the theory of sequence spaces generated by Cesàro mean, Orlicz function,
Musielak-Orlicz function or using the combination of these. The Cesàro-Orlicz
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sequence space is introduced by Lim and Lee [15]. Later on, Cui et al. [3] have
studied and discussed its basic topological properties as well as geometric prop-
erties. In 1990, Kamińska introduced Orlicz-Lorentz space [11] and after that
Foralewski et al. (2008, [4]) have introduced generalized Orlicz-Lorentz sequence
space. Srivastava and Ghosh [25] also studied vector valued sequence spaces using
Orlicz function.
With the help of s-numbers, many authors such as Pietsch [21], Carl [1] have
introduced and studied operator ideal over the sequence spaces. The theory of
operator ideal is important in spectral theory, the geometry of Banach spaces,
theory of eigenvalue distributions. The s-numbers, in particular, approximation
numbers of a bounded linear operator plays an important role in the study of com-
pactness, eigenvalue problem etc. Pietsch [19] studied the class of lp, 0 < p <∞
type operators and lp,q, 0 < p, q <∞ type operators. In 2012, Gupta and Acharya
[6] have introduced the class of lφ type operators. Recently, Gupta and Bhar [7]
studied generalized Orlicz-Lorentz sequence space and developed operator ideals
with the help of s-number. Maji and Srivastava [17] also introduced and studied
the class of s-type |A, p| operators using s-number and |A, p| space.
The natural question is: can we unify the sequence spaces and the various type
of operators described in the above paragraph? The present work is an attempt
in this direction. We have introduced a vector-valued new sequence space with
the help of sequence of Orlicz functions and an infinite matrix. It is shown that
sequence spaces such as Musielak-Orlicz, Cesàro-Orlicz, Orlicz-Lorentz. are the
particular cases with the suitable choice of an infinite matrix. We have proved
that the space is a complete normed linear space under certain conditions on the
matrix. We have also discussed some geometric properties, namely, uniformly
monotone, uniform Opial property for this space. With the help of s-number, we
have also developed operator ideals under certain conditions on the matrix.

2. preliminaries

Throughout the paper, we consider (X, ‖.‖) as a real Banach space and S(X) be
the unit sphere in X. Let l∞(X) = {x̄ = (xn) : xn ∈ X, sup

n≥1
‖xn‖ <∞}. Let w,

R, R+ and N stand for the set of all real sequences, the set of real numbers, the
set of all non-negative real numbers and the set of all natural numbers respec-
tively. A sequence space (λ, ‖.‖λ) is called a BK space if it is a Banach space
with continuous coordinates pn : λ→ R, i.e., pn(α) = αn for all α ∈ λ and every
n ∈ N, where α = (α1, α2, . . .). A BK-space (λ, ‖.‖λ) is called an AK-space if
α[n] → α, where α[n] = (α1, α2, . . . , αn, 0, 0, . . .), the nth section of α. An infinite
matrix A = (ank) is called a triangle if ann 6= 0 and ank = 0 for all k > n. The
following notations are used:
x|i stand for (x1, x2, . . . , xi, 0, 0, . . .) and x|N−i stand for (0, 0, . . . , 0, x(i+1), x(i+2), . . .),
where x ∈ w and i ∈ N.

Definition 2.1. [16] An Orlicz function φ : [0,∞)→ [0,∞) is a convex, nonde-
creasing, continuous function on [0,∞) such that φ(0) = 0, φ(t) > 0 for t > 0
and φ(t)→∞ as t→∞.
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Definition 2.2. [16] An Orlicz function φ is said to satisfy ∆2-condition at zero
(φ ∈ ∆2(0) for short) if there exist K > 0 and t0 > 0 such that φ(2t) ≤ Kφ(t)
for all t ∈ [0, t0].

Definition 2.3. [16] A sequence Φ = (φn), where each φn is an Orlicz function,
is said to be a Musielak-Orlicz function.

The Musielak-Orlicz sequence space lΦ ( see [13], [16]) generated by Φ = (φn)
is defined as

lΦ =
{
x = (xn) ∈ w :

∞∑
n=1

φn

( |xn|
σ

)
<∞ for some σ > 0

}
and convex modular %Φ is defined as %Φ(x) =

∞∑
n=1

φn(|xn|).

A Musielak-Orlicz function Φ = (φn) is said to satisfy the condition δ2 (Φ ∈ δ2

for short) if there exist K > 0, δ > 0 and a nonnegative scalar sequence (cn) ∈ l1
such that for each n ∈ N and all x ≥ 0,

φn(2x) ≤ Kφn(x) + cn

whenever φn(x) ≤ δ.
It is easy to check that Φ = (φn) ∈ δ2 if and only if for all β > 1 there exist

K > 0, δ > 0 and a nonnegative scalar sequence (cn) ∈ l1 such that for all n ∈ N
and x ≥ 0

φn(βx) ≤ Kφn(x) + cn

holds if φn(x) ≤ δ. For details on Musielak-Orlicz function, one can see [13], [16].
A Musielak-Orlicz function Φ = (φn) is said to satisfy the condition (∗) (see

[10]) if for any ε ∈ (0, 1) there exists δ > 0 such that

φn(u) < 1− ε implies φn((1 + δ)u) ≤ 1 for all n ∈ N and u ≥ 0. (2.1)

Definition 2.4. [12] A real Banach space X, endowed with partial order ≤ satis-
fying the properties x ≤ y implies x+ z ≤ y+ z for all x, y, z ∈ X and 0 ≤ tx for
0 ≤ x and t ∈ R+, is said to be a Banach lattice if ‖x‖ ≤ ‖y‖ whenever |x| < |y|
for x, y ∈ X, where |x| = sup{x,−x}, the absolute value of x.

Let X = (X,≤, ‖.‖) be a Banach lattice with a lattice norm ‖.‖. The positive
cone X+ of X is defined as X+ = {x ∈ X : 0 ≤ x}. A Banach lattice X is said
to be σ-Dedekind complete (σ-DC for short) if any nonnegative order bounded
sequence (xn) in X has supremum in X.

