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Abstract. The concepts of open unit ball and closed unit ball in a real or
complex normed space are naturally extended to the scope of topological rings
with unity. We then define a type of open (closed) sets called open (closed)
unit neighborhoods of 0. We show among other things that in R and C the
only non-trivial open and closed unit neighborhoods of 0 are the open unit ball
and the closed unit ball, respectively.

1. Introduction and notation

The concepts of balancedness and absorbance are fundamental in the theory
of real or complex Banach spaces. For instance, these two concepts play a funda-
mental role in longstanding open problems such as the famous Separable Quotient
Problem (see [1]). Also, it is a well-known fact that for every real or complex
topological vector space it is possible to find a fundamental system of balanced
and absorbing neighborhoods of zero which characterizes completely the vector
topology ([2], p.146). These concepts are usually defined in the scope of real
or complex topological vector spaces, but they can be extended naturally to the
context of topological modules over absolute valued division rings using the unit
ball as done in [3]. Thus, in order to define such concepts in the scope of topo-
logical modules we first need to define and study the unit neighborhoods of 0 in
topological rings, which is the aim of this paper.

Throughout this manuscript all rings will be considered to be associative and
unital, unless otherwise explicitly stated.
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1.1. Notation. We will start off by introducing the proper notation used through-
out this manuscript.

• If X is a topological space and A is a subset of X, then int (A), cl (A),
and bd (A) will denote the topological interior, the topological closure,
and the topological boundary of A, respectively.
• Let R be an absolute semi-valued ring. We denote the open ball, the

closed ball and the sphere of centre x ∈ R and radius r > 0 as UR (x, r),
BR (x, r) and SR (x, r) respectively. When x = 0 and r = 1, we will simply
write UR, BR and SR respectively.

1.2. Absolute-valued rings with unity. Recall that if R is a ring, then an
absolute semi-value on R is a map |·| : R→ R satisfying the following conditions:

(1) |r| ≥ 0 for all r ∈ R.
(2) |0| = 0.
(3) |rs| = |r| |s| for all r, s ∈ R
(4) |r + s| ≤ |r|+ |s| for all r, s ∈ R

Whenever |x| = 0 implies x = 0 we call | · | an absolute value. Basic properties
of absolute semi-values follow:

• Either |1| = 1 or |1| = 0. The latter implies | · | = 0.

• If r ∈ U (R) and |1| = 1, |r| = |r−1|−1. In particular, |rn| = |r|n for all
n ∈ Z.
• Absolute-valued rings are integral domains.
• If |r| = 1 for all r ∈ R\{0}, then |·| is called the discrete absolute value on
R and it induces on R the discrete metric and hence the discrete topology.
• SR is a submonoid of the multiplicative monoid R, and in case R is a

division ring, then SR is a normal subgroup of the multiplicative group
R \ {0}.

2. Unit neighborhoods of 0

Before introducing the concept of unit neighbourhood of 0, we will recall a
couple of basic definitions on monoid theory that are necessary for our purposes.

Remark 2.1. Recall that given a (multiplicative) monoid M and a non-empty
subset A of M , then

• A is called symmetric when A = A−1, where A−1 = {a−1 : a ∈ A};
• A is called idempotent when A2 = A, where A2 = {ab : a, b ∈ A}.

2.1. Notion and examples of unit neighborhoods of 0. Recall that in a
topological space X,

• a subset U is called regular open provided that U = int(cl(U));
• a subset B is called regular closed provided that B = cl(int(B));
• if U is open and B is closed, then cl(U) and int(B) are regular closed

and regular open respectively.

Definition 2.2. Let R be a topological ring.



236 F.J. GARCIA-PACHECO, P. PINIELLA

• A regular open neighborhood U of 0 is said to be unit provided that
U is symmetric for the addition, idempotent for the multiplication, and
1 ∈ cl (U).
• A regular closed neighborhood B of 0 is said to be unit provided that

int (B) is an open unit neighborhood of 0.

