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Abstract. We investigate subalgebras A of the Cuntz algebra On that arise
as finite direct sums of corners of the UHF-subalgebra Fn. For such an A, we
completely determine its normalizer group inside On.

1. Introduction.

This note is a continuation of the investigations of C∗-subalgebras of the Cuntz
algebra On carried out by the first named author in [4]. The main results
therein pertain C∗-subalgebras A of the core UHF-subalgebra Fn of On with
finite-dimensional relative commutant A′ ∩ Fn. In particular, [4, Theorem 1.2]
says that for such an A, the index of the subgroup {Adu|A : u ∈ NFn(A)} in
{AdW |A : W ∈ NOn(A)} is finite. The main purpose of the present note is to
completely determine the structure of normalizer NOn(A) in the case

A =
k⊕
j=1

ejFnej, (1.1)

where e1, . . . , ek are projections in Fn such that
∑k

j=1 ej = 1. The interesting

and non-trivial aspects of our analysis stem from the fact, observed already in [4,
Example 1.18], that NOn(A) is not contained in Fn in general.

In addition to its intrinsic interest, our work is motivated by its close relation
to index theory in the context of endomorphisms of the Cuntz algebras, e.g. see
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[6, 5, 1]. In a more recent paper on this subject, [2], endomorphisms ofOn globally
preserving Fn are investigated, and we hope that the results of the present paper
may help shed light on some of the outstanding questions raised therein.

Notation. For an integer n ≥ 2, On is the C∗-algebra generated by isometries
S1, . . . , Sn such that

∑n
i=1 SiS

∗
i = 1, [3]. If µ = µ1µ2 · · ·µk is a word on alphabet

{1, . . . , n} then we denote Sµ = Sµ1Sµ2 · · ·Sµk , an isometry in On. The range
projections Pµ := SµS

∗
µ corresponding to all words generate a MASA Dn. For a

word µ = µ1 · · ·µk we denote by |µ| = k its length. Also, we use symbol ≺ to
denote the lexicographic order on words.

The circle group U(1) acts on On by γz(Si) = zSi. The fixed-point algebra
for this action, denoted Fn, is a UHF-algebra of type n∞. Averaging γ yields a
faithful conditional expectation E : On → Fn. We denote by τ : Fn → C the
unique normalized trace on Fn. We also let ϕ : On → On to be the canonical
shift endomorphism, that is

ϕ(x) =
n∑
i=1

SixS
∗
i . (1.2)

For each x ∈ On and each generator Si we have Six = ϕ(x)Si.
If B is a unital C∗-algebra then U(B) denotes the group of its unitary elements.

If A is a C∗-subalgebra of B then NB(A) := {u ∈ U(B) : uAu∗ = A} is the
normalizer of A in B.

2. The main results.

The following lemma and its proof are motivated by Examples 1.17 and 1.18
of [4]. It constitutes a technical basis for our further considerations. In the proof
of the lemma we need the following simple fact: for every projection e ∈ Fn we
have (eFne)′ ∩ eOne = Ce. For otherwise, there are non-zero elements a and b in
this relative commutant such that ab = 0 and a, b ≥ 0. Now, E(a) and E(b) are
non-zero, positive elements in the center of the simple algebra eFne. Thus, there
are positive scalars λ and µ such that E(a) = λe and E(b) = µe. Now, take a
finite sum A =

∑
zjSαjS

∗
βj

(with zj scalars) in eOne such that ||a − A|| < λ/2.

By [3, Lemma 1.8], there exists a non-zero projection f in eFne such that fAf =
fE(A)f . We have ||af − λf || ≤ ||af − fAf ||+ ||fE(A)f − λf || < λ. Thus af is
invertible in fOnf . Similarly, we can find a non-zero projection g in eFne such
that bg is invertible in gFng. Now, take a partial isometry v in eFne such that
v∗v ≤ g and vv∗ ≤ f . Then 0 = vab = avb 6= 0, a contradiction which proves the
claim.

Lemma 2.1. Let e, f be non-zero projections in Fn, and let U ∈ U(On) be such
that UeFneU∗ = fFnf . Then there exists an integer m such that

τ(f)

τ(e)
= nm.