The norm ‖.‖ in a Banach lattice X is said to be strictly monotone if x, y ∈ X+

with y ≤ x and y 6= x, there holds ‖y‖ < ‖x‖ and the space X has strictly
monotone property. The norm ‖.‖ is said to be uniformly monotone (UM for
short) if for each ε > 0 there exists δ(ε) > 0 such that

‖x+ y‖ ≥ 1 + δ(ε),

for each x, y ∈ X+ with ‖x‖ = 1 and ‖y‖ ≥ ε. Then the space X has UM
property. A Banach lattice X is said to be an AL-space if ‖x + y‖ = ‖x‖ + ‖y‖
for all x, y ∈ X+. An element x ∈ X is said to be order continuous if for any
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sequence (xn) in X such that 0 ≤ xn ≤ |x| for all n ∈ N, x1 ≥ x2 ≥ . . . and
inf xn = 0, there holds ‖xn‖ → 0. The space X is said to be order continuous if
every element of X is order continuous. For details on Banach lattice, refer to
[9], [12].

A Banach space X is said to have Opial property if for every weakly null
sequence (xn) and for every x 6= 0 in X, we have

lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn + x‖.

A Banach space X is said to have the uniform Opial property if for every ε > 0
there exists µ > 0 such that

1 + µ ≤ lim inf
n→∞

‖xn + x‖

for any weakly null sequence (xn) ∈ S(X) and x ∈ X with ‖x‖ ≥ ε.

Let L be the class of all bounded linear operators between two arbitrary Banach
spaces and L(E,F ) be the space of all bounded linear operators from a Banach
space E to a Banach space F . We denote E

′
as the dual of E and x

′
as the

continuous linear functional on E. Define x′ ⊗ y : E → F by x′ ⊗ y(x) = x′(x)y
for all x ∈ E and y ∈ F .

Definition 2.5. (s-numbers of a bounded linear operator)([1], [21]) A
map s = (sn) : L → RN assigning to every operator T ∈ L a non-negative scalar
sequence (sn(T )) is called an s-number sequence if the following conditions are
satisfied:

(S1): monotonicity: ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0, for T ∈ L(E,F )
(S2): additivity: sm+n−1(S + T ) ≤ sm(S) + sn(T ), for S, T ∈ L(E,F ),
m,n ∈ N

(S3): ideal property: sn(RST ) ≤ ‖R‖sn(S)‖T‖, for some R ∈ L(F, F0), S ∈
L(E,F ) and T ∈ L(E0, E), where E0, F0 are arbitrary Banach spaces

(S4): rank property: if rank(T ) ≤ n then sn(T ) = 0
(S5): norming property: sn(I : ln2 → ln2 ) = 1, where I denotes the identity

operator on the n-dimensional Hilbert space ln2 .

We call sn(T ) the n-th s-number of the operator T . In particular the ap-
proximation number is an example of an s-number and the n-th approximation
number, denoted by an(T ), is defined as

an(T ) = inf
{
‖T − L‖ : L ∈ L(E,F ), rank(L) < n

}
.

Definition 2.6. ([21], p.90) An s-number sequence s = (sn) is called injective if,
given any metric injection J ∈ L(F, F0), sn(T ) = sn(JT ) for all T ∈ L(E,F ).

Definition 2.7. ([21], p.95) An s-number sequence s = (sn) is called surjective if,
given any metric surjection Q ∈ L(E0, E), sn(T ) = sn(TQ) for all T ∈ L(E,F ).

Definition 2.8. (Operator ideals) ([20], [22]) A sub collectionM of L is said
to be an operator ideal if each component M(E,F ) =M

⋂
L(E,F ) satisfies the

following conditions:
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(OI1) if x′ ∈ E ′, y ∈ F then x′ ⊗ y ∈M(E,F )
(OI2) if S, T ∈M(E,F ) then S + T ∈M(E,F )
(OI3) if S ∈M(E,F ), T ∈ L(E0, E) and R ∈ L(F, F0) then RST ∈M(E0, F0).

Definition 2.9. ([20], [22]) A function α :M→ R+ is said to be a quasi-norm
on the ideal M if the following conditions hold:

(QN1) if x′ ∈ E ′, y ∈ F then α(x′ ⊗ y) = ‖x′‖‖y‖
(QN2) if S, T ∈M(E,F ) then there exists a constant C ≥ 1 such that α(S+T ) ≤

C[α(S) + α(T )]
(QN3) if S ∈ M(E,F ), T ∈ L(E0, E) and R ∈ L(F, F0), then α(RST ) ≤

‖R‖α(S)‖T‖.
In particular if C = 1 then α becomes a norm on the operator ideal M.

An ideal M with a quasi-norm α, denoted by [M, α] is said to be a quasi-
Banach operator ideal if each component M(E,F ) is complete under the quasi-
norm α.

3. Main results

Let A = (ank) be an infinite real matrix, Φ = (φn) be a Musielak-Orlicz
function and X be a real Banach space. Now we introduce generalized Musielak-
Orlicz sequence space using an infinite matrix A = (ank) as

lAΦ(X) =
{
x̄ = (xk) ∈ l∞(X) :

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

σ

)
<∞ for some σ > 0

}
and

hAΦ(X) =
{
x̄ = (xk) ∈ l∞(X) :

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

σ

)
<∞ for all σ > 0

}
.

It can be proved that the space lAΦ(X) is a linear space and the space hAΦ(X) is
a linear subspace of lAΦ(X). If X = R then we write lAΦ and hAΦ instead of lAΦ(R)
and hAΦ(R) respectively. Let us define a function %AΦ on lAΦ(X) by

%AΦ(x̄) =
∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖
)
.

Let A be a class of infinite matrices A = (ank) such that each column of a matrix
is non zero, i.e., for each k there exists at least one n0 such that an0k 6= 0. If
A = (ank) ∈ A then it can be proved that the function %AΦ is a convex modular
on lAΦ(X).

Proposition 3.1. The following conditions are equivalent.
(1). lAΦ(X) 6= {0̄}.
(2). For some k ∈ N, (|ank|)∞n=1 ∈ lΦ.
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Proof. (1)⇒ (2).
Let 0̄ 6= x̄ ∈ lAΦ(X). Then there exists some l ∈ N such that xl ∈ X and
xl 6= 0. Clearly ȳ = (0, 0, . . . , 0, xl, 0, 0, . . .) ∈ lAΦ(X). Thus for some t > 0, we
have %AΦ(tȳ) <∞. Now

%AΦ(tȳ) =
∞∑
n=1

φn

(
t
∞∑
k=1

‖ankyk‖
)

=
∞∑
n=1

φn

(
t|anl|‖xl‖

)
.

Choose t0 = t‖xl‖ > 0. Then %AΦ(tȳ) =
∞∑
n=1

φn

(
t0|anl|

)
= %Φ

(
t0(|anl|)∞n=1

)
. Hence

(|anl|)∞n=1 ∈ lΦ.