For simplification purposes we will refer to open (closed) unit neighborhoods
of 0 as open (closed) units. From the definition above one can quickly infer that:

• R is always both an open and a closed unit, which will be called the trivial
unit neighborhood of 0 or simply the trivial unit;
• if U is an open unit, then cl(U) is a closed unit;
• if B is a closed unit, then int(B) is an open unit.

Other (non-trivial) examples of open units and closed units follow.

Example 2.3. Let R be a topological ring.

• If R is endowed with the trivial topology, then R is the only open unit
and the only closed unit.
• If R is endowed with the discrete topology, then every set containing

1 and being multiplicatively idempotent and additively symmetric is a
clopen unit.
• Let A ⊂ R be an arbitrary subset and B =

⋃∞
n=1 (A ∪ −A ∪ {−1, 1})n.

Notice that (A ∪ −A ∪ {−1, 1}) is the smallest additively symmetric sub-
set containing A and 1. Also, see that powers of an additively symmetric
are again additively symmetric. Finally, notice that the infinite union of
powers of a given set is the smallest multiplicatively idempotent subset
containing it. Thus, every open unit containing A must also contain B.
• If K denotes the real or the complex field, then UK and BK are an open

and a closed unit neighborhood of 0, respectively.

The following example shows the existence of multiplicatively idempotent and
additively symmetric open neighbourhoods of 0 which are not regular and contain
the unity, justifying then the regularity in Definition 2.2.

Example 2.4. Let R be a topological ring such that R \ {−1, 1} is dense in
R. Consider Z × R with the usual addition and the multiplication given by
(n1, r1)(n2, r2) = (n1n2, n1r2 + n2r1) and endowed with the product topology.
The reader may easily check that Z×R with the given structure is a topological
ring. Then {−1, 1} × R ∪ {0} × R \ {−1, 1} is a non-regular multiplicatively
idempotent and additively symmetric open neighborhood of (0, 0) that contains
the unity of Z×R.

2.2. Basic properties of open units and closed units.

Remark 2.5. Recall that if R is a topological ring and A and B are non-empty
subsets of R, then

• cl (−A) = −cl (A).
• int(−A) = − int(A).
• cl (cl (A) cl (B)) = cl (AB).
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• If int(A)int(B) is open, then int(A)int(B) ⊆ int(AB). This holds, for
example, for division rings.

Proposition 2.6. Let R be a topological ring. If B is a closed unit, then B is
multiplicatively idempotent and additively symmetric.

Proof. By bearing in mind Definition 2.2 we clearly have that 1 ∈ cl(int(B)) =
B. Therefore B ⊆ B2. In accordance to Remark 2.5 and by keeping in mind
Definition 2.2, we have that B2 = cl(int(B))2 ⊆ cl(int(B)2) = cl(int(B)) = B.
This shows that B is multiplicatively idempotent. The additive symmetricity of
B is also a consequence of Remark 2.5. �

2.3. Existence of non-trivial open units. Every ring endowed with the trivial
topology has only one open unit: itself. It is natural to wonder whether this is
an exclusive property of the trivial topology. A negative answer is given through
the next example.

Example 2.7. Take R and consider the finite-measure-complement topology

T =

{
U ⊂ R :

U is open in the usual topology
and R \ U has finite measure

}
It is easy to see that T is a ring topology. Now, suppose U is an open unit.
Since R \ U has finite measure, there exists x ∈ U such that x > 1. Since U is
a neighborhood of 0 in the usual topology, it contains a ball BR(0, r) for r > 0.
Since U is multiplicatively idempotent, then R =

⋃
n∈N x

nBR(0, r) ⊂ U , so U is
trivial.

3. Unit neighborhoods of 0 in absolute valued rings

Let R be an absolute semi-valued ring. Notice that if U is a neighborhood of
0, then we can consider the strictly positive (possibly infinite) number

τ(U) := sup {ε > 0 : UR(0, ε) ⊆ U} .