Proof. For each z ∈ U(1) and x ∈ Fn, we have γz(UexeU
∗) = UexeU∗. Hence

exeU∗γz(U) = U∗γz(U)exe and thus U∗γz(U)e belongs to (eFne)′ ∩ eOne. Since
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this relative commutant is trivial, for each z ∈ U(1) there exists a scalar t(z) such
that γz(Ue) = t(z)Ue. It follows that the mapping t : U(1)→ C is a continuous
character and consequently there exists an m ∈ Z such that t(z) = zm. We
consider the following three cases, depending on the sign of m.

(i) If m = 0 then Ue ∈ Fn and hence τ(f) = τ((Ue)(Ue)∗) = τ((Ue)∗(Ue)) =
τ(e).

(ii) If m > 0 then set V := UeS∗m1 . Since V belongs to Fn, we have τ(f) =
τ(V V ∗) = τ(V ∗V ) = τ(Sm1 eS

∗m
1 ) = τ(ϕm(e)Sm1 S

∗m
1 ) = τ(e)/nm.

(iii) If m < 0 then set V := S−m1 Ue. Again V ∈ Fn and thus τ(e) = τ(V ∗V ) =
τ(V V ∗) = τ(S−m1 fS∗−m1 ) = τ(f)/n−m. �

The following lemma is quite obvious but we give details since it allows us
to reduce investigations of subalgebras of the general form (1.1) to some special
cases with conveniently chosen projections ej.

Lemma 2.2. Let e1, . . . , ek and f1, . . . , fk be projections in Fn such that
∑k

j=1 ej =

1 =
∑k

j=1 fj and τ(ej) = τ(fj) for all j. Let A =
⊕k

j=1 ejFnej and B =⊕k
j=1 fjFnfj. Then there exists a u ∈ U(Fn) such that uAu∗ = B. Hence

we have NOn(A) ∼= NOn(B).

Proof. For each j = 1, . . . , k there exists a partial isometry vj ∈ Fn such that

v∗j vj = ej and vjv
∗
j = fj. Set u :=

∑k
j=1 vj. Then uejFneju∗ = fjFnfj for each j,

and the conclusion follows. �

In view of Lemma 2.2, it suffices to consider those subalgebras A of the form
(1.1) that all projections ej belong to the diagonal MASA Dn. Each projection in
Dn is a finite sum of projections Pµ for some words µ. Before treating the general
case, we note the following slight generalization of [4, Example 1.18].

Example 2.3. Let µ1, . . . , µk be words such that
∑k

j=1 Pµj = 1. Put A =⊕k
j=1 PµjFnPµj . Then there is a natural isomorphism

NOn(A) ∼= U(A) o Sk,
where Sk is the symmetric group on k letters. Indeed, for each permutation
σ ∈ Sk set Uσ :=

∑k
j=1 Sµσ(j)S

∗
µj

. It is easy to see that each Uσ is unitary
normalizing A, and that they form a group acting on A by permuting the direct
summands PµjFnPµj . Thus we have an inclusion U(A) o Sk ⊆ NOn(A). For
the reverse inclusion, take a V ∈ NOn(A). Considering AdV action, we see
that there exists a σ ∈ Sk such that V U∗σ acts trivially on the center of A.
Since NPµjOnPµj (PµjFnPµj) = U(PµjFnPµj) ([4] Lemma 1.15), for each j we have

V U∗σPµj ∈ U(PµjFnPµj), and the claim easily follows. �

Now, we consider the general case of a C∗-subalgebra A of the form (1.1).
Define an equivalence relation ∼ on the set {e1, . . . , ek} by

ei ∼ ej ⇔
τ(ei)

τ(ej)
∈ nZ. (2.1)
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We denote by S∼ the subgroup of the permutation group of {e1, . . . , ek} consisting
of those permutations which leave each of the equivalence classes of ∼ globally
invariant.

After this preparation, we are ready to prove our main result.

Theorem 2.4. Let e1, . . . , ek be non-zero projections in Fn such that
∑k

j=1 ej = 1,

and let A =
⊕k

j=1 ejFnej. Let S∼ be the corresponding subgroup of the permuta-

tion group of {e1, . . . , ek}. Then there exists a natural group isomorphism

NOn(A) ∼= U(A) o S∼.