(2)⇒ (1).
Let for some k ∈ N, (|ank|)∞n=1 ∈ lΦ. Define x̄ = (0, 0, . . . , 0, xl, 0, 0, . . .). Then

x̄ ∈ l∞(X). Now for k = l, t = ‖xl‖, %Φ
(
t(|anl|)∞n=1

)
=

∞∑
n=1

φn

(
‖xl‖|anl|

)
< ∞.

Again

%AΦ(1.x̄) =
∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖
)

=
∞∑
n=1

φn

(
‖xl‖|anl|

)
= %Φ

(
t(|anl|)∞n=1

)
<∞.

This implies x̄ ∈ lAΦ(X). This completes the proof. �

Applications:
The linear space lAΦ(X) contains many known sequence spaces as particular cases
with the suitable choice of the matrix A = (ank). For example:
1. Choose the matrix A = (ank) as an identity matrix and X = R, then lAΦ(X)
reduces to Musielak-Orlicz sequence space [13]. In addition, if for all n ∈ N,
φn = φ, an Orlicz function then the space gives Orlicz sequence space.
2. Choose the matrix A = (ank) as a Cesàro matrix of order 1 and X = R, then
lAΦ(X) reduces to Cesàro-Orlicz sequence space [14].

3. Choose the matrix A = (ank) such that ank = n
1
p
− 1

q for n = k and 0 otherwise,
where p, q > 0 and suppose the non-increasing rearrangement of x̄ = (xn) ∈
l∞(X), denoted by (x∗n) is given as

x∗n = inf{c ≥ 0 : |{i ∈ N : ‖xi‖ > c}| < n},
where the vertical bars indicate number of elements in the enclosed set, then
lAΦ(X) reduces to Orlicz-Lorentz space [5]. In addition, if φ(x) = xq, then the
space reduces to Lorentz space lp,q [21].
4. Choose φn = xp, 0 < p <∞ for all n and X = R, then lAΦ(X) reduces to A− p
spaces denoted by |A, p| studied by Rhoades [24].

Throughout the paper, we assume that A = (ank) ∈ A. Let x̄ ∈ lAΦ(X) and
define

‖x̄‖AΦ = inf
{
σ > 0 :

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

σ

)
≤ 1
}
. (3.1)
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Theorem 3.2. The space lAΦ(X) is a complete normed linear space with the norm
‖.‖AΦ as defined by (3.1).

Proof. First we prove that ‖.‖AΦ is a norm on the space lAΦ(X).
Let ‖x̄‖AΦ = 0. Then by definition given by (3.1), for all σ > 0 there exists C > 0
such that for all n

∞∑
k=1

‖ankxk‖

σ
≤ C ⇒ |ank|‖xk‖ ≤ Cσ

holds for all n and any arbitrary σ > 0. Thus ‖xk‖ = 0, hence xk = 0 for all k.
Therefore x̄ = 0̄. Clearly if x̄ = 0̄, then ‖x̄‖AΦ = 0.
Let x̄ = (xk), ȳ = (yk) ∈ lAΦ(X). Let ε > 0 be any number. Then there exist
σ1 > 0, σ2 > 0 such that

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

σ1

)
≤ 1, σ1 ≤ ‖x̄‖AΦ +

ε

2
and

∞∑
n=1

φn

( ∞∑
k=1

‖ankyk‖

σ2

)
≤ 1, σ2 ≤ ‖ȳ‖AΦ +

ε

2
.

Using the convexity property of each φn, we get

∞∑
n=1

φn

( ∞∑
k=1

‖ank(xk + yk)‖

σ1 + σ2

)
≤ σ1

σ1 + σ2

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

σ1

)

+
σ2

σ1 + σ2

∞∑
n=1

φn

( ∞∑
k=1

‖ankyk‖

σ2

)
≤ 1.

Thus

‖x̄+ ȳ‖AΦ ≤ σ1 + σ2 ≤ ‖x̄‖AΦ + ‖ȳ‖AΦ + ε.

Since ε > 0 is arbitrary, we have ‖x̄+ ȳ‖AΦ ≤ ‖x̄‖Aφ +‖ȳ‖AΦ. It is easy to show that

‖αx̄‖AΦ = |α|‖x̄‖AΦ for any scalar α. Hence ‖.‖AΦ is a norm on the space lAΦ(X).
To show lAΦ(X) is complete, let (x̄(m)) be a Cauchy sequence in lAΦ(X). Then for
each ε > 0, there exists m0 ∈ N such that ‖x̄(m) − x̄(l)‖AΦ < ε for all m, l ≥ m0,
i.e.,

∞∑
n=1

φn

( ∞∑
k=1

‖ank(x(m)
k − x(l)

k )‖

ε

)
≤ 1. (3.2)
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Thus the sequence
{
‖x(m)

k −x(l)k ‖
ε

}
is bounded for all m, l ≥ m0. Therefore there

exists C > 0 such that

‖x(m)
k − x(l)

k ‖
ε

≤ C for all m, l ≥ m0.

Hence (x
(m)
k ) is a Cauchy sequence in X for each k. Since X is a Banach space,

so (x
(m)
k ) is convergent in X. Let xk = lim

m→∞
x

(m)
k for each k. Since each φk is

continuous so taking m→∞, we get from (3.2),

∞∑
n=1

φn

( ∞∑
k=1

‖ank(xk − x(l)
k )‖

ε

)
≤ 1

for all l ≥ m0. Thus ‖x̄ − x̄(l)‖AΦ < ε for all l ≥ m0. Thus (x̄(l)) converges to x̄
in lAΦ(X). Since x̄ − x̄(m0) ∈ lAΦ(X), so x̄ = x̄(m0) + (x̄ − x̄(m0)) ∈ lAΦ(X). This
completes the proof. �

Theorem 3.3. The space hAΦ(X) is an AK-BK space.

Proof. Clearly hAΦ(X) is a linear subspace of lAΦ(X). To prove hAΦ(X) is a BK
space, it is enough to prove that the space hAΦ(X) is a closed subspace of lAΦ(X).
Let x̄ belongs to closure of hAΦ(X) in the norm topology of lAΦ(X). Then there

exists a sequence (ȳ(m)) in hAΦ(X), where ȳ(m) = (y
(m)
k )k≥1 such that ‖ȳ(m)−x̄‖AΦ →

0 as m→∞. So for any ε > 0 there exists m0 ∈ N such that

∞∑
n=1

φn

( ∞∑
k=1

‖ank(xk − y(m)
k )‖

ε

)
≤ 1 for all m ≥ m0.