It is fairly obvious that UR (0, τ(U)) ⊆ U . We will refer to τ(U) as the unit
radius of U and will be relying on it throughout most of this section.

3.1. Topological properties of open and closed units inherited from the
absolute value.

Remark 3.1. Let R be an absolute semi-valued ring. Let a, x ∈ R and t > 0.
Then:

(1) If |a| 6= 0, then aUR(x, t) ⊆ UR(ax, |a|t).
(2) If |1| = 1 and a ∈ U(R), then aUR(x, t) = UR(ax, |a|t).

What follows next is a series of technical lemmas which are helpful towards
accomplishing our purposes.

Lemma 3.2. Let R be an absolute semi-valued ring. Let U be an open neighbor-
hood of 0. If U2 ⊆ U , then either U = R or U ∩ U(R) ⊆ BR.
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Proof. Assume that there exists b ∈ U ∩ U(R) with |b| > 1. Then Remark 3.1
allows us to conclude that

U ⊇
⋃
n∈N

bnU ⊇
⋃
n∈N

bnUR (0, τ(U)) =
⋃
n∈N

UR (0, |b|nτ(U)) = R.

�

Lemma 3.3. Let R be an absolute semi-valued ring with |1| = 1. Let U be an open
neighborhood of 0. If D is a connected component of U with non-empty interior
such that d(D, 0) > 0, then for every sequence (an)n∈N ⊆ UR ∩ U(R) converging
to 1, there exists n0 ∈ N such that an0D ∩D 6= ∅, an0D ∩ (R \D) 6= ∅, and thus
an0D ∩ bd(D) 6= ∅.

Proof. Fix x ∈ int(D) and 0 < t < |x| such that UR(x, t) ⊆ D (notice that
|x| ≥ d(D, 0) > 0). Now choose n0 ∈ N so that |1− an0| < t

|x| . With this choice

of n0 we have that an0x ∈ UR(x, t) so an0D ∩D 6= ∅. Also observe that |an0| > 0
since otherwise we would have the contradiction that

1 = |1| = ||1| − |an0|| ≤ |1− an0| <
t

|x|
< 1.

Now take

0 < ε <
(1− |an0|) d(D, 0)

|an0|
and y ∈ U such that

|y| < d(D, 0) + ε.

With this choice of ε and y, we have that an0y /∈ D. Indeed, if an0y ∈ D, then

d(D, 0) ≤ |an0y| = |an0| |y| < |an0 | d(D, 0) + |an0| ε < d(D, 0).

As a consequence, an0y /∈ D and thus an0D ∩ (R \D) 6= ∅. Finally, the con-
nectedness of an0D implies that an0D ∩ bd(D) 6= ∅ (notice that r 7→ an0r is a
homeomorphism on R since an0 is invertible). �

Lemma 3.4. Let R be an absolute semi-valued ring such that the open balls are
connected. Let U be an open neighborhood of 0. If D is a connected component
of U , then D is open.

Proof. Let x ∈ D. There exists t > 0 such that UR(x, t) ⊆ U . Let E denote
the connected component of U containing UR(x, t). Then D ∩ E 6= ∅ therefore
UR(x, t) ⊆ E = D. �

Now we are ready to state and prove the main theorems in this subsection.

Theorem 3.5. Let R be an absolute semi-valued ring such that |1| = 1, the open
balls are connected and int (BR) = UR. Consider a non-trivial open unit U of R.
If U ∩ U (R) is dense in U , then U ⊆ UR and U is connected.