Proof. By Lemma 2.2, we may assume that each projection ej belongs to the
diagonal MASA Dn. Thus, there exist words µ1, µ2, . . . , µN , all of the same length
and such that

∑N
j=1 Pµj = 1, and there exist positive integers m1,m2, . . . ,mk such

that
∑k

j=1mj = N and ej =
∑mj

i=mj−1+1 Pµi (here we put m0 = 0) for each j.
Relabelling, if necessary, we may assume that µi1 ≺ µi2 whenever mj−1 + 1 ≤
i1 ≤ i2 ≤ mj.

Now, let σ ∈ S∼. Take a j ∈ {1, . . . , k} and let σ(ej) = eh. There is an
m ∈ Z such that mj −mj−1 = (mh −mh−1)n

m. Suppose m ≥ 0 (the case m ≤ 0
being treated analogously). We note that eh =

∑mh
i=mh−1+1

∑
|ν|=m Pµiν . There is

a unique ≺ order-preserving bijection

ψ : {mh−1 + 1, . . . ,mh} × {ν : |ν| = m} → {mj−1 + 1, . . . ,mj}, (2.2)

that is,
µi1ν1 ≺ µi2ν2 ⇒ µψ(i1,ν1) ≺ µψ(i2,ν2). (2.3)

We set

uj :=

mh∑
i=mh−1+1

∑
|ν|=m

Sµψ(i,ν)
S∗µiν . (2.4)

By construction, we have u∗juj = eh and uju
∗
j = ej. Observe that

SµiνS
∗
µψ(i,ν)

FnSµψ(i′,ν′)
S∗µ′iν′ ⊆ Fn,

since |µiν| − |µψ(i,ν)|+ |µψ(i′,ν′)| − |µ′iν ′| = 0. It follows that

u∗jejFnejuj = ehFneh. (2.5)

Now, we define

Uσ :=
k∑
j=1

u∗j . (2.6)

Then Uσ is an element of On with the following properties:

[U1]: Uσ is a unitary normalizing A.
[U2]: UσejU

∗
σ = σ(ej) for each j = 1, . . . , k.

[U3]: For each j = 1, . . . , k there exist words αi, βi, i = 1, . . . , r (for some
r ∈ N) such that
• Uσej =

∑r
i=1 SαiS

∗
βi

,
• αi ≺ αi′ whenever βi ≺ βi′ , and
• |αi| − |βi| = |αi′ | − |βi′| for all i, i′ = 1, . . . , r.
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The conditions [U1]–[U3] characterize Uσ uniquely. First we will show that if a
unitary V ∈ On satisfies the conditions [U1]–[U3] for σ = id, then V must be 1.
By [U1] and [U2] for σ = id, we know that V ∈ A. Then we have

• V ej =
∑r

i=1 SαiS
∗
βi

with |αi| = |βi| = constant,
• αi ≺ αi′ whenever βi ≺ βi′ .

Since the lexicographic order is a total order for words with a fixed length, we
see that αi = βi and hence V = 1. Next we will consider the general case. If a
unitary V ∈ On satisfies the conditions [U1]–[U3] for σ, then it is easy to see that
V ∗Uσ satisfies the conditions [U1]–[U3] for σ = id. So we have V ∗Uσ = 1 and
hence V = Uσ. This uniqueness easily implies that {Uσ : σ ∈ S∼} is a subgroup
of U(On). Indeed, given σ and σ′ in S∼, both UσUσ′ and Uσσ′ satisfy conditions
[U1]–[U3]. Since the group {Uσ : σ ∈ S∼} is isomorphic to S∼ and acts on U(A)
by Ad, we have an inclusion U(A) o S∼ ⊆ NOn(A).

To see that the reverse inclusion NOn(A) ⊆ U(A) o S∼ holds as well, take
a V in NOn(A). The action of V on the center of A yields a permutation σ of
{e1, . . . , ek}. By Lemma 2.1, this permutation belongs to S∼. But then V U∗σ fixes
each projection ej, and thus it normalizes ejFnej. Hence, for each j there is a

wj ∈ U(ejFnej) such that V Uσej = wj ([4] Lemma 1.15). Putting W :=
∑k

j=1wj
we get a unitary in A such that V = WUσ, and the proof is complete. �
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