Now for any ε > 0,

∞∑
n=1

φn

( ∞∑
k=1

‖ankxk‖

2ε

)
≤

∞∑
n=1

φn

(
1

2

∞∑
k=1

‖ank(xk − y(m0)
k )‖

ε
+

1

2

∞∑
k=1

‖anky(m0)
k ‖

ε

)

≤ 1

2

[ ∞∑
n=1

φn

( ∞∑
k=1

‖ank(xk − y(m0)
k )‖

ε

)

+
∞∑
n=1

φn

( ∞∑
k=1

‖anky(m0)
k ‖

ε

)]
<∞.

Thus x̄ ∈ hAΦ(X).
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To show hAΦ(X) is an AK-space, let x̄ ∈ hAΦ(X). Now for each ε, 0 < ε < 1

there exists n0 ∈ N such that
∞∑

n=n0

φn

( ∞∑
k=1

‖ankxk‖

ε

)
≤ 1. Now for m ≥ n0,

‖x̄− x̄[m]‖AΦ = inf

{
σ > 0 :

∞∑
n=m+1

φn

( ∞∑
k=1

‖ankxk‖

σ

)
≤ 1

}

≤ inf

{
σ > 0 :

∞∑
n=m

φn

( ∞∑
k=1

‖ankxk‖

σ

)
≤ 1

}
≤ ε.

This shows that x[m] → x as m → ∞ under the norm ‖.‖Aφ . Hence hAΦ(X) is an
AK space. This completes the proof. �

Theorem 3.4. If a Musielak-Orlicz function Φ = (φn) ∈ δ2, then lAΦ(X) =
hAΦ(X).

Proof. It suffices to show that lAΦ(X) ⊆ hAΦ(X). Let x̄ ∈ lAΦ(X). Then for some
t > 0, we have

%AΦ(tx̄) =
∞∑
n=1

φn

(
t
∞∑
k=1

‖ankxk‖
)
<∞.

Therefore for δ0 > 0 there exists n0 ∈ N such that φn

(
t
∞∑
k=1

‖ankxk‖
)
< δ0 for all

n ≥ n0. We have to show that for any r > 0, %AΦ(rx̄) < ∞. If r be any number
such that r ≤ t, then by the non-decreasing property of φn for all n, we have
%AΦ(rx̄) ≤ %AΦ(tx̄) <∞.

If r > t, choose β > 1 such that r < βt. Thus

φn

(
r
∞∑
k=1

‖ankxk‖
)
≤ φn

(
βt

∞∑
k=1

‖ankxk‖
)
.

Since Φ = (φn) ∈ δ2, so there exist K > 0, δ0 > 0 and a non-negative sequence
(cn) ∈ l1 such that for n ≥ n0

φn

(
βt

∞∑
k=1

‖ankxk‖
)
≤ Kφn

(
t

∞∑
k=1

‖ankxk‖
)

+ cn,

whenever φn

(
t
∞∑
k=1

‖ankxk‖
)
< δ0. Therefore

∞∑
n=n0

φn

(
βt

∞∑
k=1

‖ankxk‖
)
≤ K

∞∑
n=n0

φn

(
t
∞∑
k=1

‖ankxk‖
)

+
∞∑

n=n0

cn.
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Since %AΦ(tx̄) <∞, so we have
∞∑

n=n0

φn

(
r

∞∑
k=1

‖ankxk‖
)
<∞. Thus for any r > 0,

we have %AΦ(rx̄) <∞. Hence x̄ ∈ hAΦ(X). This completes the proof. �

Example 3.5. Let φn(u) = upn
(
log(1 + u) + 1

)
for u ≥ 0, 1 ≤ pn < ∞

with sup
n≥1

pn < ∞. Then Φ = (φn) is a Musielak-Orlicz function and satisfies

δ2 condition. Hence lAΦ(X) = hAΦ(X). In addition if we take A as an identity
matrix then lΦ(X) ⊆ l({pn}, X), where l({pn}, X) denotes vector-valued Nakano
sequence space.

Now we state some known lemmas which will be needed in the sequel. Proofs
of the corresponding lemmas run parallel lines as in the references (see [2], [3],
[10]).

Lemma 3.6. Let x̄ ∈ hAΦ(X) be an arbitrary element. Then ‖x̄‖AΦ = 1 if and
only if %AΦ(x̄) = 1.

Lemma 3.7. Let Φ ∈ δ2. Then for any x̄ ∈ lAΦ(X),

‖x̄‖AΦ = 1 if and only if %AΦ(x̄) = 1.

Lemma 3.8. Let Φ ∈ δ2. Then for any sequence (x̄(l)) in lAΦ(X), ‖x̄(l)‖AΦ → 0 if
and only if %AΦ(x̄(l))→ 0.

Lemma 3.9. Let Φ ∈ δ2 and satisfies the condition (∗) given by (2.1). Then for
any x̄ ∈ lAΦ(X) and every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that %AΦ(x̄) ≤
1− ε implies ‖x̄‖AΦ ≤ 1− δ.

Lemma 3.10. Let (X, ‖.‖) be a normed space. If f : X → R is a convex function
in the set K = {x ∈ X : ‖x‖ ≤ 1} and |f(x)| ≤M for all x ∈ K and some M > 0
then f is almost uniformly continuous in K i.e., for all d ∈ (0, 1) and ε > 0 there
exists δ > 0 such that ‖y‖ ≤ d and ‖x− y‖ < δ implies |f(x)− f(y)| < ε for all
x, y ∈ K.

Lemma 3.11. Let Φ ∈ δ2 and satisfies the condition (∗) given by (2.1). Then
for each d ∈ (0, 1) and ε > 0 there exists δ = δ(d, ε) > 0 such that %AΦ(x̄) ≤ d,
%AΦ(ȳ) ≤ δ imply

|%AΦ(x̄+ ȳ)− %AΦ(x̄)| < ε for any x̄, ȳ ∈ lAΦ(X). (3.3)

Proof. Let ε > 0 be any number. Assume that for each d ∈ (0, 1) and ε > 0 there
exists δ = δ(d, ε) > 0 such that %AΦ(x̄) ≤ d and %AΦ(ȳ) ≤ δ for x̄, ȳ ∈ lAΦ(X). Since
Φ ∈ δ2 and satisfies condition (∗), so by Lemma 3.9, there exists d1 ∈ (0, 1) such
that ‖x̄‖AΦ ≤ d1. Also by using Lemma 3.8, for δ > 0 we have δ1 > 0 such that
‖ȳ‖AΦ ≤ δ1 whenever %AΦ(ȳ) ≤ δ and ȳ ∈ lAΦ(X). Since %AΦ is a convex and bounded
on lAΦ(X), by Lemma 3.10, we have |%AΦ(x̄+ ȳ)− %AΦ(x̄)| < ε. �

Lemma 3.12. Let Φ ∈ δ2. Then for any ε > 0 there exists δ = δ(ε) > 0 such
that %AΦ(x̄) > δ whenever ‖x̄‖AΦ ≥ ε.