Proof. In the first place, it suffices to keep in mind Lemma 3.2 to conclude that
U ∩ U(R) ⊆ BR. The denseness of U ∩ U (R) in U implies that U ⊆ BR and
thus U ⊆ int (BR) = UR. In the second and final place, assume to the contrary
that U is not connected and consider C0 to be the connected component of 0. By
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hypothesis, UR(0, τ(U)) ⊆ C0. By assumption there must exist another connected
component D verifying that D ∩ C0 = ∅, which implies that d(D, 0) > 0. In
accordance to Lemma 3.4, we have that D is open. Now, Lemma 3.3 applies to
ensure the existence of a ∈ U ∩U(R) such that aD∩D 6= ∅ and aD∩ (R \D) 6=
∅. Now observe that aD ⊆ U and aD is connected (because a is invertible).
Therefore, aD is a connected component of U such that aD ∩ D 6= ∅, which
implies that aD = D. This contradicts the fact that aD ∩ (R \D) 6= ∅. As a
consequence, U must be connected. �

Using this theorem we can fully characterize the open and closed unit neigh-
borhoods of zero in R and C. We will need the next lemma.

Lemma 3.6. Let R be a topological ring. If U is an open unit and z /∈ U , then
z (U ∩ U(R))−1 ∩ U = ∅.

Proof. Suppose z (U ∩ U(R))−1 ∩ U 6= ∅. There exist u ∈ U ∩ U(R) and v ∈ U
such that zu−1 = v. But then z = vu ∈ U2 = U , contradiction. �

Theorem 3.7. If K denotes the real or the complex field, then UK and BK are
the only non-trivial open and closed unit neighborhoods of 0, respectively.

Proof. Let U be an open unit neighborhood of 0 in K. By Theorem 3.5, U ⊂ UK
and U is connected. Since U is an open connected subset of K, it is also path-
connected. Path-connectedness and ±1 ∈ cl(U) implies the real case.

For K = C suppose τ(U) < 1. The compactness of SC(0, τ(U)) and the maxi-
mality of τ(U) allow that SC(0, τ(U)) * U . Then there exists some z /∈ U with
|z| = τ(U) and z,−z ∈ cl(U). Since U is path-connected we can find a con-
tinuous path f : [−1, 1] → C such that f(−1) = −z, f(0) = 1, f(1) = z, and
verifying that f(x) ∈ U for x /∈ {−1, 0, 1}. It is clear that we can take f(x) 6= 0
for every x ∈ [−1, 1]. We can define F : [−1, 1] → C given by F (x) = zf(x)−1,
which is still continuous. Notice that F (−1) = −1, F (0) = z, and F (1) = 1. If
x ∈ (−1, 0) ∪ (0, 1), then F (x) = zf(x)−1 ∈ zU−1 and by Lemma 3.6, F (x) /∈ U .
Then F (−1, 1) is a continuous open path connecting −1 and 1, thus cutting the
open unit ball in two disjoint open components by Jordan’s Curve Theorem; but
F (−1, 1) ∩ U = ∅ and U ⊂ UC, so U cannot be path-connected, contradiction.
Thus τ(U) = 1 and U = UC.

Finally, U = UK implies that the only closed unit is BK by its own definition.
�

3.2. Unit balls vs unit neighborhoods of 0. Notice that not every open
unit ball in an absolute-valued ring is an open unit. For example, consider a
ring endowed with the discrete absolute value. But there are more non-discrete
examples.

Example 3.8. Take the unitalized ring R = Z× R. It is easy to prove that

d ((n, x), (m, y)) = |n−m|+ |x− y|
1 + |x− y|

is a metric which induces the product topology on R. Then

UR = {(n, x) ∈ R : d((n, x), (0, 0)) < 1} = {0} × R



240 F.J. GARCIA-PACHECO, P. PINIELLA

but U2
R = 0 6= UR. Also

BR = {(n, x) ∈ R : d((n, x), (0, 0)) ≤ 1} = UR ∪ {±1} × {0},
but cl(int(BR)) = UR 6= BR. Thus, neither UR is an open unit nor BR is a closed
unit.

This poses a natural question: which properties must be imposed to an absolute-
valued ring to ensure its open and closed unit balls are open and closed units,
respectively? First, we give a sufficient condition for ensuring the regularity of
UR.