Proof. The proof follows from Lemma 3.8. �
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Lemma 3.13. Let Φ ∈ δ2 and satisfies the condition (∗). Then for any x̄ ∈
lAΦ(X) and any ε > 0 there exists δ = δ(ε) > 0 such that %AΦ(x̄) ≥ 1 + ε implies
‖x̄‖AΦ ≥ 1 + δ.

Now we will prove the main result in this section.

Theorem 3.14. Let A = (ank) be a triangle matrix. If a Musielak-Orlicz function
Φ = (φn) ∈ δ2 and satisfies condition (∗) given by (2.1), then lAΦ(X) has the
uniform Opial property.

Proof. Let S(lAΦ(X)) be the unit sphere of lAΦ(X) and (x̄(l)) ⊂ S(lAΦ(X)) be any
weakly null sequence. We will show that for any ε > 0 there exists µ > 0 such
that

lim inf
l→∞

‖x̄(l) + x̄‖AΦ ≥ 1 + µ,

where x̄ ∈ lAΦ(X) satisfying ‖x̄‖AΦ ≥ ε. Since Φ ∈ δ2 and ‖x̄‖AΦ ≥ ε, so by using
Lemma 3.12, for each ε > 0 there exists δ ∈ (0, 1) such that %AΦ(x̄) ≥ δ, and also
by Lemma 3.11 there exists δ1 ∈ (0, δ) such that %AΦ(ū) ≤ 1, %AΦ(v̄) ≤ δ1 implies

|%AΦ(ū+ v̄)− %AΦ(ū)| < δ

6
for any ū, v̄ ∈ lAΦ(X). (3.4)

Since %AΦ(x̄) <∞, so there exists n0 ∈ N such that

∞∑
n=n0+1

φn

( n∑
k=1

‖ankxk‖
)
≤ δ1

6
. (3.5)

From equation (3.5), it follows that

δ ≤
n0∑
n=1

φn

( n∑
k=1

‖ankxk‖
)

+

∞∑
n=n0+1

φn

( n∑
k=1

‖ankxk‖
)
≤

n0∑
n=1

φn

( n∑
k=1

‖ankxk‖
)

+
δ1

6
,

which implies

n0∑
n=1

φn

( n∑
k=1

‖ankxk‖
)
≥ δ − δ1

6
> δ − δ

6
=

5δ

6
. Since x̄(l) → 0

weakly, so x̄
(l)
k → 0 for each k. Hence there exists l0 such that for all l ≥ l0 the

last inequality yields

n0∑
n=1

φn

( n∑
k=1

‖ank(x(l)
k + xk)‖

)
≥ 5δ

6
. (3.6)

Again x̄(l) → 0 weakly, so we can choose n0 ∈ N such that %AΦ(x̄(l)|n0) → 0 as
l → ∞. Therefore there exists l1 > l0 such that %AΦ(x̄(l)|n0) ≤ δ1 for all l ≥ l1.
Since (x̄(l)) ⊂ S(lAΦ(X)), so by Lemma 3.7, we have %AΦ(x̄(l)) = 1, and hence for
n0 ∈ N, we have %AΦ(x̄(l)|N−n0) ≤ 1. Let us set ū = x̄(l)|N−n0 and v̄ = x̄(l)|n0 . Then
ū, v̄ ∈ lAΦ(X) and %AΦ(ū) ≤ 1, %AΦ(v̄) ≤ δ1. Using (3.4), we have∣∣%AΦ(x̄(l)|N−n0 + x̄(l)|n0

)
− %AΦ

(
x̄(l)|N−n0

)∣∣ < δ
6
,
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for all l ≥ l1. Thus %AΦ(x̄(l))− δ
6
< %AΦ

(
x̄(l)|N−n0

)
for all l ≥ l1, i.e.,

∞∑
n=n0+1

φn

( n∑
k=1

‖ankx(l)
k ‖
)
> 1− δ

6
for all l ≥ l1.

Again, since %AΦ
(
x̄(l)|N−n0

)
≤ 1 and %AΦ

(
x̄|N−n0

)
≤ δ1

6
< δ1, so from the equations

(3.4), we have ∣∣∣%AΦ(x̄(l) + x̄|N−n0

)
− %AΦ

(
x̄(l)|N−n0

)∣∣∣ < δ

6
.

For l ≥ l1, we have

%AΦ(x̄(l) + x̄) =

n0∑
n=1

φn

( n∑
k=1

‖ank(x(l)
k + xk)‖

)
+

∞∑
n=n0+1

φn

( n∑
k=1

‖ank(x(l)
k + xk)‖

)

>

n0∑
n=1

φn

( n∑
k=1

‖ank(x(l)
k + xk)‖

)
+

∞∑
n=n0+1

φn

( n∑
k=1

‖ankx(l)
k ‖
)
− δ

6

>
5δ

6
+
(

1− δ

6

)
− δ

6
= 1 +

δ

2
.

Since Φ ∈ δ2 and satisfies the condition (∗), so by Lemma 3.13 there exists
µ > 0 depending only on δ such that ‖x̄(l) + x̄‖AΦ > 1 + µ for l ≥ l1. Hence
lim inf
l→∞

‖x̄(l) + x̄‖AΦ ≥ 1 + µ. This completes the proof. �

Remark 3.15. Let A be an identity matrix, X = R and φn(u) = upn for all
u ≥ 0, 1 ≤ pn <∞ such that sup

n≥1
pn <∞. Then Φ = (φn) ∈ δ2 and satisfies the

condition (∗) given by (2.1). The space lΦ has the uniform Opial property studied
by Cui and Hudzik [2]. It would be interesting to find the necessary condition for
the space lAΦ(X) to have the uniform Opial property.

Theorem 3.16. Let X be a σ-DC Banach lattice. Then the space lAΦ(X) is a
σ-DC Banach lattice.

Proof. We have proved that lAΦ(X) is a Banach space with the norm ‖.‖AΦ. To prove
lAΦ(X) is a Banach lattice, let x̄ = (xk), ȳ = (yk) ∈ lAΦ(X) such that |xk| ≤ |yk|
for all k. Since by hypothesis X is a Banach lattice and xk, yk ∈ X for all k.
Therefore |xk| ≤ |yk| ⇒ ‖xk‖ ≤ ‖yk‖ for all k.

Let σ > 0 be any number. Now using the non-decreasing property of each φn,
we get

∞∑
n=1

φn

(∑∞
k=1 |ank|‖xk‖

σ

)
≤

∞∑
n=1

φn

(∑∞
k=1 |ank|‖yk‖

σ

)
⇒ ‖x̄‖AΦ ≤ ‖ȳ‖AΦ.

Hence lAΦ(X) is a Banach lattice.
Now we shall show that the space lAΦ(X) is σ-DC. Let (x̄(n)) be a non-negative
order bounded sequence and bounded above by ȳ ∈ lAΦ(X), i.e., for each k ∈ N,

x
(n)
k ≤ yk for all n ≥ 1.
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Since X is a σ-DC, there exists (xk) ⊂ X such that sup
n
x

(n)
k = xk for all k.

Therefore xk ≤ yk for all k. Again ȳ ∈ lAΦ(X), so
∞∑
n=1

φn

( ∞∑
k=1

|ank|‖xk‖

σ

)
< ∞

for some σ > 0, and hence x̄ ∈ lAΦ(X). This completes the proof. �

Corollary 3.17. If X is a Banach lattice, then hAΦ(X) is a Banach lattice.

Theorem 3.18. Let a Banach lattice X be an AL-space. If Φ = (φn) ∈ δ2

and satisfies the condition (∗) given by (2.1), then the Banach lattice lAΦ(X) is
uniformly monotone.

Proof. Let ε > 0 be any number. Let x̄ = (xk), ȳ = (yk) ∈ lAΦ(X) such that
0̄ ≤ x̄ ≤ ȳ with ‖x̄‖AΦ = 1 and ‖ȳ‖AΦ ≥ ε. Since Φ = (φn) ∈ δ2, from Lemma 3.7,
we get %AΦ(x̄) = 1 as ‖x̄‖AΦ = 1 and from Lemma 3.12, there exists δ(ε) > 0 such
that %AΦ(ȳ) > δ(ε) as ‖ȳ‖AΦ ≥ ε.

Now if u, v ≥ 0 and φ is an Orlicz function, then we will prove that φ(u+ v) ≥
φ(u) + φ(v). With out loss of generality, we assume that u > v > 0. Clearly
u < u+ v and v < u+ v. Then φ(u) = φ(v.u

v
) ≥ u

v
φ(v) as φ is an Orlicz function.

Thus for u > v, we have φ(u)
u
≥ φ(v)

v
. Since u+ v > u and u+ v > v, we get

φ(u+ v)

u+ v
≥ φ(u)

u
and

φ(u+ v)

u+ v
≥ φ(v)

v
.

Therefore φ(u+ v) ≥ φ(u) + φ(u) for u, v ≥ 0.

Now %AΦ(x̄ + ȳ) =
∞∑
n=1

φn

( ∞∑
k=1

‖ank(xk + yk)‖
)

. Since X is an AL-space, so

∞∑
k=1

‖ank(xk + yk)‖ =
∞∑
k=1

‖ankxk‖ +
∞∑
k=1

‖ankyk‖. Take
∞∑
k=1

‖ankxk‖ = u and

∞∑
k=1

‖ankyk‖ = v. Therefore for each Orlicz function φn, we have

φn

( ∞∑
k=1

‖ankxk‖+
∞∑
k=1

‖ankyk‖
)
≥ φn

( ∞∑
k=1

‖ankxk‖
)

+ φn

( ∞∑
k=1

‖ankyk‖
)
.

Hence
%AΦ(x̄+ ȳ) ≥ %AΦ(x̄) + %AΦ(ȳ).

Therefore %AΦ(x̄ + ȳ) ≥ 1 + δ(ε). Since Φ = (φn) ∈ δ2 and satisfies the condition
(∗), by using Lemma 3.13, there exists µ > 0 independent of x̄, ȳ such that
‖x̄+ ȳ‖AΦ ≥ 1 + µ. This finishes the proof. �

Corollary 3.19. If a Banach lattice X is an AL-space and Φ = (φn) satisfies
the condition (∗), then hAΦ(X) is strictly monotone.

Theorem 3.20. Let A be a triangle. Then hAΦ(X) is the subspace of all order
continuous elements of lAΦ(X).
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Proof. Let ε > 0 be any number and x̄ = (xn) ∈ hAΦ(X). We will show that x̄ is
order continuous. Since x̄ ∈ hAΦ(X), so there is t > 0 and n0 ∈ N such that

∞∑
n=n0+1

φn

(
t

n∑
k=1

‖ankxk‖
)
<
ε

2
.

Suppose (x̄(m)) is a sequence in hAΦ(X) such that x̄(m) → 0̄ coordinate wise and
0̄ ≤ x̄(m) ≤ |x̄| for all m ∈ N. Let us denote for all n ∈ N,

φn

(
t

n∑
k=1

‖ankxk‖
)

= β(n) and φn

(
t

n∑
k=1

‖ankx(m)
k ‖

)
= β(m)(n).

Since x
(m)
k → 0̄ and each φn is continuous, we get β(m)(n) → 0 as m → ∞ for

all n ∈ N. Therefore we can choose n1 ∈ N such that

n0∑
n=1

β(m)(n) <
ε

2
for all

m ≥ n1. Since x̄(m) ≤ |x̄| for all m ∈ N, we have

∞∑
n=n0+1

β(m)(n) ≤
∞∑

n=n0+1

β(n) <
ε

2
.

Thus for all m ≥ n1 and t > 0,

%AΦ(tx̄(m)) =

n0∑
n=1

φn

(
t

n∑
k=1

‖ankx(m)
k ‖

)
+

∞∑
n=n0+1

φn

(
t

n∑
k=1

‖ankx(m)
k ‖

)
<
ε

2
+
ε

2
= ε.