Proposition 3.9. Let R be an absolute semi-valued ring such that |1| = 1. If
UR ∩ U(R) is dense in UR, then UR is a regular open set.

Proof. First off, notice that UR ⊂ int(cl(UR)) is obvious. Suppose the inclusion
is strict and take x ∈ int(cl(UR)) \ UR ⊆ SR since cl(UR) ⊆ BR. There exists
r > 0 such that UR(x, r) ⊂ cl(UR) = cl (UR ∩ U(R)). Since R is first-countable
(because of its metric structure) then there exists a sequence (vn)n∈N ⊂ UR∩U(R)
converging also to x. Finally, consider yn = v−1n x2, which is out of BR (since
|yn| > 1) and converges to x. Thus, some yn ∈ UR(x, r) ⊂ cl(UR) ⊆ BR, which is
a contradiction and, by reductio ad absurdum, implies UR = int(cl(UR)). �

Lemma 3.10. Let R be an absolute semi-valued ring such that |1| = 1.

(1) UR ∩ U(R) 6= ∅ if and only if U(R) * SR.
(2) If (un)n∈N is a sequence of U(R) converging to u ∈ U(R), then (u−1n )n∈N

converges to u−1.
(3) U(R) is a topological multiplicative group.

Assume, in addition, that the absolute semi-value is complete.

(4) If s ∈ UR, then 1− s is invertible and (1− s)−1 =
∑∞

n=0 s
n.

(5) U(R) is open.

These facts are proved on almost every manual concerning topological groups
and topological rings, such as [3]. We are in the right position to state and prove
the main results in this subsection.

Proposition 3.11. Let R be an absolute semi-valued ring such that |1| = 1.

(1) If there exists an element x ∈ UR with maximum absolute value, then
either UR = {z ∈ R : |z| = 0} or UR is not idempotent.

(2) If UR is an open unit, then UR 6= {z ∈ R : |z| = 0} and consequently
supz∈UR

|z| is not attained.

Proof.

(1) Assume that UR 6= {z ∈ R : |z| = 0} and UR is idempotent. Note that in
this case |x| > 0. By hypothesis, there are r, s ∈ UR such that x = rs so
|x| = |rs| = |r||s| < |r| ≤ |x|, which is a contradiction.

(2) Assume that UR is an open unit such that UR = {z ∈ R : |z| = 0}.
Notice that UR

(
1, 1

2

)
∩ {z ∈ R : |z| = 0} = ∅, which contradicts the

fact that 1 ∈ cl (UR). The fact that supz∈UR
|z| is not attained is a direct

consequence of the previous item.
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�

Definition 3.12. Let R be an absolute semi-valued ring. We will say that e ∈ BR

is

• a weak extreme point of BR provided that the condition 2e = r + s with
r, s ∈ BR implies that r = s;
• an extreme point of BR provided that the condition 2e = r + s with
r, s ∈ BR implies that r = s = e.

We will denote the set of (weak) extreme points by (w-)ext(BR).

Proposition 3.13. Let R be an absolute semi-valued ring.

(1) ext(BR) ⊆ w-ext(BR) ⊆ BR.
(2) If char(R) = 2 and R 6= 0, then ext(BR) = ∅ and w-ext(BR) = BR.
(3) If char(R) 6= 2 and R is an integral domain, then ext(BR) = w-ext(BR).

Proof.

(1) It is fairly obvious that ext(BR) ⊆ w-ext(BR) ⊆ BR.
(2) Let e ∈ BR and write 2e = r + s with r, s ∈ BR. Then 2e = 0 so r = s

since r + r = 0. This shows that w-ext(BR) = BR. In order to prove
that ext(BR) = ∅ we choose e 6= r ∈ BR and notice that 2e = 0 = r + r
(observe that since R 6= 0 we may take e = 1 and r = 0).

(3) Let e ∈ w-ext(BR) and assume that r, s ∈ BR are so that 2e = r + s. By
hypothesis we have that r = s so 2e = 2r and thus 2(e − r) = 0. Again
by hypothesis we deduce that e = r.