Therefore any arbitrary t > 0, we get %AΦ(tx̄(m)) → 0 as m → ∞, and hence
‖x(m)‖ → 0. Thus x̄ is an order continuous in hAΦ(X). Arbitrariness of x̄ implies
that the space hAΦ(X) is order continuous. �

3.1. Operators of s-type lAΦ. Let E,F be two Banach spaces. Then

LAΦ(E,F ) =
{
T ∈ L(E,F ) : (sn(T )) ∈ lAΦ

}
.

For T ∈ LAΦ(E,F ), we define

‖T‖AΦ = inf
{
σ > 0 :

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

σ

)
≤ 1
}
.

We denote LAΦ as the class of s-type lAΦ operators between any two arbitrary
Banach spaces. We also define

HA
Φ(E,F ) =

{
T ∈ L(E,F ) : (sn(T )) ∈ hAΦ

}
.

Let A = (ank) be a matrix from the collection A satisfying the condition

|an,2k−1|+ |an,2k| ≤M |ank| for each k and n, (3.7)

where M is a constant independent of n and k.
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Example 3.21. It is easy to give example of matrices which satisfy condition
(3.7). For example,
1. Nörlund matrix A = (ank), where ank is defined as

ank =

{ an+1−k

An
: 1 ≤ k ≤ n

0 : k > n

where an is non negative for each n and An =
n∑
k=1

ak > 0.

2. Hilbert matrix A = (ank), where

ank =
{

1
n+k−1

: 1 ≤ n, k <∞.

Proposition 3.22. Let A = (ank) be an infinite matrix such that A = (ank) ∈
A and satisfies the condition (3.7). Then (LAΦ(E,F ), ‖.‖AΦ) is a quasi-Banach
space. Moreover, the inclusion map from (LAΦ(E,F ), ‖.‖AΦ) to (L(E,F ), ‖.‖) is
continuous.

Proof. Let S, T ∈ LAΦ(E,F ). Then there exist σ1 > 0, σ2 > 0 such that

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S)|

σ1

)
<∞ and

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

σ2

)
<∞.

Now using the non-increasing property of s-number and the condition (3.7) on
the matrix A = (ank), we get

∞∑
k=1

|anksk(S + T )| ≤M
∞∑
k=1

|an,k|
(
sk(S) + sk(T )

)
(3.8)

Using (3.8) and convexity property of each φn, we have

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S + T )|

M(σ1 + σ2)

)
≤ σ1

σ1 + σ2

[ ∞∑
n=1

φn

( ∞∑
k=1

|anksk(S)|

σ1

)]

+
σ2

σ1 + σ2

[ ∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

σ2

)]
<∞.

This shows that S + T ∈ LAΦ(E,F ).
Let α ∈ R and T ∈ LAΦ(E,F ). If α = 0, then it is trivial. Suppose α 6= 0. Then

∞∑
n=1

φn

( ∞∑
k=1

|anksk(αT )|

σ

)
≤

∞∑
n=1

φn

(
|α|

∞∑
k=1

|anksk(T )|

σ

)
=
∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|
σ
|α|

)
<∞

as T ∈ LAΦ(E,F ).
This shows that αT ∈ LAΦ(E,F ). Hence LAΦ(E,F ) is a linear space.
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To show ‖.‖AΦ is a quasi-norm on the space LAΦ(E,F ), let T ∈ LAΦ(E,F ) such
that ‖T‖AΦ = 0. Then for all ε > 0, we have

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

ε

)
≤ 1.

Therefore the sequence

( ∞∑
k=1
|anksk(T )|

ε

)
is bounded, so there exists C > 0 such

that

∞∑
k=1
|anksk(T )|

ε
≤ C for all n. Since (ank) ∈ A, there exists n0 ∈ N such that

an01 6= 0 and hence

|an01s1(T )| ≤ Cε for all n (3.9)

which is true for any arbitrary ε > 0. Thus ‖T‖ = s1(T ) = 0, and hence T = 0.
Let S, T ∈ LAΦ(E,F ) and ε > 0 be any positive number. Choose σ1 > 0, σ2 > 0

such that

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S)|

σ1

)
≤ 1, σ1 ≤ ‖S‖AΦ +

ε

2
and

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

σ2

)
≤ 1, σ2 ≤ ‖T‖AΦ +

ε

2
hold.

With out loss of generality, we can choose M > 1. Now from the above, we have

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S + T )|

M(σ1 + σ2)

)
≤ 1

which implies

‖S + T‖AΦ ≤M [σ1 + σ2] ≤M [‖S‖AΦ + ‖T‖AΦ + ε].

Since ε > 0 is arbitrary, so we have

‖S + T‖AΦ ≤M [‖S‖AΦ + ‖T‖AΦ].

Hence ‖.‖AΦ is a quasi-norm on the space LAΦ(E,F ).
To prove completeness, let (T (m)) be a Cauchy sequence in LAΦ(E,F ). Then

for each ε > 0, there exists m0 ∈ N such that

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T (l) − T (m))|

ε

)
≤ 1 for all m, l ≥ m0. (3.10)
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Therefore the sequence

( ∞∑
k=1
|anksk(T (l)−T (m))|

ε

)
is bounded. Using the same argu-

ment as above, we have ‖T (l) − T (m)‖ → 0 as l,m→∞.
Thus (T (m)) is a Cauchy sequence in L(E,F ), and hence converges. Let T =

lim
m→∞

T (m). Also sk(T
(l) − T (m))→ sk(T

(l) − T ) as m→∞ for each k ∈ N. Since

each φn is continuous so taking m→∞, we get from (3.10),

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T (l) − T )|

ε

)
≤ 1 for all l ≥ m0.

Thus (T (l)) converges to T in LAΦ(E,F ). In particular T − T (m0) ∈ LAΦ(E,F ), so
T = T (m0) + (T − T (m0)) ∈ LAΦ(E,F ).

To prove the second part, we have from (3.9)

‖T‖ ≤ C

|an01|
inf

{
ε > 0 :

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

ε

)
≤ 1

}
i.e., ‖T‖ ≤ C

|an01|
‖T‖AΦ.

Hence the inclusion map from (LAΦ(E,F ), ‖.‖AΦ) to (L(E,F ), ‖.‖) is continuous.
This completes the proof. �

Remark 3.23. 1. If we take the matrix A = (ank) as an identity matrix and
s-number as approximation number then the s-type lAΦ operators become lp type
[19] and lφ type [7] operators when φn = xp for 0 < p <∞ and φn = φ, an Orlicz
function respectively.
2. If we take the matrix A = (ank) such that the matrix satisfies the condition
(3.7), then the class of s-type lAΦ operators becomes s-type |A, p| operators intro-
duced by Maji and Srivastava [17].

Theorem 3.24. Let A = (ank) be an infinite matrix such that A = (ank) ∈ A.
If A = (ank) satisfies the condition (3.7) and (|an1|) ∈ lΦ, then the class LAΦ is a
quasi-Banach operator ideal.

Proof. Let E,F be any two Banach spaces and LAΦ(E,F ) be any one of the
component of LAΦ. To prove LAΦ is a quasi-Banach operator ideal, it is enough
to prove (OI1) and (OI3) in Definition 2.8. Let x

′ ∈ E
′

and y ∈ F . Then
x
′ ⊗ y : E → F is a rank one operator, and hence sk(x

′ ⊗ y) = 0 for k ≥ 2. Then
for some σ > 0

∞∑
n=1

φn

( ∞∑
k=1

|anksk(x
′ ⊗ y)|

σ

)
= ‖x′ ⊗ y‖

∞∑
n=1

φn

(
|an1|
σ

)
<∞

as (|an1|) ∈ lΦ. Thus x
′ ⊗ y ∈ LAΦ(E,F ).
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Let T ∈ L(E0, E), R ∈ L(F, F0) and S ∈ LAΦ(E,F ). It is required to prove
RST ∈ LAΦ(E0, F0).
Using the property (S3) in Definition 2.5, we have

sn(RST ) ≤ ‖R‖sn(S)‖T‖ for all n ∈ N.

Since S ∈ LAΦ(E,F ), there exists some σ > 0 such that

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S)|

σ

)
<∞.

Therefore

∞∑
n=1

φn

( ∞∑
k=1

|anksk(RST )|

‖R‖‖T‖σ

)
<∞.

Thus RST ∈ LAΦ(E0, F0) and therefore (OI3) is proved. Hence LAΦ is an operator
ideal.

To prove ‖.‖AΦ is an ideal-norm on LAΦ, let S ∈ LAΦ(E,F ). Then for given ε > 0,
there exists some σ0 such that σ0 < ‖S‖AΦ + ε with

∞∑
n=1

φn

( ∞∑
k=1

|anksk(S)|

σ0

)
≤ 1.

Thus for T ∈ L(E0, E), R ∈ L(F, F0), we have

∞∑
n=1

φn

( ∞∑
k=1

|anksk(RST )|

‖R‖‖T‖σ0

)
≤ 1.

Hence ‖RST‖AΦ ≤ ‖R‖‖T‖σ0 < ‖R‖‖T‖(‖S‖AΦ + ε). As ε > 0 is arbitrary, we
have ‖RST‖AΦ ≤ ‖R‖‖S‖AΦ‖T‖. Thus LAΦ is a quasi-Banach operator ideal. �

Remark 3.25. In particular if we choose φn = φ, an Orlicz function for all n and

A = (ank) as a diagonal matrix ann = n
1
p
− 1

q for 0 < p, q <∞, the operator ideal
LAΦ becomes Lp,q,Φ studied by Gupta and Bhar [7]. This example also shows that
the condition (3.7) on the matrix A is only sufficient condition to form operator
ideal.

Proposition 3.26. The space HA
Φ(E,F ) is a closed subspace of LAΦ(E,F ).

Proof. ClearlyHA
Φ(E,F ) is a subspace of LAΦ(E,F ). To showHA

Φ(E,F ) is a closed
subspace of LAΦ(E,F ), let T belongs to the closure of the space HA

Φ(E,F ) in the
norm topology of LAΦ(E,F ). Then there exists a sequence (T (m)) in HA

Φ(E,F )
such that lim

n→∞
‖T (m) − T‖AΦ = 0. Thus for ε > 0, there exists n0 ∈ N such that

‖T (m) − T‖AΦ <
ε

2
for all m ≥ n0.



32 A. MAJI, P.D. SRIVASTAVA

Now using the condition (3.7) on the matrix A = (ank) and (3.8), we get

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

Mε

)
≤ 1

2

[ ∞∑
n=1

φn

( ∞∑
k=1

|an,ksk(T − T (n0))|
ε
2

)

+
∞∑
n=1

φn

( ∞∑
k=1

|an,ksk(T (n0))|
ε
2

)]
<∞,

as T (n0) ∈ HA
Φ(E,F ) and

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T − T (n0))|

‖T − T (n0)‖AΦ

)
< ∞. Thus T ∈

HA
Φ(E,F ) and hence the proof is complete. �

Proposition 3.27. If the s-number sequence is injective, then the quasi-Banach
operator ideal [LAΦ, ‖.‖AΦ] is injective.

Proof. Let T ∈ L(E,F ) and J ∈ L(F, F0) be any metric injection. Suppose that
JT ∈ LAΦ(E,F0). Then for some σ0 > 0, we have

∞∑
n=1

φn

( ∞∑
k=1

|anksk(JT )|

σ0

)
<∞.

Since the s-number sequence s = (sn) is injective, we have sn(T ) = sn(JT ) for
all T ∈ L(E,F ), n ∈ N. Hence

∞∑
n=1

φn

( ∞∑
k=1

|anksk(T )|

σ0

)
=
∞∑
n=1

φn

( ∞∑
k=1

|anksk(JT )|

σ0

)
<∞.

Thus T ∈ LAΦ(E,F0) and clearly ‖JT‖AΦ = ‖T‖AΦ holds. Hence the operator ideal
LAΦ is injective. This completes the proof. �

Proposition 3.28. If the s-number sequence is surjective, then the quasi-Banach
operator ideal [LAΦ, ‖.‖AΦ] is surjective.

Proof. We omit the proof as it follows in similar lines from the preceding propo-
sition. �

Acknowledgement. The authors are thankful to the anonymous referee for
his/her valuable comments. This work was supported by CSIR, New Delhi, Govt.
of India.

References

1. B. Carl and A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces,
Bull. Lond. Math. Soc. 41 (2009), no. 2, 332–340.

2. Y. Cui and H. Hudzik, On the uniform Opial property in some modular sequence spaces,
Funct. Approx. Comment. Math. 26 (1998), 93–102.



GEOMETRIC PROPERTIES OF GENERALIZED MUSIELAK-ORLICZ SPACE 33

3. Y. Cui, H. Hudzik, N. Petrot, S. Suantai and A. Szymaszkiewicz, Basic topological and
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