�

Definition 3.14. Let R be an absolute semi-valued ring. The absolute stabilizer
of r ∈ R is defined as

Er := {s ∈ R : |r + s| = |r − s| = |r|}.

The reader may find easy to realize that E0 = {s ∈ R : |s| = 0} is a closed
two-sided ideal of R.

Lemma 3.15. Let R be an absolute semi-valued ring.

(1) E0 ⊆ Er for every r ∈ R.
(2) If char(R) 6= 2 and R is an integral domain, then E1 6= {0} implies that

1 /∈ ext (BR).

Proof.

(1) Let s ∈ ER. Simply notice that

|r| = ||r| − |s|| ≤ |r − s| ≤ |r|+ |s| = |r|
and

|r| = ||r| − | − s|| ≤ |r + s| ≤ |r|+ |s| = |r|.
(2) Let s ∈ E1 \ {0}. Then 2 = (1− s) + (1 + s) with |1− s| = |1 + s| = |1|.

Suppose that 1 − s = 1 + s, then 2s = 0 and, by hypothesis, s = 0,
contradiction. Then 1− s 6= 1 + s, meaning that 1 /∈ ext (BR).
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�

Theorem 3.16. Let R be an absolute semi-valued ring such that |1| = 1. Suppose
that R is an integral domain and of characteristic different from 2. Assume that:

• 1 is an extreme point of BR.
• R is complete.
• UR ∩ U(R) 6= ∅.

Then 1 ∈ cl (UR).

Proof. By the third hypothesis there exists r ∈ U(R) with 0 < |r| < 1. Notice
that the sequence (rn)n∈N converges to 0, so (1− rn)n∈N converges to 1, and
1 − rn is invertible for all n ∈ N (see Lemma 3.10 above). We will distinguish
now several cases:

• There exists a subsequence (nk)k∈N such that |1− rnk | > 1 for all k ∈ N.
In this case, we apply Lemma 3.10 to assure that

(
(1− rnk)−1

)
k∈N ⊆ UR

converges to 1, so 1 ∈ cl (UR).
• There exists a subsequence (nk)k∈N such that |1− rnk | < 1 for all k ∈ N.

In this case, we immediately conclude that 1 ∈ cl (UR).
• There exists n0 ∈ N such that |1− rn| = 1 for all n ≥ n0. We will show

that |1 + rn| 6= 1 for all n ≥ n0. Indeed, suppose to the contrary that
there exists n1 ≥ n0 with |1 + rn1 | = 1. Then rn1 ∈ E1 \ {0}, which
implies in virtue of (2) of Lemma 3.15 that 1 /∈ ext (BR). This contradicts
our hypotheses, therefore |1 + rn| 6= 1 for all n ≥ n0. Finally, we only
need to take the sequence

xn =

{
1 + rn if |1 + rn| < 1
(1 + rn)−1 if |1 + rn| > 1

for n ≥ n0.

�

References

1. J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid 10
(1997), no. 2, 299–330.

2. G. Kothe, Topological vector spaces, I, Springer-Verlag, New York Inc, 1969.
3. S. Warner, Topological fields, Elsevier Science Publishers B.V., Amsterdam, 1989

Department of Mathematics, University of Cadiz, Puerto Real, 11510, Spain.
E-mail address: garcia.pacheco@uca.es
E-mail address: piniella5050@gmail.com


	1. Introduction and notation
	1.1. Notation
	1.2. Absolute-valued rings with unity

	2. Unit neighborhoods of 0
	2.1. Notion and examples of unit neighborhoods of 0
	2.2. Basic properties of open units and closed units
	2.3. Existence of non-trivial open units

	3. Unit neighborhoods of 0 in absolute valued rings
	3.1. Topological properties of open and closed units inherited from the absolute value
	3.2. Unit balls vs unit neighborhoods of 0

	References

